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About the University

Rajiv Gandhi University (formerl iversity) i
y Arunachal University) is a premier instituti .

f premier institution for hi ioni
;ﬁ?nmﬁ.c hal Pradesh and has completed twenty-five years of its existence. Late gmtghlerznr;i;l ucémm in the state
e Minister of India, laid the foundation stone of the university on 4th February, 1984; at Rozo I:I:l?shl’ tl?e tht;:ln

? , where the

present campus is located.

Ever since its i ; s )
envisaged rilslutl;: gi;?,::;tmi t?e%lhmver§1ty haS been trying to achieve excellence and fulfill the objectives a
University Grants Commist)‘, ct. The university received academic recognition under Section 2(f) from ths
recognition under seotion S]lzc;r;3 on 28th March, 1985 and started functioning from 1st April, 1985. It got finan 'a?
Actoachal University) ha -B of the UGC on.25th March, 1994. Since then Rajiv Gandhi University, (tl(;l
selection as a University wsit;;la;;’f; ;allllf?he for 11ltself in the.educational scenario of the country follow’ing ftrsl
Commission from among universities in (1); gizc.:e ence by a high-level expert committee of the University Grants

The University was converted into iversi
e a Central University with efft i : .
of the Ministry of Human Resource Development, Govemmtyent of Inil(i:;ﬁom ot Aprl, 2007 as per notification

The University i .
Dikrong, eltlilsng?;g flri loctia;telciI atop Ron9 Hills on a picturesque tableland of 302 acres overlooking the river
i< Finked with th from the ational Highway 52-A and 25 km from Itanagar, the Stat ital

¢ National Highway by the Dikrong bridge. ’ e capital. The campus

The teaching and research i

. : programmes of the University are desi i i i

o : 1 e designed with a i

rad :ats:cll\z ;;:l(ﬁn:nr:lilcl:) 1f.nd cultural development of the State. The University oi:t,‘:;:vlt.(])nrc)ilea: al(’iOSlt“’(;fde
, M. .D. programmes. The Department of Education also offers the B.Ed g:grme o

There are fifteen colleges affiliated t iversi

. o the University. The Universi . .

(t;acﬂltles to students ff'om @e neighbouring states, particularly Ass am-el'.l?tlltg sht?:nbg‘:;n ;xtendmg ?duc:atlonal
epartments of the University and in affiliated colleges has been steadily increasing of students in different

The faculty members have been actively engaged in research activities wi
: e o s with financi
;;ti ::il:;-lrs E(‘ihn;g :g:l;gil:ss.t St;lnc[eI inception, a ngmber of proposals on research proj eil::ﬁ\?:%ﬁgg gzl::iUGg
and conferences gMin facu? y n:)verSIty. Vanc.Ju.s departmetts have organized tumerous semminars works;ne
o e c.oun y o ty mem! ers have participated in national and international conferences : d semi o
' try an al.)road. Eminent scholars and distinguished personaliti isi e Univorits
and delivered lectures on various disciplines. P ities have visited the University
The academic year 2000-2001 was a year of consolidati iversi ;
gnnual to the sem.ester system topk off sm};othly ands:lllzd:t;:t{:)ga?:e[i?‘t’;;s ;tt}ltl.d::::e SWIYCh over from the
improvement. Various syllabi designed by Boards of Post-graduate Studies (BPGS) h y l‘;glste.red a marked
VSAT facility installed by the ERNET India, New Delhi under the UGC-Infonet prograr, e;;vllilcllpleﬁented.
es Internet

access.
In spite of infrastructural constraints, the University h i
_ . ’ as been maintaining i .
qmvers1w has strictly adhered to the academic calendar, conducted the exammjn;ﬁgoilt: aczdemlc excellence. The
time. The students frqm th’e qm\fersu)" have found placements not only in Statean ddeclared the results on
Services, but also in various institutons, industries and organizations. Many students h:e Cem:ra(ll Government
emerged successful in

the National Eligibility Test (NET).
Since inception, the University has made significant progress in teaching, research, innovations in curricul
’ ) curmcuium

development and developing infrastructure.
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INTRODUCTION

Mathematics is the study of quantity, structure, space and change. The mathematician,
Benjamin Peirce called mathematics ‘the science that draws necessary conclusions’.
Hence, Mathematics is the most important subject for achieving excellence in any field
of Science and Engineering. Mathematical statistics is the application of mathematics to
statistics, which was originally conceived as the science of the state—the collection and
analysis of facts about a country: its economy, land, military, population, and so forth.
Mathematical techniques which are used for this include mathematical analysis, linear

algebra, stochastic analysis, differential equations, and measure-t..eoretic probability
theory.

Statistics is considered a mathematical science pertaining to the collection, analysis,
interpretation or explanation and presentation of data. Statistical analysis is very important
for taking decisions and is widely used by academic institutions, natural and social sciences
departments, governments and business organizations. T" ¢ word statistics is derived
from the Latin word status which means a political state or government. It was originally
applied in connection with kings and monarchs collecting data on their citizenry which
pertained to state wealth, collection of taxes, study of population, and so on.

The subject of statistics is primarily concerned with making decisions about various

disciplines of market and employment, such as stock market trends, unemployment rates .

in various sectors of industries, demographic shifts, interest rates, and inflation rates
over the years, and so on. Statistics is also considered a science that deals with numbers
or figures describing the state of affairs of varioussituations with which we are generally
and specifically concerned. To a layman, it often refers to a column of figures or perhaps
tables, graphs and charts relating to areas, such as population, national income,
expenditures, production, consumption, supply, demand, sales, imports, exports, births,
deaths, accidents, and so on.

This book, Mathematics and Statistics, has been designed keeping in mind the
self-instruction mode format and follows a SIM pattern, wherein each unit begins
with an ‘Introduction’ to the topic followed by the ‘Unit Obj ectives’. The content is
then presented in a simple and easy-to-understand manner, and is interspersed with
‘Check Your Progress’ questions to test the reader’s understanding of the topic.
‘Key Terms’ and ‘Summary’ are useful tools for effective recapitulation of the text.
A list of ‘Questions and Exercises’ is also provided at the end of each unit for effective
recapitulation.

Introduction

NOTES

Self-Instructional
Materinl



UNIT 1 COORDINATE GEOMETRY
AND ALGEBRA

Structure

1.0 Introduction
1.1 Unit Objectives
1.2 Cartesian Coordinate System
1.3 Length of a Line Segment
1.4 Coordinates of Midpoint
1.5 Section Formulae (Ratio)
1.6 Gradient of a Straight Line
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1.7.1 Different Forms of Equations of a Straight Line
172 Application of Straight Line in Economics
1.8 Circle
1.8.1 Equation of Circle
182 Different Forms of Circles
1.83 General Form of the Equation of a Circle
184 Point and Circle
1.9 Parabola
19.1 General Equation of a Parabola
192 Point and Parabola
1.10 Hyperbola
1.10.1 Equation of Hyperbola in Standard Form
1.102 Shape of the Hyperbola
1.103 Some Results About the Hyperbola
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1.13 Exponential and Logarithmic Series
1.14 Summary
1.15 Key Terms
1.16 Answers to ‘Check Your Progress’
1.17 Questions and Exercises

1.18 Further Reading

1.0 INTRODUCTION

In this unit, you will learn about coordinate geometry. It is a branch of Mathematics in
which we make use of algebra to solve the geometrical problems using a Cartesian
coordinate system. In Cartesian coordinate system, the coordinates of a point are its
distances from a set of perpendicular lines that intersect at the origin of the system.
Using the Cartesian coordinates of the endpoints of the line segment, its length can be
calculated. Distance formula will be used to know the length of a given line segment.
Midpoint is unique to each line segment. Using the coordinat'tes of the endpoints of the
line segment, we will derive the mid-point formula. The coordinates of any point lying on
aline segment can be known with the help of section formula. Section formula will be

Coordinate Geometry
and Algebra

NOTES
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derived to know the coordinates of the point lying on a line segment with known endpoints
and dividing it externally or internally in some ratio. The medians of a triangle are
concurrent and the point of intersection of all the three medians is called the centroid.
You will find the coordinates of the centroid of the triangle using section formula.

Geometry is a part of Mathematics concemned with questions of size, shape, relative
poisiﬁon of figures and the properties of space. Analytic geometry is the study of geometry
using a coordinate system and the principles of algebra and analysis. A line of zero
c'urvature is called straight line. You will learn about straj ght lines, gradient of straight
lines, various forms of straight lines and the general equation of straight lines. Concurrent
lines have also been illustrated in this unit. You will know the definition and the equation

of the.circle, dii?'erent forms of circles and general equation of a circle. You will learn the
equations of ellipse and parabola and their definitions.

11 UNIT OBJECTIVES —

After going through this unit, youwill be able to:
* Describe Cartesian coordinate system
* Find the length of a line segment

* Calculate the midpoints of the line segment
® Define section formula‘

® Describe straight lines and their gradient

® Leam different forms of equations of straight lines
* Know circles and different forms of circles

* Define ellipse and Parabola along with theijr general equations

¢ Discuss the binom; . ]
' e binomial expansion for apositive, negative or a fractiona]
* Explain the exponential and logarithmic serics e exponent

4 planes or eqyj 1 )
mutually perpendicular |3 cduivalently by its pernend :
Weuse n Cartesian gy lnes, Generally, to Y 'SP rp I,ldlcular Projection onto three

. rdinates ang ¢ sPec. APpointinaspace imensi
from the point to mutually perpendic‘]:l:i‘;l;:mdmates are equal to t}:’ef:ingylrl (eignd?ntszoge’;
CIplanes san

Let X'OXand Y"OY be two perpendicular lines in the plane of the paper intersecting
at O (refer Figure 1.1). Let P be any point in the plane of the paper and let PM be
perpendicular on OX. The lengths OM and PM are called the rectangular Cartesian
coordinates or briefly, the coordinates of P and are usually denoted by the letters x
and y, respectively. The line X'OX is called the X-axis and the line YOY” is called the
Y-axis. The point Ois called the origin. The two axes divide the plane, called the coordinate
plane, into four quadrants XOY; YOX ', X'0Y ‘and Y'OX which are, respectively, referred
to as the first, second, third and fourth quadrants.

Y

Yy

Fig. 1.1 Point P in the Cartesian Plane

The length OM s called abscissa or the X-coordinate of the point P and MP is
called the ordinate or the Y-coordinate of P. This is expressed, in the notational form by,
writing P (x, ), which indicates that the point P has abscissa x and ordinate y.

In coordinate geometry, we have the same rule as regards in Trigonometry. The
lengths measured along OX are regarded as positive whilst those measured along OX
, are taken as negative. Similarly distances measured along OY are positive and those
along OY" are negative. Suppose Q is any point in the second quadrant X’ OY (refer
Figure 1.2). Draw QK 1 OX'. If numerical values of OK and QK be a and b, respectively
then the coordinates of Q are (—a, b), as the distance measured along OX’ is negative.

, Y

| Y

Fig. 1.2 Point Q in the Second Quadrant

In general we find that in first quadrant, both abscissa and ordinate are +ve; in
second quadrant abscissa is —ve, ordinate is +ve; in third quadrant both abscissa and
ordinate are —ve; in the fourth quadrant abscissa is +ve whereas the ordinate is —ve.
Clearly, the coordinates of the origin are (0, 0).

Example 1.1: Locate point (-4, —4) on the Cartesian plane.

Coordinate Geometry
and Algebra

NOTES

| So’ution: Draw a vertical line atx = —4 and draw a horizontal line at y =—4 as shown
' below in the Figure:

Self-Instructional
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. Y Coordinate Geometry
fj:;’j;;‘j,’,‘jf“"’“’" A 1.3 LENGTH OF A LINE SEGMENT and Algebra
Line: A line is a straight one-dimensional figure having no thickness and extending
NOTES . : infinitely in both directions, NOTES
34 | v z
2+ v X
1+ / -—e Y
X'ttt ————y —> X
-5-4-3 -2} 1 2 3 4 35 Fig. 1.3 Line, Line Segment and Ray
-1+ . .
o4 , A line is determined by two distinct points lying on the line. Line in Figure 1.3 is
sl | XV. Line extends to infinity on both sides. Therefore, its length cannot be measured.
ﬁ ~ -44 Ray: Aray is a subset of line extending infinitely in only one direction. Arayis
-9 4 named starting with its endpoint first followed any other point on the ray. Ray in Figure
1.3is VZ.
~ Line Segment: A line segment is a part of line having two endpoints. It has a
;, | finite length. The two endpoints of the line segmentare used to name the line segment.
The point of intersection of these lines i the poi | | Theline segment in Figure 1.3 s UY.
€ lines 1s the point !
le 1.2: Plot the o . Polnt(4,~4). To Calculate the Length of a Line Segment: Length of a line segment is
poExamintsge : rdered pairs and name the quadrant or axis in which the following | generally computed using distance formula,
Length of a line segment is the distance between its endpoints. Its unit is same as
A(2,3),B(-1,2), C(~ ; L
Soluti ®.3).B¢1,2), Ce3, ~.D(2,0)and E(, 5). ! that of length. The length of a line segment can be calculated using distance formula.
olution: ., \ .
' _ : Length of the line segment L (say) joining the points (x;,») and (x,,p,) is
K | I = \/ 2 2
7L | =y(x2~x) +(»2-n)
o °T | Lines were defined by Euclid as ‘breadthless length’. The term breadthless is
0.9 5 ¢ ! used in the sense of negligible.
il ,
34 0AQ,3 | On the Cartesian plane, whenever the segments are horizontal or vertical, the
B(-1,2)e 5 | 3 | length can be obtained by counting the distance from one end to the other.
|
1+ | Y
Xty |
T oag’ * 6 7 !
2+ 3 3
~3 4 [ A 2 B
C(-?:, —4) Y <4l ‘ 1
-4 < S 2 4 10 1 2 )
'(1 C T r LTI
M 3 TN
4 f AN
. Y D E L5
Point 4 lies in quagray, : 3 15y
intDIj ; point B Jigg ; | Y
pomnt D lies on X- axis: e . o1 S In Il quadrant: poirr v :
1 8XIs; point £ lieg o Vags, O adrent p"mtcllesmmquadmm, ‘ Fig. 1.4 Line Segment AB, CD and EF
Self-Instructional ’
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For example, to find the length or distance of segment AB (refer Fi gure 1.4), we

simply count the distance from point 4 to point B which comes out to be 7 units, Similarly
the length of line segment CD is 3.

The Pythagorean Theorem states that the sum of the squares of the base and

perpendicular of a right angle triangle is equal to the square of the hypotenuse.
When working with diagonal segments, the Pythagorean Theorem can be used to

determine the length.

For example a right triangle is formed with EF ag the hypotenuse (refer Figure 1.4).
By using Pythagoras Theorem,

(EFy=4+732
(EF®=25
EF=5
When working with line segments in

. general, the distancé formul
to determine the length. The distance formula is given by, #shouldbeused

D=\/("l‘xz)2+(y1-yz)2

Where, D denotes the length of the line segment Wi i
_— gment with endpoints (xl, y,) and
Using distance formula, the length of lin w
165 ©segment EF with coordinates 1,-1

folm . . .
picture to find the anewer and worksl;la lies in the fact that Youdo not neeq t
are the coordinates of ; >rallofthe above o drawa
tes of the endpojngg of the segmen; cases. All you need to know
Distance Formula: The

) distance D pe N
(%, ;) is measured by following °quaﬁ:,:.een 0 points having Coordinate (x

P

Y=y
Ormula: 2)

pY,)and

Proof of Distance F

A has coordinate () ABC )
»Y1)s PO (l'ef
(s ¥,). v71> POINt B hag Coordinateg ( °r Figure 1,

>~

! | T
ool L
T
T Clx)
R e B 't
L 5 //
1 .| LA g
: )
X"~<—LF v >
0
LA N L
- =
i A(x,(y) > %) B(x,,)

v
Fig. 1.5 Line Segment AB in Cartesian Plane

So the length of 4B =[x, — x |

Length of BC=|y, - y,|

According to the Pythagoras Theorem in A ABC,

AC? = AB*+ BC?
ACt = Ixz—x||2 + Iyz—yllz

AC = \/(xz _xl)z +(»2 —)'1)2

Example 1.3: Find the distance between the following pair of points:

M (-5,3),3,1)
(i) 4,5),(-3,2)
Solution: (i) Let4 (x,,y,) =(-5,3)
Bx,y)=0G,1)
The distance between the points is,

AB=[(x,~ %) +(%-»)’

=3-C5F +(1-3)°
=J64+4 =68 =217

(ii)4=(4,5)and B=(-3,2)
Let (x;, ) =(4,5)and (x,, y,) = (-3, 2)

Coordinate Geon
and Alg

NOTES
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The distance between the points is,

aB=A(%~x) +(3, -
= (3-8 +(2-5)
=J49+9=+/58

Example 1.4: Find the distance between the following pairs of points:

@ (-a, b)and (a, b)

@ (0,2) and (¥3.1)

@ (32)umd(-13)
@) (v3+1,1)and(0,43)
Solution: (i) (x), y,) = (-a, b) and (x,, y,) =(a, b)
The distance between the two points is,

= Jla-(a)F +(b-b) =+[2a) =24
() G2 =(0,2)and (x,,)=(+3,1)

Distance between the two points s,

= \[(JE —0) +(1-2)
=3+1=4=2

. 3
@) 3)= (5 )and(xz V)= (~- l)
. 5
Distance between the two points is 5

(—g-a (7 7

(@) (xl:y1)=(\/§+1,1)

and (x2’yz)=(0,J§)

Self-Instructional
Material

!

Distance between the two points is,

= \/[0—(\/3+1)]2 +(\[3_—l)2

= 3+1+23+3+1-23=8=22

Example 1.5: A point is equidistant from 4 (-6, 4) and B (2,-8). Find its coordinates,
if its abscissa and ordinate are equal.

Solution: The coordinates, abscissa and ordinate can be evaluated as follows:

P(x. %)

A (=6, 9) B2 -8

Let P be the point equidistant from 4 and B. Since the abscissa and ordinates are
equal, let (x, x) be the coordinates of P.

PA=PB

=> PA*=PB?
= (x+6)*+(x—-4)>=(x—-2) +(x+8) (Using distance formula)
= 2+ 12x+36+x% —8x+16=x2—4x+4+ x>+ 64 +16x

= 4x+52=12x+68

= —-8x=16=> x=-2

=> The coordinates of P are (-2,~2)

Example 1.6: The coordinates of B are formed by interchanging the coordinates of 4.
If the coordinates of 4 are (7, 10) then find the distance between 4 and B.

Solution: The coordinates of 4 are (7, 10).

(given)

The coordinates of B are formed by interchanging the coordinates of A.
The coordina‘ttes of Bare (10,7).
Distance between the line segment w:,- endpoints (x,, y,) and (x,, ,) is,

\/Exz 'xl)z +(1, "yl)z]

Replace (x,, y,) with (7, 10) and (x,, y,) with (10, 7),
2 2
Distance between 4 and B= J[FO =7) +(7- 10) ]
32 +(-3)’ ]

= J(9+9)

Coordinate Geometry
and Algebra
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. . . : : Coordinate Geometry
Coordinate Geometry - /i 1 Combining the X-coordinate of M, and Y-coordinate of M, the coordinates of Mare, ond dlgebra
and Algebra ,‘
=132 | (xl+x2 yl+y2)
OrES . The distance between 4 and B is 3V2 units. 2 2 NOTES

Example 1.7: Find the coordinates (x, y) of the midpoint of the segment that connects
the points (-4, 6) and (3,-8).

. ce . Solution: x =(x, +x,)2=(-4+3)12=-1/2
The coordinates of the midpoint of the line segment is the arithmetic mean of the (¥ )
coordinates of the endpoints. y=@,+y,)2=(6-8)2=-1

14 COORDINATES OF MIDPOINT

Therefore, the coordinates of midpoint are (-1/2,~1).
Example 1.8: A line segment has endpoints P (- 6,4) and O (8,~2). Find the coordinates

.A line segment on the coordinate plane is defined by two endpoints whose
coordl.nates are knowp. The midpoint of this line is exactly halfway between these
endpoints and its location can be found using the midpoint Theorem, which states that:

of the midpoint of line PQ.
* The X-coordinate of the midpoint is the average of d : Solution: Give
two endpoints, ge of the X-coordinates of the ugon: U1 : .
“ . o x,= —6,x,=
e Likewise, the Y-coordinate is the average of the Y-coordinates of the endpoints l 4 —2 2
Mid-Point Formula: The midpoint M of the line segment (refer Fi 1.6 =%,
from P,(x,,y,) to P(x,, »,) i, gure 1.6) By midpoint formula,
. (X2t hth
(x]+x2 yl+y2 M—( 2 s ) )
2’ 9 .
. s 8 4-2
Proof of the Midpoint Formula; The |; _ (—6 + __)
. . (<} l ’
mtersect theX'aXiS atA‘(xl, O) andA (x llE);STth'hroﬁghg;and Pp pal'allel tO the Y-aXiS 2 2
bisects the se : 2" ). 2he line through M parall _axi
gment 4 4, at point M, (refer Figure 1.6). parallel to the Y-axis _ ( % _i_)
Y —
A - (l ’ 1)
P, 530 Hence, the coordinates of midpoint are (1, 1).
EARCTS ) . . . . .
Pryy MM Example 1.9: Prove analytically that in a right apgled triangle the midpoint of the
/j'l"/ hypotenuse is equidistant from the three angular points.
Check Your Progress X — So'luti.onz In th; ji;en figure, triangle is assumed as 4OB with coordinates as shown;
1. Define the originin 46,00 o W X Cis midpoint of AB.
a Cartesian ¥ 4, (x,, 0) Y
coordinate plane. Fig 1.6 |; 1
2. What are the . e Segment p 1P, in Cartesiq P, ‘. BT 0.8
coordinates of the M, is halfway from 4,104 the X . " Plane i
origin in a Cartesian 2 ~Coordinate of 5 is (al2, b12)
1%
plane? X, +_(x2 — ) _ 1 1 .
3. Define length ofa 2 1)=X + 3% ->x l 0
: 1 ! ,
lme' segmen't. 1 2 Sa >)X
4. Write the distance =2y, 1 0'(0,0) 4
5. Wiatis 2" 7g% 11be (a/2, b/2)
. at is the sign of : illbe(a/2,
abscissa and o = m So, coordinates Ofc. W
ordinate in the four I
coordinates? Similarly the . ~Coordinate Ofluz is ? Now AB = va* +b* .
6. What is a ray? ’ CA=CB=ABI2 (Cis midpoint of AB)
= s+ J 2

Self-Instructional
Material 13
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|
| Y
and the distance between two points C and O is given by, f

Coordinate Geometry
Coordinate Geometry and Algebra
and Algebra 1 0
[22 + 52 |
cO=\[(a/2-0) +(b/2-0)f =YL *P | i y
NOTES ? | X —— NOTES
Hence, CA=CB=CO | ™
) P
Example 1.10: The coordinates of 4 are (x, y), of B are (4x, 2y) and the midpoint of the !
line segment 4B is at (15, 3). Find the coordinates of 4 and B, ?
Solution: The coordinates of 4 are (x, y), and of B are (4x, 2y). ‘[ X— I - ~ X
Midpoint of a line segment with endpoints (x , y ) and ( : v
r ) Xy ¥,) is ((x, + x.)/2, L
0, +»,)2) ™2 Fig. 1.7 Internal Division
Replacing (x,, y,) with (x, y) and (x,, y,) with (4x, 2y) ‘\ Now, KR=LM=O0OM-OL=x-x,
Midpoint of AB = (x+4x/2 , y+2y/2) RT=MN=ON-OM=x,-x
=(5x/2,3y/2) : Thus, Equation (1.1) gives,
Equate the midpoints, | X-=x _m
(5x/2,3y/2)=(15,3) | Xp—x m
5x/2=15;3y/2=3
Sgity = po A
| +m,
x= 6; y= 2 . . PK PR m
The coordinates of 4 are (x, »=(6,2) Similarly by considering, T0 RO m
The coordinates of B are (4x, 2,) < | ‘ _my, +mxn
(4x, Y) (4><6,2x2)=(24’4). We get —W
1. .
S SECTION FORMU LAE Hence the coordinates of R are,
TIO)
To find the coordinate of the pq; : mx, +myX MY ¥ M)
(*,,,) in the ratio m_ ‘m,. PoInt which diyigeg the joins of twq given points mtmy T mym
in . .
Case L Internal division, 1 et p and O P Corollary: If R is the middle point of PQ, we have
and (x,, y,) respectively and et R Qbethe o given points wigh , X+ X
rons () bothe oy 2 S Witk coordinates AR
O, : m, mtemally (refer Figyre | 7 It Which divideg the jo oA 2
X-axis and take R parallel to X-ayig o, ];.faw Perpendiculars py, zéMm °§P » Qinthe oty
s Celing ON'in T » fudand ON on the NTr2
Then from similar triangles KPR and TQR wobae and Lp Produced ip K and y 2
KR PR o, Thus, the coordinates of the middle point of the line joining the points (x,, y,)
——=a = \l ! ?
RT Ro m, 1 and (x,, y,) are,
» ~(L1) ntH &_ty_z)
| 2 12
ivi lly, in the ratio m, : m.. Dro
division. Let R divide PQ, externally, in th 1+ M,. U1Op
I?:r:)‘;tl:l.ifu};taiggl{ ON, RMon the X-axis and complete the Figure 1.7 as shown in
Figure 1.8, From the similar triangles KPR and TOR, we have
KR _PR_™M
TR QR ™
Self-Instructional
14 Material Self-Instructional
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—————x
-

o L N M X

Fig. 1.8 External Division
where KR =LM=O0M-0OL =X-x,
TR =NM= OM—ON=x-x2.

Th_om

X=X, m
Thisimplies =~ x= ZL27M%
Similarly, we get = m,

y= Mhammy

. =
giving the required coordinates of the point R

X mal divig :
) tltll:anfmg ’ln élto “m, 100 are obtained from those for internal division by
external division if X lies toy, : )
nates of X by putti s F ie., on gp
Exampl . Y putting ~m, for m, in the fOHmIIanorpil:t::::]d:ﬁ we shall get the coordi-
| e 1.11: Find the coordj Vision.
the points A (-3, 4y and dmates of the point which divig, i
; (8, 7) inthe given ragi- <~ 00 the line segment joinin
® Tnterally oS Tas o
() Externally
Solution: x, =3, x,=-8
y 1 =— 43 y2 =17
m=5n=7

(1) Internal divisiop;

mx, +

xX= 2 nxl my. +
m’ﬁ{ﬁ&
3(8) +7(-3) |

xX= 5
?‘7,}’2%

S+7
=-40-21
x 12 ,y=+351'2-28
x:-ﬂ y= 7
12° ~E

cedpoinis (51, 21)
. The required point is 2’ 12)
(ii) External division:

_mx, —nx, My, — 1),
m-n m-—n
5= C8)-73) (- (4
s_7 7T 5.7
-40+21 35+28
X = y Y=
-2 -2
(o196
27772
o6
2772
. . (19 63
.. The required point is (—2-,-7)

Example 1.12: A line of endpoints (9, 3) and (7, 3) is divided internally by a point Pin

the ratio 2: 1. Solve the coordinates of the point P(x, y).
Solution: Given:
7)) =9, 3)
(¥ =(1,3)
m:n=2:1
Using section formula for internal division, we have
mx, +nx; _ 2x7+1x9
m+n  2+1

14+9
3

wl‘c}

my, +ny; =?‘_’i§j'_ll§
m+n 2+1

N
+
w

W wivw \
(US )

I

=

23
Therefore, coordinates of point (x.y)= (_3-’3) '

Coordinate Geometry
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Coordinate Geometry | ll The Gradient of a Line: The gradient of a line segment measures the steepness of the Coordinate Geometry
) ) and Algeb
and Algebra 1.6 GRADIENT OF A STRAIGHT LINE \ line. The larger the gradient, the steeper is the line. Figure 1.11 shows three line segments. geord
Gradi et - l The line segment AD is steeper than the line segment AC which s steeper than AB. We
NOTES > ent c.>f a su'al:iht hnelsdeﬁ‘nedasthe rate at which an ordinate ofa point on the line | can calculate this steepness mathematically by measuring the relative changes in X'and NOTES
acoordmate. p echangeswuhl:espectto achange in the abscissa. Two perpendicular | Y coordinates along the length of the line.
real axes in a plane define a Cartesian coordinate system (refer Figure 1.9). The pointof | v
intersection of these axes is called the origin. The horizontal axis is called X-axis whil T
the vertical one is called Y-axis. -axis while
. . i D(2,5)
. ;n a fartesmn system, ar‘ly point P (say) in a plane is associated with an ordered
pair of real numbers. To obtain these numbers, draw two lin .
parallel tothe axes. The point ofntersecton ofthese peralll oo e PO - | @
the point. The point of i . v parallel lines is the coordinates of
e ot 0" tersecton ofthe paralllline with Y-axis i the Feoordinseand
and the Y-coordinate i ~coordinate of the point P. The X-coordinate is called the absci ! 40,1 B2.1)
1s called the ordinate of the point Pand is represented o i : : > X
ented as (x, y). | 0 1 2
4
A ’ ll Fig. 1.11 Line Segments AB, AC and + )
5+ l On the line segment AD, y changes from 1 to 5 as x changes from 1 to 2. So, the change
ad ; in y is 4 and the change inx is 1. Their relative change is,
\ Change in y _5_1__11__4
; Changeinx 2-1" 1
| Similarly for line AC, the relative change is 2 and for line 4B, the relative change is 0.
. 2.3 4 s o l This relative change, i.e., C2228%1 Y s called the gradient of the line segment. We
' Fig. 1.9 Cartesian Coqy di 1 Change in x
. 1 .
Equation of a Line: A generq] linear e of oint P 1 can observe from Figure 1.11 that steeper lines have larger gradient.
are constants, Th . lunction ‘ . . -
In this prtioufa e set of So;;mons of such ap eq::tsi:l; formy= mx +¢, where m and ¢ Inthe genel:al case, 1f we take two points A(x,, y,) and B(x,, y,) as shown in Figure 1.12
the co nstanttermequaucmh?’- € Constant . esth;)l';nsastralght line in the plane. then the point C is given by (x,, )
the Y-axis. The distance ¢ ; ce ofthe S10pe or gradient of the line and
ce cis called the y; the point at wh; : Y
e Y‘thI'Cept o . Wthh the hne mteI'SCCtS B(x»y)
Y € line (refer Fj >
gure 1.10).
; Axo ) - = Clxs )
|
S —> X
| Fig. 1.12 Right Angled AABC
So the length AC is x,~ X,, and the length CB is y,— y,- Therefore, the gradient of
ABis,
l CB _Y:=h
Self-I ional ! — = _
18 I;a{e;;:tlm“ e ‘K AC x2 x‘
? Self-Instructional
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S:er;';:;i aGeometry The gradient is denoted by m, therefore To measure the gradient angle we use, Coor di"";i g;‘;;iz
m =tan 0
m=22"% 1.2 Therefore
X, —x ...(1.2) |
—tan-1(_
NOTES ot Bigeutal s s et radiet, i 0 —tan6 261/2) NOTES
! =-26.56°
Again in the right-angled A4BCshown in Fi - | :
over the change inx, ovs.m in Figure 1.12, tan  is equal to the changeiny ' So, the gradient of the line AB is—1/2 and the gradient angle is—26.56".
i

) . Example 1.14: Find the gradient of the straight line passing through the points
= tan@ = 22~ N | P(-4, 5) and Q(4, 13) and measure the gradient angle.

X —x, .(1.3) .
Solution: Let (x,,y,) = (-4, 5) and (x,, y,) = (4,13)

m=(y, - y)(x,—x)
= (13 -5)/(4—(—4))

From Equations (1.2) and (1.3), we get

m =tan 0
We can conclude that the gradient of a line i
, ) al tan
makes with the horizontal. Now, since oo salso the tangent of the angle that the line

. the horizontal is ) : =8/8
that the lin ; . parallel to the Y-,
e e makes with the X-axis is also O (refer Figure 1.12). 23S, the angle | =1
e will now com .
zero. Take any gelf::;tlhls :;fsrlen; cases, where the gradient is positive negative and | To measure the gradient angle we use
et : an :

1.13) then, be the angle it makes with the X-axis (refer Figure ! m = tan 8

Y l We know that

A Y

A K 0 =tan™' (1)

\ | - 45

So, the gradient of PQ is 1 and the gradient angle is 45°.
Oacute !
—> 0 obtus 0=0 ; ‘
sl o | 1.7 GENERAL EQUATION OF A STRAIGHT LINE
Ve gradient this line has : —> X
3 negat
Fig. 1.13 Positig, . Ve gradient the gradient of this line s zero A straight line is defined by a linear equation whose general form is, Ax + By +
* When 8 is acute ane: » Negative ang 7o, Gradients C=0, where 4 and B are not both equal to zero. The graph of the equation is a straight
the change iny ;nd y 18 Positive, Thg isbec . line and every straight line can be represented by an equation of the above form. If 4 is
positive, e change ip are oty pa(:?:'as X Increases, y increases so ‘ nonzero then the X-intercept, that is the X-coordinate of the point where the graph
itive, Theref, .. -axi i ro), is —C/4. If B is no then th
o When 8 ore the crosses the X-axis (y 1s zero), nzero then the
© t;:fhfnog:t}lse, tan 6 is negatiye This is b radientis Y-intercept, that i the Y-coordinate of the point where the graph crosses the Y-axis (x is
. . eelnyandthe chapga: . ., - 'S OECAUSE ag x5 , is— the slope of the line is —4/B.
is negative, geinxhaye opposte o gi: Creases, ) decreases , zero), is —C/B and the slop
* W(l)‘e" 9=0, the line segmen - Therefore the gradient 1.7.1 Different Forms of Equations of a Straight Line
is is
— | Paralle] o g X-axis; tang =g We shall start by finding the equation of a straight line in different forms. The equation of
B0 3)!’ a:d 1.1113: Find the 8radient of the 1. > and o gradient i. a straight line, is the relation between x and y which is satisfied by the coordinates of
So];ﬁ Leeasure the gradient angle € line paSSing thl‘Ough " each and every point on the line and by those of no other point.
on: Let - ' € poi
Ea)=s, Dand(y )=(0,3, s 4(6,0) and Equation of a Line Parallel to the Axes
m=(y, _ Let 4B be a line parallel to the Y-axis, ata distance a from it (refer Figure 1.14). Also let
N 32 y,)/(x2 ~x)) | ABbe on the right of Y-axis. Then abscissa of any point on the line 4B will be g, and so
G0 (0-6) | x = afor all points on the line 4B and for no other point.
= 3 / ‘6 i
Self-Instructional
20 Material =~/ 2

Self-Instructional
Material 21



Coordinate Geometry
and Algebra

22

NOTES

—— q )]

L4 A
Fig. 1.14 Linex=gq

Hence equation of the line 4B is x = g. If the line .
would have been x = . was on the left of Y-axis, its equation

Similarly, the equation of a line parallel to the X-axis

- 4 t M . - . .

is above the X-axis) andy=-p (if it is below the X-a(::ise)l.dlsmme Disy=b (ifthe line
It may be noted here that the equatj

- quation of a curve does not necessarily contain both

Corollary: The equation to the X-axis js y=0
The equation to the Y-axig 5 = 0
Slope of a Line

When we say that a line makeg
. an angle @ w; .
through which a ray coincident ws with the X-axis, jt ;
the anti-clockwise di 0:1:: zglnth.the Positive directio of E:f\l’l-s atbisthe angle
between 0° and 180° (ref e €. So this angle 9?::18.:?0 IZOI;’ e:ugl
e angle lyin

‘ ¢ line,
er Figures 1.15 and 1.16)

Y

1 d
Fig. 115 Slope of 4 ;, Positiye | r

Let,nowalineABmak Fig. 1.16 Slo
or gradient of the Jine “inangleg Withthe y_ . Ped 4B s egative

Self-Instructional
Material

The slope of a line is the tangent of the angle which the part of the line above the
X-axis makes with the +ve direction of the X-axis.

The slope, tan 0 is denoted by the letter m.

If the line makes an acute angle with X-axis then its slope is +ve and if it makes an
obtuse angle then its slope will be —ve.

Clearly, ifa line is parallel to the X-axis, 6 =0, therefore m =0 while ifa line is perpendicular
to X-axis, 1/m=0.

Intercepts

Let a line AB cuts the coordinate axes at points 4 and B (on X and Y axis respectively).
Then OA is defined to be the intercept of the line on X-axis and OB is the intercept of the
line on Y-axis (refer Figure 1.17).

\
7] A\X

¥

Fig. 1.17 Line AB making Intercept on the Axes

Equation of the Line in the Slope Form

To find the equation of a line which cuts off a given intercept on the Y-axis and is inclined
at a given angle to the X-axis.

Let AB be the line meeting the Y-axis at X (refer Figure 1.18). Let OK =c, be the given
intercept on the Y-axis, and let the line makes an angle 6 with the X-axis. Take any point
P(x, y) on the line. Draw PN perpendicular to X-axis to meet a line through X parallel to
X-axis, in M. Then

B

e/

|14

Fig. 1.18 Line AB inclined at an Angle @ with Y-Intercept ¢

Coordinate Geometry
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- Corollary: Equation of a line passing through the origin and makin

PN = PM+ MN
=KMtan 0 + ¢
=xtan 0 + ¢, where KM =x

Since PN =y, tan @ =m=slope of the line AB, we have the required equation of the line
asy=mx+c.

Notes: 1. Inthe equation y=mx+c, c is positive if the point X lies above the X-axis and negative
otherwise.

2. By giving suitable values to m and ¢ we can make the equation y=mx +¢

. represent
any line except those which are parallel to the Y-axis. P

-axis is y = mx, where m =tan 0. ganangle  with the

Equation of a Line in the Intercept Form
To find the equation of a line which cuts off given intercepts from the axes

Y

P(x, y)

~—

Yy

ne. Draw PN
similar triangles PNA and BOA, we ha Peipendicular on ¥-qy:
v - axis.
form, e therequired equation of e ﬁneABTnhli?e?corli
cp
NP N4
OB ~ 04
04-0N
OA
ie., P4 - ﬂ x
b a = 1“;
X242
a * b 1

axes. = 1, where 1 apq

2. In the above form of the equation, we have taken both the intercepts to be +ve. The
result would, however, be true for all positions of the line, provided the proper sign is
taken with the intercepts. For instance, a line which makes intercepts 2 and —4 on the
X and Y axis, respectively will have the equation,

X y_l

2 4

In this case, it cuts the X-axis on the +ve side and Y-axis on the —ve side at
distances 2 and 4 respectively.

Equation of the Straight Line in One Point Form

To find the equation of a line passing through a given point (x, y,) and having
slope m.

p/

7

y
Fig. 1.20 Line AP with Slope m

Let AB be the line passing through the given point 4 (x,, y,) and having slope
m=tan 0.

Let P (x, y) be any point on the line (refer Figure 1.20), then

oo PN _PM-NM
m=tan0= %N IM
PM—-NM
OM-0OL
_y—;vl
or '"‘x_xl
or y-y,=mEx-x) .. (1.4)

This is the required equation of the line.

Equation of a Line in Two Points Form

Let any straight line (4B) passes through two points (x, ) and (x,, ,) (refer Figure
1.21), its slope m is given by,

_)2 4
X; =X

m
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(x5 2),

w\

(= 1)
A

/

x/ ol M N X

¢
Fig. 1.21 Straight Line AB Passing through (., v,) and (y ¥,)

Substituting, this value of m in Equation (1.2), we have the required equation of the line
as,

Y-y = Y2= N (x-x)
X=X

Intersection of Two Lines

To find the coordinates of the point of intersection of two lines

Let the two lines be,
ax+by+tc=0 (L5
ax+by+c'=0 ( >
' . ‘ -(1.6)
Since the point of intersection lies on both the lines;, i i
Equations (1.5)and (1.6), " 15 coordinates satisty both the
If(x;,y,) are the coordinates of the point of intersection, then we hay,
» (]
ax; +by,+c=0
ax + by, +c’=0
Solving these two equations, we get
o -1
bc'—cb' ca'-—ac’ - ab’_bap
Givi x, = be' ~cpy
ab'~bg'
- a'-ac
71 ab' - bg'
as the required coordinates,
Lines Through the Intersection of Two Gj
1ven Lines
To ﬁnq the general equation of the lines passip,
given lines, 8 through the Point of ipte
TS€ction of two

Let the two given intersecting lines be,
ax+by+c=0 -(1.7)
ax+by+c =0 ..(1.8)

and let them meet at the point (x,, y,). Since this point lies on both Equations (1.7) and
(1.8), we have,

ax, +by, +c=0

..(1.9)
ax, +b'y, +c'=0 i
Consider now the equation,
(ax+byt+tc)+A(a@x+by+c)=0 (1.10)

where A is an arbitrary constant.

AsEquation (1.8) is linear, it represents a line. Again in view of conditions in Equation
(1.7), itis clear that the point (x,,y,) lies on the line in Equation (1 .8),.what.ever A may
be. Consequently Equation (1.8) represents a line passing through the point of mtex:sechon
of lines in Equations (1.5) and (1.6), whatever value A may take. By giving different
values to A, we can write down equations of different lines passing through (x;,y,)-

If, in short, we write Equations (1.5) and (1.6) as,
P=ax+by+c=0
P'=ax+by+c’=0

Then equation of any line passing through the point of intersection of the lines
P=0and P’ =0, is givenby P+ A P’ =0, where A is an arbitrary constant.

Example 1.15: Find the equation of a line parallel to X-axis passing through the point
4,5).

Solution: Given, x =4, ¢=>5. Slope, m =0 for parallel condition.
Therefore, the equation of the line can be written as,
y=0x4+5
y =5
Example 1.16: Find the equation of a line parallel to X-axis passing through the given
point (0, 9).

Solution: We know that the Y-interceps -{aline is 9 from the given point. The slope of .

the line is 0.

Therefore, Slope m =0, Y-intercept= 9,

General equation of line is, y = ¥ +c.

Substitute the values m and c inthe general equation,

y =0Xx+9
y=0+9
y =9
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Example 1.17: Write the slope intercept form, y =—x + 2 in general form.
Solution: The equation of the line in general form is Ax + By + C=0
Manipulating the given equation, we get

x+y+(-2)=0

This is the general form.

Example 1.18: Write the equation of the line in slope intercept form passing through
(10,8) and (16,14).

Solution: The slope m=(14-8)/(16-10)=6/6 or 1
Using the equation of the line, we have y =x + ¢, Now we have to find c.

We will use the point (10, 8), so we have 8 = 1(10

c=0? ) + c. Solving for ¢, we get

Substituting this value of ¢ in the slope i | .
y=x-2. s © siope intercept form, we gety =x+(~2), i.e.,

Example 1.19: Given apoint (4, 3) and a sl ; . 1
slope form. point (4, 3)and aslope 2, find the equation of this line in point

"Solution: The equation of the line in point slo i

) - peformisy —y =iy
given values into the point slope formula. Point 4,3) is::n tile f mlx - x,). plug.the
x,=4and y, =3 and the slope, m=2. orm Of(xl’yn)’ Le.,

Therefore, the equation of the line in point slope form is

Y=3=2x-4)

(in point slope form) of the line shown inthe following

Example 1.20: Find the equation
graph:

(~1,0) lies on the line

Slope is rise over
Iun, or y/x =2 Th
Y=Y =m(x—x). Therefor, - ° SQuation i
e, the equatj of the line poi
» nt slope form is

"in poin slope form jg

Example 1.21: Find the point of intersection of the line which passes through (1, 1) and
(5, - 1) and the line which passes through (2, 1) and (3,-3).

Solution: Equation of the line with points (1, 1) and (5, - 1)is,

y-1= (_1—1)(x— 1),ie,2y+x=3.
1

Equation of the line with points (2, 1) and (3,-3) is,

-3-1 .
-1= x—2),i.e.,y+4x=9.
y ( 3.2 )( ) 1.,y
77
Example 1.22: Where do the two lines y = 3x —2 and y = 5x + 7 meet?

Solution: The point (x, y) where the two lines meet must lie on both the lines, so
x and y must satisfy both equations. Solve simultaneous equations,

153
Solving these two equations simultaneously gives us the point ( )

y=3x-2
and y=5x+7
So, 3x—2 =5x+7
or 2x =-9
or x =-9/2

Putting the value of x in any one of the given equations, we get y = — 27/2 — 2
=-31/2

Thus the two lines meet at (-9/2,-3 1/2).‘

Angle Between Two Lines
To find the angle between the two linesy =mx + ¢, andy =myx +c,.

Let the two given lines AB and CD make angles 8, and 0, with the x-axis. Let them
meet in the point E.

Wehave m,=tan9,
m,=tan 6,
We wish to find the angle BED = 0, say

Now, 0=£CEA=8,-6
_ tan@ —tanby _ my—m
thus tan6=tan(91‘92)_ 1+ tan0, tan0,  1+mm;
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C

Fig. 1.22 Angle Between Two Lines

Hence the angle between the lines y=mx +c andy= myx,+c, is
276
tan" ml—mz )
, 1+m|M2
Note: If we wish to find the an e AED i
tan AED=tan (1 —8) =— tan § Ele 4ED; then since

- tanez-tane| - mz-.ml

l+tanel tan02 m'

We get the angle AED to be gp-1 My =—m
. 1+ ml :
We may generalize the result by taking the angle as

tan~! —m_
o 1+ ml"lz ’
though it is normally the acute angle that is considered

Corollary 1. Ifthe two lines are parallel, 9 = ()

thus, tan@=0 = m;=m,
and conversely ifm) =m,theng =0

Hence, we obsery ines,
lop € that two lines are parallel if qng only if they p,

. Y have the same

Corollary 2. If the two lines are Perpendiculgy g =
thus, cot9=0 =0’ e

Thus we concl:i Iﬂ:. =0 = Mim,=—1ang cony,

‘ € that two Jj erse
their slopes equals -], © lines a"eperpendicular fando [ IY:
Example 1.23; Find th " lfthepr"d""t ’

: the conditiong Uunder wj,
@+bytce=y o helines
a'x+b'y+c'=0 b’bl¢0
are (1) paralie] ) perpendicylq, "o
Solution, The slopes of the lines (1) ang ©) O
are

my=_ alb, my=_ aly.

Thus (1) and (2) are parallelif =2 _ ~a
b~y

or if ab'=a'db
and they will be perpendicular if (?) (‘—b"—] =—1
or aa' + bb' =0.
Example 1.24: Find the angle between the lines
xcosatysino=p
xcosPB +ysinf =q.
Solution. Since the angle between the lines is same as the angle between their perpen-
diculars, it follows that the required angle is a.~ B.

Conditions of Line for being Parallel :
Two lines are parallel if they have the same slope. Now slope of the given line

ax+ by + c=0is —b—a.'

Another line having slope = will be of the type

= (-:g)x+c'
Y=

or by=—ax+c'b
or ax+by+A=0 where A =— bc', a constant.
So we have a line ax + by + A = 0 which has the same slope as the given line ax + by

+ ¢ =0 and therefore is parallel to it. Here A is a constant and by giving different values to

A, we will get different lines, all parallel, to the given line. In problems, value of A is found by
using the other given condition.

1.7.2 Application of Straight Line in Economics

Every demand curve in economics is a straight line, hence the demand function is also
known as a straight line in economics.

Let us analyse the different demand functions in terms of market demand analysis.
Here the term ‘demand function’ has been used in the sense of market demand function.

A function is a symbolic statement of a relationship betw.een the dependent and
the independent variables. Demand functiqn states th.e relationslflp between the d.emand
for a product (the dependent variable) and its determinants (the mfiependent variables).
Let us consider a very simple case of market del.nand function. $upp9se all ﬂ?e
determinants of the aggregate demand for commodlty‘X, other than its price, remain
constant, This is a case of a short-run demand function. In the case of a short-run
demand function, quantity demanded of X, (1.)*) depends on its price (P ). The market
demand function can then be symbolically writtenas:

D,=f(P) ~(L.11)
In this function, D, isa dependentand Px is an independer.lt varial.ale, The function
(1.11) reads ‘demand for commodity X (i.¢., D) is the function of its price (P,)". It
implies that a change in P, (the independent variable) causes a change in D_(the
dependent variable). The function (1.11) hOWCYCl' does not .rev.eal the t:hange inD for
a given percentage change in P, 1.-» it does not give the quantitative relationship between
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D _and P_. When the quantitative relationship between D_and P_is known, the demand
function may be expressed in the form of an equation. For example, a linear demand
function is written as:

D ,=a-bP, .(1.12)

where ‘a’ is a constant, denoting total demand at zero price and 5 = AD/AP, is also a
constant—it specifies the change in D_in response to a change in P.

The form of a demand finction depends on the nature of demand-price relationship.
The two most common forms of demand functions are linear and non-linear demand
function.

Linear Demand Function

A demand function is said to be linear when AD/AP is constant and the function it results

inisalinear demand curve. Eq. (1.12) represents a linear form of th, i

i ; : e demand function.
Assuming that in an estimated demand function g =100 and b=S5, demand function Eq
(1.12) can be written as , ction Eq.

D,=100-5P, .
By substituting numerical values for P e
givenin Table 1.1. »a demand schedule may be prepared as

Table 1.1 Demand Schedule
PxDx= 100-5 Px Dx
0 Dx =100 — 5x @ 100

5 Dx =100 - 5x 5§ 75
10Dx=100_5x1050
15 DJc=10()_5x1525
20Dx=100-5x200

100

Quantity (p,)

F i . . }
8. 1.23 Linegy Demang Function

This demand schedule when plotted, gives a linear demand curve as shown in
Fig. 1.23. As can be seen in Table 1.1, each change in price, i.e.,, AP_=5 and each
corresponding change in quantity demanded, i.e., ADx=25. Therefore, AD /AP =b=
25/5 =S5 throughout. That is why demand function Eq. (1.1 3) produces a linear demand
curve.

Price Function

From the demand function, one can easily obtain the price function. For example, given
the demand function Eq. (1.12), the price function may be written as follows.

_a_DX
Px— :
_a 1
P.=3-30

Assuming a/b=a, and 1/b=b,, the price function m~v be written as:

P=a-b D, (1.14)

1.8 CIRCLE

A circle is the locus of a point which moves (in a plane) in such a way that its distance
from a fixed point (in the plane) always remains constant.

The fixed point is called the centre of the circle and the constant distance is
termed as the radius of the circle.

A circle is a set of points in the plane that are equidistant from a given point called
the centre (refer Figure 1.24).

Fig. 1.24 Circle with Centre O and Radius r

Following are some terms related toa circle:
o Radius of the Circle is the distance from centre of circle to any point on it.
« Diameter is the longest distance from one end of a circle to the other. -
e Circumference of Circle is the distance around the circle.
. Circumference of circle =PI x Diameter =2 PI x Radius

where PI == 3.141592...

Coordinate Geometry
and Algebra

NOTES

Check Your Progress

7.

8.

10.

11.

13.
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-1,-2).
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through the point
(-1, 3) with slope
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1}

(refer Figure 1.25).

o Arc of the Circle is a curved line that is part of the circumference of a circle

Length of Arc with central angle 0 is measured as,
Ifthe angle 6 is in degrees, then length, L =0 x (P1/180) x Radius
If the angle 0 is in radians, then length, L = Radius x §

Fig. 1.25 Circle with Radius r and Central Angle @

¢ Chord is a line segment within a circle th
(refer Figure 1.26). Diameter is the longest

at touches two points on the circle
chord.

(2

Fig. 1.26 Chord AR of the Circle

® Sector of a Circle: It is like 5 slice of pie

® Area of circle = PIx Radiyg2

. Tapgent of Circle is 5
point on the circle,

» acircle wedge (refer Figure 1.27).

line perpen i i
dicular tq the radjyg that toucheg only on¢

1.8.1 Equation of Circle

To find the equation of a circle, the centre and radius being given.

Let C (b, k) be the given centre of the circle and let a be the given radius. Take any
point P(x, ) on the circle. Then

CP=radius=a

Also CP? = (x— K>+ (y - k)?

(distance between two points)

Equating the two values of CP?, we get the required equation of the circle as

x-h?+@y-kt=d.
Corollary. Equation of the circle with radius a and centre at crigin is

2+t =d

o
LD

1

B R = RN

Fig. 1.28 Circle with Coordinates of Centre (h, k)

Note: If the circle is centred at the origin (0, 0), then the equation of the circle simplifies to
R4yt =p

1.8.2 Different Forms of Circles

Let in an X-Y Cartesian coordinate system, the circle with centre (q, b) and radius r is
the set of all points (x, y) such that,
(-af+&-bF =F
The equation can be written in parametric form using the trigonometric functions sine
and cosine as,
x =a-+rcost,

y =b+rsint

where ¢ is a parametric variable, interpreted geometrically as the angle that the ray from
the origin to (x, y) makes with the X-axis. A rational parameterizaﬁon of the circle is,

. s
* 1+22
2t
=b+r
y 1+
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In homogeneous coordinates each conic section with equation of a circle is of the form,
@’ + ay* + 2b xy+ 2b,yz+cz* =0
In polar coordinates the equation of a circle is; 72 — 2r rycos (60-¢) + rl=d,

where a s the radius of the circle, r, is the distance of the origin from the centre of the
circle and @ is the anticlockwise angle from the positive X-axis to the line connecting the

origin to the centre of the circle. For a circle centered at the origin, i.e., » = 0, the
equation reduces to, °

r=a
When r,= a or when the origin lies on the circle, the equation becomes,

r =2 acos(0 - ¢)
Inthe general case, the equation can be solved for r, giving

r =rycos(6-¢)+ Jai - 2 sin? (0 ¢)

The circle having the coordinates of the diameter (x,x), (x ¥,)is given by,
Y\Pn ), )

(x —xl)(x —xz) + (y —yl)(y _yz) =0

1.8.3 General Form of the Equation of a Circle

We have found the equation of a circle in the form

C—BP+ -k =g
which can be written as

x2+y2—2hx-2ky+(h2+k2-az)=0
If ~h=g,—k=fc= .
weput-h=g —k j’,c-h2+k2—a2, the equation becomes

X +324 9
. . g + 2 + -
which is referred to as the genera Preno

or

(x‘+g)2+(y+f)2=g2+f2-c
* b-CoP+h-pp- V& 7

which is of the form

(x-—h)2+(y_k2~

Comparing the twq equati =

_ uati

=0, represents a circle with Hations, we fing that the ®Quation x2 4. >
+2ex+2fy+c

centre - g, - f)

and .
i~

Note: If the quantity &+~ cistve the o

acircle with radjyg 2ero) and if jt is

Again, multiplying the equation x? +? + 2gx + 2fy + ¢ =0 by a and comparing it
with the general equation of second degree, i.e., ax? + 2hxy + by?> +2gx + 2fy +c=0.
We arrive at the conclusion that an equation of second degree in x and y represents
a circle if (i) co-efficients of x* and y* are same and (ii) co-efficient of xy is zero,
i.e., there is no term involving xy.

We further observe that the general equation of the circle, namely, x* +3? +2gx
+2fy + ¢ =0 contains three constants. These three constants g, fand c correspond to

the geometrical fact that a circle can be found to satisfy three independent geometrical
conditions and no more.

Example 1.25: Find the radius and the centre of the circle
2x2+2y-x+3y+1=0.

Solution. Equation of the circle can be written as

X2+ — %x+%y+é— =0

Thus here =—1,f=+ ,C=
g 4

Hlw
W N~

. 1 . .
Hence the co-ordinates of the centre are (Z’ - ZJ and radius is

,1 9 1 _ ,3
—+ === = =
16 16 4 8
1.8.4 Point and Circle

Suppose we are given the circle -

2+ +2gx+2fy+c=0 ..(1.15)

and a point P (x,, y,). We wish to find whether the point P lies outside or inside the
circle. If C is the centre of the circle then C has co-ordinates
(-g,—f). Now P will lie outside the circle if the distance PC is greater than the radius
of the circle and the point P will lie inside the circle if the distance PC is less than the
radius.

Thus P lies outside, on, or inside the circle (), according as

Jom+ 2+ + /7 is>=or< e+ e

which on squaring and transposing gives

2+ y2+28% + 2/ +c is>, =, 0r<0.

Similarly P (x,,y,) lies outside, on or inside the circle x* +3? = a?, according as
x5 +yf ~a?,is>=,0r<0.

1.9 PARABOLA

A parabola is the locus of all points in 2 plane equidistant from a fixed point, called the
focus and a fixed line, called the directrix. In the parabola shown in Figure 1.29, point ¥,
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which lies halfway between the focus and the directrix, is called the vertex of the parabola.
The distance from the point (x, y) on the curve to the focus (g, 0) i,

,’(x - a)2 +y?
The distance from the point (x, y) to the directrix x=—q s,

x+a
Since these two distances are equal,

«/(x-—a)2 +y? =x+a

or (x—a)2+y2 =(x + a)?

DIRECTRIX

/
} /
/7
[ a—Plg— a—pl/

| Fig. 1.29 Pargbol,
Expanding the equation, we have

. xz—zax+a2+y2=x2+2ax+az
or

Therefore, for every positive va}

values of y. But when x become
always be positive and the curve wij be

. values of
1.30). Similarly ifthe equation i,

. are imagin i
" . ary. Thus, x will
tirely to the right of the Y-axis (refer Figure

the curve opens upward
and th ; .
of y, you will have two v © focus is apoint on the y.

. al axis, : -
A-axis, leewise, When the 168 of x ang the curve For Cvery positive value

Patonis inthe oy, O CBtirely above the
2= ~4ay

the curve opens downward, is entirely below the X-axis and its focus is a point on the
negative Y-axis.

Y Y
A
C\)X j-o——bx
y =dax y'=—4ax
Y Y
A A
Q F=(0,-a)
rm ))X
, Q /‘>
x* = day x*=—day

Fig. 1.30 Parabolas Corresponding to Four Forms of the Equation

1.9.1 General Equation of a Parabola

To find the equation of parabola, when the co-ordinates of the focus and the equation of
the directrix are given.

Let the co-ordinates of the focus Sbe (x,, ,) and let the equation of the directrix
ZKbeax+by+c=0.

K
\
S
z P
X X
o
\(

Fig. 1.31 Parabola

Let (x, y) bé the co-ordinates of any point P on the curve. Then if PM is the
Pel‘pendicuiar distance of P from the directrix ZK, we have by definition

PM=ps. '
= ,I(x —x)? +(-n)’

ax+by+c

ie.,
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,,C:;r,;d;::;ife omefy o (axtbyt+ef =@+ [(x-x)+@-y)] 1.9.2 Point and Parabola | Coordinate Geometry
which on simplification, can be put in the form Let equation of parabola be y* =4ax. Let P (x,, y,) be a point in first or fourth quadrant
lying outside the curve. Draw PM L AX, the axis of the parabola and let PM meet the
bx—ayy+2gx+2fy + k=
NOTES ) (bx = oy’ + 2gx + 2y + k=0 curve in NV. Since P lies outside the curve NOTES
and is the required equation of the parabola. It is clear from the equation that the second | PM> NM.
degree terms in the equation of parabola form a perfect square. ! '. ) ) L.
. ) L Now PM=y,. Also as x co-ordinate of N is x, its y co-ordinate is given by
Example 1.26: Find equation of a parabola whose focus is the point (—1. 1) and the | )
- point (-1, 1) ' - -
directrix isthe linex +y+1=0 1 ¥ =dax, [as N lies on y* = 4ax]
Solllti()l‘l. Let S. (-1, 1) be the focus. Take .(x, ) any point on the curve. If PMis the | So PM=y2. NM: = 4ax,
perpendicular distance of P from the directrix, then by definition l The condition PM> NM, reduces to PM? — NM2> 0
|
PM=P Xty+1 _ | ory?—4ax >0.
§ = S = e oo | o ]
or (x+y+1P2=2[(x+12+(y- : ST . t Y
© 6yg- ) Y . Y =2[(c+ 1Y+ (1) which on simplification reduces to (x —y)? +2¥ ‘ —
|
This is the required equation of the parabola. |
Example 1.27: Find equation of a parab o ’ M
focus at (-7, 3). Parabola whose focus is the point (-2, 3) and the | 4 X
Solution. Let 4 (-2, 3) be the vertex and |
’ . . =1, 3)bethe foc 3 . !
from the focus S on the directrix, then it i known to us tha$ llsftii I;I'fltli;{)erpe'ndlcul;r 1
Thus if Zhad co-ordinateg (x,, »), _ e point of SZ. 1 .
then 2 _X+(=T7) and3< 21+ 3 i Fig. 1.32 Point and Parabola
> x =3 2_ 2 | Similarly, we can show that the point P (x,, y,) lies inside the parabola y* = 4ax if
1 =25,=3 y,2—4ax, <0.In case the point P (x,, y,) lies in the second or third quadrant, x, is—ve
Le., directrix is the line passin : 2_4ax. i sarily positive, and in this case the point P is clearly lying
th gthrough (3, 3 | and so y> — 4ax, is necessarily p ,
e parabola) ) and perpendicular to SZ(theaxisof | outside the parabola.
Now slope of 5=, Hence we concludethat thepoint (x,, y,) lies outside, on or inside the parabola
= itisaline paralle] t0 x-axis »? = 4ax,, according as
and SO dlrecmx iS the line th_rough (3 3) and y12 _ 4axl iS > =,0r < Zero.
. ’ € i
= equation of direcry isxes Perpendicular to the x-axis L —
Now if P (x, 1) is anv .. . 110 HYPERBOLA
PM=PS,where M is the foot o?y Point op the Parabola . f . “o
So Py Perpendicuyar from P on the’dithenf by definitio, | A hyperbola s the locus of a point which moves in sucha}way that its distance frorp a
=ps rectrix., ‘ fixed point (focus) bears a finite constant ration e > 1 to its distance from a fixed line
= -3 = m - (thedirectrix, not passing through the focus).
= - - 5 .
which rod (=302= (x4 TP+ (yo 3y | 1.10.1 Equation of Hyperbola in Standard Form
ces to i Let Sbe the focus. ZK be the directrix and e the eccentricity of the hyperbola. Draw $Z
y’—6y+2ox+49=0 ‘ pelpendicmartoz’[(,thedirectﬁx- Sincee>l,wecand}wd?Sthemallyandexte?mally
the required equation to the parabo] ; in the ratio e : 1 and these points will be on the opposite sides of ZK.. Let the points of
a. divisionbe 4 and 4’
Self-Instructional :
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Coordinate Geometry Y K We get the required equation of the hyperbola as Coofdi"a;d G:f;m;'z
and Algebra 2 2 :
o
a b
NOTES M p The eccentricity of the curve is given by the relation NOTES

B =c (&-1)

or el__2+1
a

1.10.2 Shape of the Hyperbola

2 2
Y From the equatlon — - Z— =1 of the hyperbola, we find that the curve is symmetrical

Fig. 1.33 Equation of Hyperbola | about both the axes. Also 1f x =0 or the value of x lies between 0 and g, the corresponding
Then we have | value of y is imaginary. Thus no part of the curve lies between the lines x=0 andx=a.

Sd=e AZ | _ Atx=a, y=0and as x gets larger, y also increases. The final shape of the curve

. ~(1.16) is as shown in the figure.

M=ezd (117 1 From the symmetrical nature of the curve it follows that there is a second focus

By definition the points 4 and 4' lie on the hyperbola. S '(—ae, 9) and a corresponding directrix with equat?onx =—a/e so that the same hyperbola

Let Cbe the middle point of 44', and take | le :t:iitl;eg n;f t; fgil:cﬁliivfi 1i1 as;l:h a way that its distance from S is e (> 1) times its
AC=CA' =4 .

' Just as in case of ellipse, we observe that if a point (x,, y,) lies on the hyperbola
Now (1.12) and (1.13) can be written as then so does (- x,, —y,), implying thereby that any chord of the hyperbola passing
CS+Cd = through the point C(0, 0) is bisected by C. Thus the hyperbola is a central curve and the

=e(4C+C2) point Cis the centre of the hyperbola.

addition e CS-d'C=e(-zc+ 4'C), | The points 4 and 4’ (where the line joining the two foci cuts the hyperbola) are
on gives 2CS=2ge or C§ = ae, while called vertices of the hyperbola. .

subtraction gives ZC=qf. The line joining the vertices is called the transverse axis of the hyperbola. The

Now take the origin at C. iy length of the transverse axis is 2a.

. (P oK

line CY. *axisalong CSand the y-axis along the perpendicul®® We know that the hyperbola does not cut the y-axis. But 1f we take two points B

Then co-ordinates ofthe § ' °IP and B’ on the y-axis such that BC=B'C=b, the line BB' is called the conjugate axis

e
x=ale. 0cus Sare (ge, 0) and equatioy of the directrix ZK 15 of the hyperbola.
ec
Take P(x, ) any point on the hyperbola, Latus Rectum
a
PS=ep)y TaW PM . ZK. Then by definition The chord ofthe hyperbola passing through the focus and perpendicular to the transverse

or  PS=epp | axis is defined to be the latus rectum of the hyperbola.

Its length can easily be seento be 2b%/a.
1.103 Some Results About the Hyperbola

x 2 : . . . .
or ?-#2_1) -1 ; In view of what we have done earlier, the following results can easily be established for
‘ 2 P
Put (e - theh erbola--'-""“—l
( D=8 [Note €150 | yp 2 b ‘ 0 .
ase>1] | (1) The equation of tangent a any point (x, y,) on the curve is
Self-Instructional . *_ N = 1.
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(2) The equation of normal at any point (x, y,) on the curve is

X —X) Y=

-n/b?’

xlla2

(3) The lines y= jmx + / &m?* —b* are tangents to the curve for all values of m.
(4) The line y=mx + c is a tangent to the hyperbola if

c= i\lazmz -b%.

(5) Two tangents can be drawn from a point to the hyperbola.
(6) The equation of chord of contact of the tangents from any point P (x ,y.) is
1’71
s WP 4.4 g
a> b |
(7) The equation of chord of the hyperbola with o} : . )
ype with given middle point (x,, »,) is
= _x
a* b a® b

(8) The locus of middle points of a system of parallel chords with slope m
mis
b2

y=—-x.
a2m

) Theline Ix+my +n=0is atangent to the curve if

Self-Instructional
44 Material

a@P- Pm* =p2,
1.11 ELLIPSE
In geometry, an ellipse is a plane
e Plane curve tha¢ results from the

y that produces a clog intersecti
oints ofte p ed onofacone by a

locus of all p curve (refer Fj :
constant. Ellipses are clos;ln ®Whose distanceg f;, Bute 1.34). Anellipse is also the

ces .
d curves ang arethe b oM wo fixed points add to the same

ouny
ded case ofthe conic sections.

r, + r,=2a, where a s the semimajor axis and the origin of the coordinate system is at
one of the foci. The corresponding parameter b is known as the semiminor axis.

Let an ellipse lie along the X-axis (refer Figure 1.34) where F, and F, are at(c, 0) and
(—¢, 0), respectively. In Cartesian coordinates,

\/(Jc+c)2 +y* +\/(x—c)2 +y* =2a

Bring the second term to the right side and square both sides,

(x+c)+2=4a’ —4a\/(.7c—c)2+y2 +(x—c)+y°
Jx=cl+y* = —:11—(x2 +2xc+c? +y? —4a® —x* +2xc—c’ —yz)

a

= —%(4xc - 4a2)

=a—-—x
a
Squaring both sides, we get

2
c

x*-2xc+ct+y’ =a’ -2cx+—x°
a

2 az —Cz

H———ty =a-c
2 2
-y
- + =
a2 az _ CZ l
Defining a new constant,
P=a-¢c
The equation becomes,
x2 y2
4 =
R 1 ..«(1.18)
This is the equation of ellipse.

The parameter bis called the semi minor axis by analogy with the parameter a, which is
called the semi major axis (assuming b < a). The fact that b as defined above is actually
the semi minor axis is easily shown by letting a and b be equal. Then two right triangles

are produced, each with hypotenuse a, base b and height p = \/a2 —¢* . Since the

largest distance along the minor axis will be achieved at this point, b is indeed the semi

minor axis.
If instead of being centered at (0, 0), the centre of the ellipse is at (x;, ) then the
Equation 1.10 becomes,

2 2
Q:;?)_Jr(y—fo) 1
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E:;ample 1.28: Find the equation of a circle whose centre is at (2, —4) and radius
is5.
Solution: Given (h, k) =(2,—4) and r=5. Substitute 4, k and r in the standard equation
(=20 + (- (-4 =5

(x-2+(@y+4)7 =25
E.xample 1.29:. Find the equation of the circle that has a diameter with the endpoints
given by the points A(-1,2) and B(3, 2).

jo;ution: The centre of the circle is the midpoint of the line segment making the diameter

The midpoint formula is used to find the coordinates of the centre C of the circle.
X-coordinate of C = (-1 +3)2=1

Y-coordinate of C = (2 +2)2=2
The radius is half the distance between 4 and B,

r=(2) @3- D +2-2py
=(1/2)(4* + )2
=2
The coordinates of C and the radius are substi

. tuted i
to obtain the equation ted in the standard equation of the circle
c-1P+(@y-2)2 = 22

or G-1+ (-2 =4
Example 1.30: Find the centre and radiyg of the circle with
e wi
o X—4x+y —6y+9 =q
Solution: In order to find the centre ap,

i son d the radi .
given equation in standard form, adius of the circle. we '
» andy* together using brackets Putalltemus with x ang 2 togeth,e‘l’:’:nijirz:lrtee‘:,mlz1 . thtl‘:
’ s wi

(x2—4x)+(yz‘6y)+9=0

€quation,

We now complete the

(-2 +(
. : y ) 3 2 i
Simplify and write in standard form, )
-2y + (y-3y =4
(c-2) + (
V=3P =9
We now com i i :
pare this Cquation and the Standarq
o . i €quation tg obtain,

,3
andRadjuSr =2 )

4-9+9<¢

Example 1.31: Is the point P(3 , 4) inside, outside or on the circle with equation,
(x+2P +(y-3P2=9
Solution: We first find the distance from the centre of the circle to point P,
Centre of the circle, Cat (-2, 3)
Radius r=(9)"?=3
Distance from Cto P = ([3— (-2)I* + [4-3P)'*
= (52 +12)\2
= (26)"2

Since the distance from C to P, (26)"?approximately equal to 5.1 is greater than the
radius =3, point P is outside the circle.

Example 1.32: Find equation of parabola having focus at point (0,8) and vertex at (0,0).

Solution: This focus of parabola is on + ve X-axis. So its general form of equation can
be written as y?=4ax. 4a is distance between vertex and focus hence,4a=8 =>a=2.

Therefore, y*=8x is the required equation of parabola.

Example 1.33: A parabola has its axis paralle] to +ve Y-axis and hasits vertex at(4,4).
The distance between vertex to directrix is 8 cm. Find the equation of the parabola.

Solution: Given that parabola axis is parallel to + ve Y-axis so general form of equation
will be x2=4ay.

But the vertex is at (4, 4). So the equation takes the form,
(x— k) = 4a(y — k), where (h, k) will be (4, 4)

Given distance from vertex to directrix is 8 cm implies that distance from focus to vertex
is8cm.

4ag =8

= ' a=2cm

Hence,

Hence equation of parabolais (x — h) =4a(y — k)
=(x—4)=8(y—4)
Example 1.34: Givenis the following equation:
9x2 + 4)* =36
(i) Findthe X and Y intercepts of the graph of the equation.

(ii) Find the coordinates of the foci.

(iii) Find the length of the major and minor axes.

(iv) Sketchthe graph of the equation.

Solution: )
(i) We first write the given equation in standard form by dividing both sides of the
equation by 36
9x2/36 + 4y*/36 =1
2/4+y9 =1

22+ 3 =1
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Coordinate Geo : . . ) ’ _ Coondinate G
Coord Igebera metry The glvex'x equation 1.s that of an ellipse with g=3 and b = 2,a>b 3x2+20x+y*+32 =0 0 ma‘t:‘d A,;Z,;z
Sety=0inthe equation obtained and find the X-intercept, 3(x2 N go_x) e ! =3
X2 =1 3 y
NOTES Solve for x Complete the square in x, noting that a product is added to the right side, NOTES
x= 22
3(x’ +2—Ox-+m)+y’ —_3+3(10
Setx=0inth ¥ =2 39 5
*=01nthe equation obtai
Obtained and find the Y-intercept, 10 , -288+300
olve fory
2
» =3 3(x+?) +y =193
@) Weneed to fing y=%x3 ,
¢ first, : 3(x+?) +y? =§
= - ‘
e = :: 4 . Divide both sides by the right-hand term,
. z [From Cas® 0 10V
=3 3(x +—3— y2
ocClare F % (5) 4 4
@) Themaior,. | D and £ 33
€ Major axig length 8 ot 2(0,~ (5)112)

Theminofaxisl gwenbYa2.a=6

enoth ic o
() Locate the Xang Ygiz 8 given by, 2beg
CIcepts.

o lnd ey, L
ra Points ifneeded and sketch-

irst, 4
ot +20 g
| oot Bty ¥+32=010 an elipse 10
Self-Instruction, ! terms(!o mbﬁth dy. The ed
48  Materig) a nt&lningx xandy Thcoemcien redllc 0d Self-InstructiomI
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+7C3 (- 1) +7Co2 (- 1)° - "Cex (- 1)8+7C, (- 1) Coordinate Geomelry
1.12 BINOMIAL EXPANSION L 74xﬁ+21 S aes 350 214 T L. . and Algeb

Any expression of the type x + y is called a Binomial expression, x is called first 1.12.2 For Negative and Fractional Exponent
term and y, second term. By elementary algebra, we know that (x+y)2=x2 +2xy +%;
@ +yP=x+32y + 37 + y* . In this section, we develop a formula for the nth

power ofx +y, nbeing a positive integer. We shall make use of Principle of Mathematical
Induction in proving the expansion of (x +y)".

We have already found out the expansion of (x +y)", whennisa+ve iqteger. We now NOTES
give the expansion of (1 +x)", where n can be negative integer or fraction.
Binomial theorem for any index:

If |x|<1,then

n(n=1) , n(r=-)n-2) ;
? (1+x)n=1+nx+ E X~ + IE X +.
Ifnisapositive mteg(ef,:-he)l'll Sencart o where n may be negative integer or fraction.

xX+y)y = Xy O . a1 ion.
Proof. Clealy forn—1, LHS=x 1, The following examples will illustrate the use of the above expansio
and RHS=x+1C1y=x+y,
so that result is true forn=1.
Letn+1>1 and the result be true for .
ie. (x +y)n =x” + nclﬂ- ly + ..+ nC yn =
Consider (x + y)"* 1 = (x+ )" (x +) i

x'%_ * (—l)(—l—l) x\
e prany (A

G Sy L,
___x“l:(nCn_lnxy”+ncm+ncnyn+1 . x+3x2 5
+(nCZ+”C ) X2 |
3 + .. A ..
+ (nCn- 1 +"Cn) xyl +1C it ) Example 1.39: Expand (5 - x) 2 upto terms contammgx3 ,whenx<5.
n

+1
"C forall 1 <, n. Solution. We have

1.12.1 For Positive Integer

.00

2P nC g,

Example 1.38: Expand (1 - %) 2 giving the first four terms
Solution. We have

But "C + "C,_, =
Hence we get that

C.xl'y 4+ n+2 _ (5-x)
' R ot Y4

ol

= (5)

ole
~
T
wix
——
-

ConsequentlyBinomialTh S AR Ts, n+1 : X
eorem WV + +1 Since |x|<5
Thus by Mathematica] Inductiop POlds forn+ 1, C.. V' ‘ 5

»1tis .. CR— for any index
Notes: The expansion of (x . Wis gi true for a) POsitive integers Thus by Binomial theorem for any
G =X ) re gy | .

1 —-—l- —-l-—l 2
- 3R+ gn | ¥ 1)(_x), L2\ 2 x
=X=Cly g e Gy (1-'{) 2 =1+("—)(—_)+———— s
Example 1.36: Expand (x+y;§" 2J’2~"c3x"~,3y3 ot (o 5 2)\ 5 12
Solution. (x +y)>= 5 4 51 x4y:;-

1

<l

Now

5
H Cl = SC4= 5, SC . |
(&) =25
e e, 21710 i
Example 1.37; Expand (x-1y? v+ 10223 |
(=1)7 =57 +1Cu8

D +7cys (5—x)12= _%__[1 +
Self-Instructional 1247~ 4 | | 5
50 Ja{eﬂff"" o ) C3x (- 1) | :

"0ty
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Replacing x with —x we get Coordinate Geometry
Coordinate Geometry : s 3 4 and Algebra
and Algbra 1.13 EXPONENTIAL AND LOGARITHMIC SERIES log(l-x)=x 222
2 3 4
NOTES ‘ Exponential Series | So  log (1 +x ) = log (1 +x)log (1 -%) NOTES
Again for any real x, by binomial theorem for any index and n > 2, we have - s s
1 1 mx(mx-1) 1 | =2 x+x—+x—+...].
14—| = lymx=h1
(+"T b st 3 s
_ x(x—=1/n) _ x(x=1/n)(x~2/n)
ST T T e 114 SUMMARY
1 x ! -
So limjl+—]| =1+x+ —+=—+.. | .. . _—
"'E:’( n T Lrx 2t 3l o The coordinates can be defined as the positions of the perpendicular projections
But lim [ 14 tim (141 4 of the point onto the two axes expressed as signed distances from the origin.
+— = - = . .
""“( n ]m """‘[ T ) ¢ ¢ Length of a line segment is computed by using distance formula.
Thus for real number x, e The midpoint of the line segment is exactly halfway between the endpoints and
Fmlaey B X can be found by using midpoint Theorem.
. * 2! ¥ 3 T e The coordinates of centroid of a triangle is the arithmetic mean of the vertices of
This is called the Exponential series, the triangle.
Loglc;fttt :mbe any positive real number then log, a is calleq Natural or Naperian | e Section formula is used to calculate the coordinates of the centroid of triangle.
N e The equation of a straight line is the relation between the X'and ¥ coordinates which
) : Zﬂgﬁ:ﬁgﬁﬁﬁ 15 etc., and no base i mentioned it is understogq is is satisfied by each and every point on the line and by those ofno other point.
ogan . .
understood to be e, garithm, whereas Wwhen we write log a, log xoe(:c ttl;:: :ﬁ: is . o The equation of a line can be found with the help of various types of data available.
Logarithmic Series | ) e The standard form of equation of a circle is a way to express the definition of a
For any positi j circle on the coordinate plane.
logaritzrlx)x 0;‘ bz:has?:il:s f:;:'t;n Y real number V), @ =¢loga (thi . o Parabola is the locus of all points in a plane equidistant from a fixed point.
espectto base e). * Ganbe seen bytaking o Ellipses are closed curves and are the bounded case of conic sections.
= 2
So @=1+ylogqg+ %"'M
3 : +...
Putting a=1+x, we gey 3 1.15 KEY TERMS
(L+xp=1+ i dinate system: It specifies each point uniquely in a plane by a
ylo blo 2 e Cartesian coor \ . .
B0+ % *.. pair of numerical coordinates, which are the signed distances from the point to
Suppose lx|<1 then (1 4 - : two perpendicular real axes 111 the p.lane, measure.d in the same unit of: length
Sltyry y(y.\l)xz + o Line segment: Itis a part of line W.lth two endpoints. The two endpoints of the
=1+ y[x_ ﬁ W28 3.4 2! line segment are used to name the line segment
2 ?‘\x + | . idpoint: The coordinates of the midpoint of a line segment is
! b I | dinates of midpoint: :
So 1+ y[x _ﬁ + 2 ¥ " . | ) t?lz(:l:ithmetic mean of the coordinates of the endpoints of the segment Check Your Progress
‘ 2 3T ]-1» « Section formula: It gives the coordinates of the point which divides the join of 14. 0"%‘:’0 ?u'_l:l :q“aﬁ“
=1+y), two distinct points externally or internally in some 1:at10 ' . 15. Derive the general
This equag el )+ % e Gradient of a line: It is the rate at which a;: Ord;n;tfhzzfc(;z; ofefineona mnon ofthe
iS vali i an :
mustbeequal, S Valid for each AT coordinate plane changes with respect to achiange mTeS” 16. Describe the
Thus £ Valye ofy, He « Circle: A set of points equidistant from a given fixed point, is called the center of parabolas
r lx|< 1, nice Coefficient of y on both sides . - corresponding to
the circle ints 1 idistant from a given line four forms of the
log 1+ X)=x ¥ 3 | o Parabola: It is the set of all points in the plane equi o tangl . ) equation.
is; e 4 l - : i ces from eac
Self-ln_structional This 18 Cal]ed the Lo 2 + ? x\ + | L] Ellipse: It is the locus Ofpomts for which the sum of the dist: Self-Instructional
52 Material gari h'm'c Sen 4 | p oint to two fixed P oints is equal Material 53
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1.16 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. The origin is the point of intersection of the two perpendicular axes.
2. The coordinates of the origin in Cartesian plane are (0, 0).

3. Length of a line segment is the distance between the coordinate points in the
coordinate plane. Its unit is same as that of the length.
4. The distance D between two points havin

coordi is
measured by following equation: g inate (x,, y,) and (x,, ¥,)

D=\l(x1 ‘”2)2 +(n -}’z)2

8. The coordinates for externg]

: divisi : ,
by changing m, to -m, onare obtained from those for internal divisio?

decreases so the change ; ,
. . ge m
t’[l'l]: gradient is negative, Wi:ﬁ%tieo .
entan9=0,andsogmdientiso (el

aXlSin-

*have opposite signs. Therefor®
Segment s paralle] to the X-aX1S-

or gl‘adient Ofthe line.

12. The slope = 2-2)/1 1)
Using the Cquation of the 1; o

We will use the qn: & Wehavye 5,
c=-], 1 point 1,2), 5 we ha\J: “*eand we have to find c.
Substituting thig value f el= 2(1) + c. SOIVing for ¢, We get
13. Substitutip, Olcin the
g the vahles gelleral € 1
of slope Quation, we _
and g, PWegety=2x-1.

€ point j
- _ tinthe quation of the line, we g%
(‘1/3) +e 4

“ =3+
3orx._

e

S

AT

This equation of the circle follows from the Pythagoras Theorem applied to any
point on the circle. As shown in the following figure the radius is the hypotenuse
of a right-angled triangle whose other sides are of length |x — 4| and [y - A].
y
I Syt pisa
TN pomton’
Sl ) th‘:c_ci_rcle.'

The cent}e is

15. The equation of the circle is (x — A)? + (y —k)?=r*
Expanding the above equation, we get ‘
X2+ h2—2xh + y*+ B2 - 2yk=r*
or x>+ W —2xh + Y+ - 29k — P =0
This is the general equation of the circle.
16. Yy =4dax

When x becomes negative, the values of y are imaginary. Thus, the curve must
be entirely to the right of the Y-axis. If the equation is,

. y? =—dax
The curve lies entirely to the left of the Y-axis. If the form of the equation is,
- x* =4ay

The curve opens upward and the focus is a point on the Y-axis. For every positive
value of y, you will have two values of x and the curve will be entirely above the
X-axis. When the equation is in the form

x? = —4ay

The curve opens downward, is entirely below the X-axis and its focus is on the
negative Y-axis.

1.17 QUESTIONS AND EXERCISES

Short-Answer Questions

1. What is the difference betweena lineand a line segment?

2. Give the formula of length of a line segment using distance formula.

3. What is the length of the line segment with coordinates (0, 0) and (0, 6)?
4. How many midpoints does 8 line segment has?

5. Write section formula and state its use.
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6. Define the gradient of a line.
7. What is the abscissa of (x, y)?
8. In the equation, y = mx + ¢, what is m?
9. What is the gradient of the line when tan 6 =0?
10. Athow many points does the tangent intersect the circle?
11. Write the equation of a circle with center at origin.
12. Write the general equation of a circle.
13. What is the degree of equation of a parabola?
14. Define the term ellipse and hyperbola.

15. Write the equation of line in slope intercept form

Long-Answer Questions

1. Plot the point (-2, 3) in Cartesjan plane,
2. Find the distance between two p

oints (3 ;
between two points) in coordinate Plaflé »5)and (0, 1) (length of line segment
3. The length ofline segmentis 13 bety

. een the po; ;
4. Aline segment has endpojnts p 0 the points (1,0) and (g, 5). Find a-

segment PQ. (14,6) and Q(~6,~2) . Find the midpoint of the
5. What is the midpoint bety
et AR een the two ponts A4(2, 3) and B(-6, 5) of the liné

6. Aline of endpoints (9,
2: 1. Solve the coordj
7. Aline of endpoints (1
1:3. Solve the coord"
nates of po;
8. The Ccoordinates of A are (x il P(x’ o
segment AB s at (4, 5).F TNEE

i re (3x, 4 T Jin€
In »4y) and th the
9. The coordinateg of 4 s coud © midpont o1

Inates of Aand B,

T are (5
Find th P; 6p) and the 4; '
e value of p, the distance from origin to 4 is 5V61 unif>
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12. Find the gradient of the straight line joining the points P(—4, 5)and O(4, 17).

13. A horse gallops for 20 minutes and covers a distance of 15 km, as shown in the
following figure. Find the gradient of the line and describe its meaning.

d(l;c.m)
73! (20,15)
101 d
5...

<./; e —+——r—+—>{ (minut
& TR T e ¢ (minutes)
N

14. Write down the gradient and the Y-intercept for the following equations,
(i) y=4x+3
(i) 6x+3y=9

15. Find the equation of'the line joining the points (2, 3) and (4, 7).

16. A line passes through the points (2, 10} and (8, 12). What is the gradient of the
straight line? Write the equation in general form.

17. Find the equation of the straight line that has slope 7 =4 and passes through the
point (—1,-6).

18. Write the slope-intercept form of'the equation, y =4x + 3.
19. Graph the line, y = 7x + 2.

20. Write the equation of the line in slope-intercept form passing through
(10,-8)and (1, 1).

21. Your pointis (-1, 5). The slope is 1/2. Create the equation in point-slope form that
describes this line.

22. What is the equation of the straight line passing through the point (-3, 5) having
slope 2?

23. What is the equation of the line passing through the points (-4, 2) and (3, 8)?
24. Where do the lines y = 4x - 2 and y = 1 — 3x meet? Where does the line
y=5x— 6 meet the graphy 7
25. Find the equation of a circle that has a diameter with endpoints given by
A(0,-2)and B(0,2).
26. Find the centre and radius of the circle with equation,
-2x+y-8y+1=0
27. Isthe point P(~1,-3) inside, outside or on the circle with equation,
G- 1P+ (y+3) =4
28. What is the vertex of a parabola with the following equation,

y=2(x-3)+4?Does the parabola open upwards or downwards? Explain.
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MAI; eb:-a ometry 29. G1venﬁ1efollomngequation,

2+ 92 =136
. () Find the Xand Yinterc
: epts of the
NOTES - (i) Find the coordinates of the foci.
@ Find the length of the major and minor axes
(iv) Sketchthe graph of the equation .

graph of the equation.
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UNIT 2 MATRIX ALGEBRA

Structure
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2.2 Vectors
22.1 Representation of Vectors
222 Vector Mathematics
223 Components of a Vector
224 Angle between Two Vectors
22.5 Product of Vectors
226 Triple Product (Scalar, Vector)
227 Geometric Interpretation and Linear Dependence
228 Characteristic Roots and Vectors .
2.3 Matrices: Introduction and Definition
2.3.1 Transpose of a Matrix
232 Elementary Operations
233 Elementary Matrices
2.4 Types of Matrices
2.5 Addition and Subtraction of Matrices
2.5.1 Properties of Matrix Addition
2.6 Multiplication of Matrices
2.7 Multiplication of a Matrix by a Scalar
2.8 Unit Matrix
2.9 Matrix Method of Solution of Simultansous Equations
29.1 Reduction of a Matrix to Echelon Form
292 Gauss Elimination Method
2.10 Rank of a Matrix
2.11 Normal Form of a Matrix
2.12 Determinants
2.12.1 Determinant of Order One
2122 Determinant of Order Two
2.123 Determinant of Order Three
2124 Determinant of Order Four
2,125 Properties of Determinants
2.13 Cramer’s Rule
2.14 Consistency of Equations
2.15 Summary
2.16 Key Terms ,
2.17 Answers to ‘Check Your Preg . ess

2.18 Questions and Exercises
2.19 Further Reading

20 INTRODUCTION

In this unit, you will learn about the basic concepts of vectors and matrix algebra. Linear
algebra is the branch of mathematics conceruing vector spaces and linear mappings
between such spaces. It includes the study of lines, planes, and subspaces, but is also
Concerned with properties common to all vector spaces. The main structures of linear
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algebra are vector spaces. A vector space over a field F is a set V together with two
binary operations. Elements of V are called vectors and elements of F are called scalars.
. The first operation, vector addition, takes any two vectors v and w and outputs a third

vector v+ w. The second operation, scalar multiplication, takes any scalar a and any
vector v and outputs a new vector av. You will learn about the vector mathematics and
angle between two vectors. This unit will also discuss about the matrices and determinants.
A matrix is a rectangular array of numbers or other mathematical objects, for which
operations, such as addition and multiplication are defined. Most commonly, a matrix

over a field F is a rectangular array of scalars from F. Finally, you will learn about the
basic concept of Cramer’s Rule and consistency of equations.

2.1 UNIT OBJECTIVES —

After going through this unit, you will be able to:
¢ Discuss how to represent vectors

® Understand the various types of vectors

* Explain the mathematical operations that can be performed on vectors
¢ Discuss the components and angle between two vectors

® Describe the basic concept and types of matrix

* Explain the operations performed on matrix

* Understand the matrix inversion and solution of simultaneoyg uati
* Describe the Cramer’s’ rule Taetons

22 VECTORS

—_—

We come across different quantities i T
: in the study of phys;

or volume of a body, time, temperature, speed, e)t,c All)lhtiswal phenomena, Such as mass

can be expressed completely by their . e

magnitude. j Quantities gre
hd Su
mass ofa body can be specified by th agnitude, i, bya g ch that they

le nump,
. € number of gra, 8l number. le,
quantities are called Scalars, There are c:r o Sand time 1, eto, Su

rtaj © DYy minutes, etc, Such
expressed completely by their magnitude aj T duantities Which cannot be
displacement, momentum, etc. These quantj

0ne, such as velgc;
; 1ty, accelerat;
. . . t b €rafy
magnitude and direction and are called Ve 1€S can be €Xpressed on, force,

tors. Completely by their
2.2.1 Representation of Vectors

The best way t ;

bt tWy 0 l:epresent avector is with the help of directeq line se

o O points, then b3f the vector 4B, ooont Supposed

asaorg.

m .

A and Bare called the endmoi gure2.1) agnitude js the
e ) 0 N
initial point and B is cajeg the # fm:?:; ;’;ﬂ}e vector4B. Iy Particular, 4 i ledh

Sometimes a vector 4 omnt. »«1 15 Called the
i 4Bisex
inbold type to distinguich : pressed by a sing]

guish it from 5 g ingle letter a, which :
alar > Which is always written

A

Fig. 2.1 Vector AB

Definitions

Modulus of a Vector: The modulus or magnitude of a vector is the positive number
measuring the length of the line representing it. It is also called the vector’s z.lb§olflte
value. Modulus of a vector a is denoted by | a | or by the corresponding letter a in italics.

Unit Vector: A vector whose magnitude is unity is called a unit vector and is generally

denoted by 4. We will always use the symbols i, j, k to denote the unit vectors along the
x, y and z axis respectively in three dimensions.

If a is any vector, then a =ad, where 4 is a unit vector having same direction as
that of a. (The idea would become more clear when we define the product of a vector
with a scalar).

Zero Vector: A vector with zero magnitude and any direction is called a zero vector or
a null vector. For example, if in Figure 2.1 the point B coincides with the point 4, the

vector AB becomes the zero vector AB. The zero vector is denoted by the symbol o.

Equality of Two Vectors: Two vectors are said to be equal if and only if they have same
magnitude and same direction.

Negative of a Vector: The vector which has same magnitude as that of a vector a, but
has opposite direction is called negative of a and is denoted by —a.

Thus AB= _ BA for any vector AB.

Freevectors: Avector is said to be a free vector or a sliding vector if its magnitude and
direction are fixed but position in space is not fixed.

: lity of vectors, it was assumed that the vectors are free vectors.
Note; When we deined equ_a> ty . ¥ . etors e e o
Thus, two vectors AB and CD canbe equal if 4B = CD and AB is parallel to CD, although they
are not coincident (see Figure 2.2). A

c

Matrix Algebra

- S0metimes, however, e Write the vector 8 Fig. 2.2 Equality of Two Vectors
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So, equality of two vectors does not mean that the two are equivalent in all respects.
For example, suppose we apply a certain force in a certain direction at two different

points of a body, then although the vectors are same still :
onthebody. they may have varying effects

Localized vector: The vectors whose position in space is also fixed

Coinitial vectors: Vectors having the e
. same initial L
OT concurrent vectors. point are called coinitial vectors

2.2.2 Vector Mathematics
Triangle Law

Ifthere are two vectors a= 04 = 4R
=04 andb= 4B, represented a5 two sides of a triangle, as

o a 4
Fig° 2-3 B’iangle Law
Parallelogram Law

Letaandbbe any two vectors, Thro

u .
aandOflengthequaltoa-ThendZ 8ha point O, tae 5 1y,

e OA parallel to the vector
. a iti
parallel to b having length 5, then 43 j’,y deﬁmtlon]. Again through 4, take a line AB

We define the Sum of g éndb as

=

a+b= a-ﬁ.

Snm]mly’ the
of this definition,

Notes: 1. The process by which we obtained an equal vector OA from a is sometimes referred to
as translation of vectors. It is obtained by moving the line segment of a from its original position
to the new position 04, without disturbing the direction.

2. This method of addition is called Parallelogram Law of Addition (see Figure 2.4).
Vector Addition is Commutative

Let a and b be any two vectors. We get,

OB=a+b [see Figure 2.4]
Now complete the parallelogram O4BC, then
Ooc=b and CB=a
Also, 0C +CB = OB [By definition of addition]
= b+a=0B
Hence, a+b=b+a=0B
This proves the result.
Vector Addition is Associative
Let, a=0A4
b= 4B
) c¢=BC
be three vectors (see Figure 2.5).
C
C
B
o b
a
A
Fig. 2.5 Vector Addition
Then, (a+b)+c=((5;4+A_B)+B_C’T
=0B+BC
= oC ~2.1)
And, a+(b+c)=OA+(dB+BO)
= OA+ AC
=0C (22)
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Thus, Equations (2.1) and 22)>

Hence, proved.

Existence of Identity
Ifais any vector and o i the zero vector then,
ato=q

InFigure 2 4,ifB coincides with 4 then,

— -

By definition 4AB=44 =4
0§=OA >
+ 4B
= P~
= 0‘4:5744-,47
a=
Hence, proveq Ato

Existence of Inverse

ed
Lot a+(g)=, "verse of a such that,
a
Thenby definiio, A tion)
Thus a=45 [By definition of add!
= 04 + 40 = (35
of Vectorg ag €above
ab Pr
CoOmnaeis: s We "
and S]Ilbtrac Vi tion forms ::Ial 2 that the set ¥ of vectors with addluon
18also g tors, ian
Multip); led 1Ve of Bg =~bwe Meap Soup. of?
S P caﬁ()n of ectOr b ed eal‘lier at (-b)a where —b is invefse
UPpose a jg y S
i . ve ¢
ie,n| times the:lt:r dn ascaly ) alay
800 bojy, V080fg 1 Y AW, |
B P0Sitye o Whoge g 20 - eishl?!
five o negatg?: € digeors. . VeCtor whose magnitude |tof 8

onj ,
11 that of a or opposite t©

"y
A

{
{1

T TR D n T

Generally, the scalar is written on the left of the vector, although one could write
it on the right too.

Note: We do not put any sign (. or X) between n and a when we write na.
The following results can be proved:
() (mn)a =m(na)
(i) oa=o0
(iii) n(a+b)=na+nb
(iv) (m+n)a=ma+na

Proof: (i) and (i) are direct consequence of the definition and hardly need any
further proof.

(iii) n (a+b)=na+nb.Let n be positive.
Supposea= 074, b=A4B

Then, OB=a+b
The following figure proves the result:

o A A
Let A', B' be points on 0A and OB (or O4 and OB produced), respectively such

that,

OA'=n.0A

OB'=n.OB
Then, O4' = nOA =na

OB' =nOB =n(a+b)
Also A'B' =nAB [where, OAB and OA'B' are similar triangles]
= AB =ndB

=nb
Now, OB'=O04'+ A8
= n(a+b)=na+nb
This proves our assertion. o
When 7 is negative, the figure would change in this case as now 4 and 4' will lie

on the opposite sides of O-
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Proceeding as before, we get,
OA' = na
AB =nb
OB’ =n(a+b)
Which proves the result as OB’ = 4" + AFB
B
A
A o
. B’
(#) Suppose m and 5 are positive,
We show that, (m + na=ma+ pq
Let, m+p=p
Then,
LHS=q+44
a+, . + 3
Also, ..+a (ktlm
RHS = ma+pq *)
=at+. 4 A+(a+a+, + a)
(m times) (n times)
=a+
. s ;Ha+...+a (m"‘ntimes)
= S : .
3:: can easily prove the result evep ifmorp is =k fmes)
. i n '
o e:illr)elrectlon of the vector (m+n)a i sam o
o direct: e
£ onons of the Vectors g g 3 that of g definitiop
of ma+ na " ar smn>
18 also same ag thyg ofa ©same as that of aand, th ’
) . > terefy
Now, magnityde of the vector (m+rya % dirction
ajs, |
1 lal = G 4.y
= |m] |a] + In| |a|
= Im a| + ln
aasthey b,
_ a . .
=Ima+ py Y havesame directiop,

This is the magnitude of the vector ma + na, i.e., the vector on the RHS.
Thus, the two vectors have same direction and magnitude and hence are equal.

The different cases when m or n is negative or both m and » are negative can be
dealt with similarly.

Theorem 2.1

Two non-zero vectors a and b are parallel if and only if 3 a scalar # such that, a=tb.
Proof. Let a be parallel to b. )
=> Direction of a and b is same or opposite.

Suppose direction of a and b is same.

If a=b, where a, b are respectively the magnitudes of a and b, then 7= 1 serves
our purpose, because then,

a=1.b = a=1b
If a # b, then we can always find a scalar # such that, a=1tb
[Property of real numbers, indeed we take ¢=a/b]
For this ¢,
a=b
So, when direction of a and b is same, the resuit is true.

Now, let direction of a and b be opposite. The same scalar will do the job except
that in this case we will take # with the negative sign.

Conversely, let a and b be two vectors such that, a = rb for some scalar ¢.
By definition of equality of vectors this implies that a and /b have same direction.
Again, b and b have same or opposite direction [By definition of tb]

= aand b are two vectors having same or opposite direction.

= aandb areparallel.

Hence, proved.
Example 2.1: If ABC is a triangle and D is middle point of BC, show that

> l —
BD = —BC.
2

Solution; See the following figure.
A

) C
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Matrix Algebra 1 Position Vector
Now BD is a vector with magnitude BD = EBC and BC is a vector with Let O be a fixed point, called origin. If P is any point in space and the vector
magnitude BC. OP =r, we say that position vector of Pis r with respect to the origin O and express this
| as P(r). NOTES
NOTES Since directions of BC and BD vectors are same, it follows that BD = — BC. Whenever we talk of some points with position vectors.lt is tobe ufxderstood that
2 all those vectors are expressed with respect to the same origin (see Figure 2.7).To
E?Iample 2.2: Show that the sum of the three vectors determined by the medians of a prove that,
< angledireted om the vertices s 2eto If A and B are any two points with position vectors a and b then,
Solution: Let ABC be any triangle with AD, BE and CF as its medians. .
We have to prove that, AB=b-a
- s > ' i igin then it is given that,
AD+ BE+CF =0 If Ois the origin i gi
From triangle ABD we have, 0_14 =a
' - s e OB=b
AD = AB+ BD .
B+ 1pe ’ |
2 ¢ {
Similarly, from triangle BCE we have, F £ |
—> — 1
BE =BC + — CA
2 B \ c
And from triangle CAF we have,
- —> 1
Fig. 2.7 Position Vector
Thus, T + B_> + C'.‘i;.' = A§ + B_é —~> 1 — — —_ —_— "
+CA + 5 (4B +BC + CA) Also, OA+ AB=O0B . [By Addition Law] .
— —> =0 . = A_é = 0_->B - O_‘Z
AS, AB+BC=R = A_é=b—a
B+ BC=—&
— 4B+ BC=-C4 2.2.3 Components of a Vector :
= AB+ B~é +C4 =0 ! .
Example 2.3: Show that t: =0 Let P be any point in space with co-ordinates x, y, z. Comlflete th; gﬁgeéoplped
atthe vector equation, a + 5 = : a imensional figure formed by six parallelogram) as shown m kigure £.5.
Solution: We know that, A+X=bhasa unique solutjop, (a three-dimensional figure 3’ p
at+[-a+ b]= [a+ (‘a)]'l'b- A ‘
=0+h [By Associativity 1 aw] | c
. =b [ByIdentityLaw] |
= —a+blsasolutionofa+x=b | i |
. ; 4
Suppose that y i . !
PP Yis any other solutiop of thig equatio, | I\ .
| Y=o0+ y 1 1s) )
= [(*a) + a] + y ;
=(-a)+(a+ ¥) o | /A
“-a+th,agy; . 1
= -a+bis the un; +35Yisasolutiop, |
Self-Instructional bisthe Unique Solution, on |
68 Material
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Then, co-ordinates of the points 4, B, Care (x,0), (0,,0), (0,0, 2), respectively.
Suppose that position vector of Pis,

ie., OP =r
Alsolet 7, j , k ,bethe unit vectors along the three co-ordinates x, y and z-axis.
Now, . OA=x

= 04 =x}

Note: x iis a vector whose magnitude is 1.x = x and whose direction is that of the x-axis and this
p—
is precisely the vector O4.

Similarly,

R
i ]
N <
N o

From the triangle OPQ,

S
i
S S

r= + 0P
Py

+0

Q

Also from the triangle 040,
00 =04 + 40
=04 + 0B
Thur,r=0—;1+o_§+o_é_ 2

| r=xi+yj+, k
Which can be expressed by Writing

r= (x’y, Z)
Thus, Equations (2.3 @4

)and (24 .
components of the vector . @4) mean exactly the same, x, y, z are called th®
Note: OP = |r|=,

Using geometry we find,

in i
o ip)azedwnh Position v,
,) an (bl, bz, b)), respectively.

€ctors a and b’ and tb@ o

A
a
0
o) 25 B
Fig. 2.9 Angle between Two Vectors
Then,
a=Od=a i+a ] +a i
b=0B=b{ +b,] +b, k
= b-a=(b-a)i +(b,—a)j +(b,~a)k
Also, AB=b-a
Thus, AB?= (b, —a )+ (b,—a)+(b,~a)l  ..2.5)

Let 0 be the angle between a and b. When 0 is the angle between OA4 and OB,
we have,

AB?=0A4*+ OB*-2 OA . OB cos 0

g 04+ OB’ — 4B’
= COSY=""504.0B
_ (@l +ay+a)+ (b +b; +b])-E(b —a)’
- 2a.b
= cos 0 = ab +a,b, +a;b,

Jat +a +a? \[b? + b2 +b?
at= af+a22 +a32
And b?= b} +b] +b;

Example 2.4: Find the angle between the vectors a = P+2]+3F

b=7-J+2k
Solution: a=(1,2,3)
b=(1,-1,2)
= a=1+4+9=14
p=1+1+4=6

If @ is the angle between a and b then, -

Matrix Algebra
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Aliter. To show that C is the right angle we observe, Matix Algebra
cosf= XLE2X(CD+3x2 5 AC? + BC* — AB?
Visle 84 cos C=""24C.BC
NOTES Hence, _ 0= cog! 5 . NOTES
E Ve - %Tﬁs:f:l =0
Xample 2.5: Show that th o ‘ 2V3
©three points with Position vectors given by,
—2a+ 3b+ 2¢ 2
Soluti ~8a+13b are collinear Section Formula
olution; . ' o .. . .
et the three o be4, Band C reg ectivel To find the position vector of a point dividing the join of two gwenpomtsmaglvell.l'atlo-
’ AB=pggis: pectively. Let A and B be the two given points with position vectors aand b, respectively.
Y 0281t10n Vector of B — Position vector of 4 Suppose the point R(r) divides 4B in the ratio m : n (see Figure 2.10).
- - 3::53" T20)~(a-2b +3¢) ie,AR:RB=m:n
Similary, B ~c
_BC=(~8a+13b)_(_2a+3b AN,
=2(3a+ Sb- c) +20)
- Fé it =) A‘é R
and 4B ap,
Which is Possib, ~parall], [refer Theor, 4
Examp] eOnlywhenA B i em21]
ample 2.6. >4 lieop :
Ple2.6:1f4, B,Care e Doin, one line, Hence, proved. B
With position vectors given by _ . .
A= 2] .3 & Fig. 2.10 Position Vector and Its Division Ratio
~J+ i
b=7 .-
R . AR _ BB
=33 en, -
zh;)Wthattheyformari t;i 37 -4 -4 m n
olutiop. . . =
tion: We have, Angle, Tight ap, gleda ¢ or, nAR = mRB
- = nA_ﬁ = mﬁ
AB§b\a§(f 3'2 = n(r_a)=ma)—r)
=1 <93 T=SEY-@i-j+R) = nr+mr=mb+na
J—ga
B¢~ (3% Ok na b
O = T Them
GiVing, ACs Cw ]+ k
A= 3] A This gives the required value of .
AB§\/1+\ 3k ‘ —§+—basinthiscasem=n.
B 136 Corollary. IfR is the middle point of AB, then r = —
Cs e V4
! : 147 b
Whlchsho AC =6 Theorem 2.2
s, S Vire—— i ' " inear ifand only if there
i : +9 W .. . : tion vectors a, b, r are collinear if and only
4BCjg arigh i ~Be2 +25 L V35 y Th.ree distinct points 4, B, R w1thlll)021r ) such that
Note: 5. . . ugle With t4e o exist three numbers x, y, z (not all 2
Self-. ; BC ght f Self-Instructional
N eriructiona ey Para]gy "Mgle ¢ C 3
» 80
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xa+yb+ze=0
x+y+z=0
Proof. Let the three points 4, B, R be collinear
Then, R divides 4B in some ratio,say m : n

= matmb
n+m

where,

= (n+m)r=na+mp

or, na+mb—(n+m)r=0
Let,
then,

Where,x+y+z=n_+m_(n+m)=0
Thus, all x, y,

X=RY=m,z=—(n+m)
xa-_l-yb+zr=0

Z cannot be zero, Hepce proved,

Conversely, Suppose 3 %,y 200t all zero sycy tha
xa+ )b+ = .

And, Xty+z=
Let,z%0
Then, Xty+z=
= Yty=—
=
- C+y)r= =Zr
e Zr=xq4 yb
xa+yb =(x+y) r
. ,
r= m
) X4y *88X+y2 i
= Rdivides 4p inthe ratio x . ’ e
= Rlieson4p .
= A,B,Rare Collinegy
Hence proved,
Example 2.7, Show that
€ pointg
3a_
a-2b 4 4 Position Vector:
at+b+e
—a+4h-9e are
) Collinear
’ e
Twec 0
x(3a Anfindx, y, 7 (notall 26
- »2(

Wa+
b+c)+z(‘a +4b~2c)-—0

)

Py

and,
Equation (1) can be written as,

Bx+y-z)a+(2x+y+4z)b+(4x+y—-2z)c=0

x+y+z=0 @)

This gives,
3x+ty-z=0
2x+y+4z=0
4x+y-2z=0
Also, from Equation (2) x+y+z=0. One non-zero solution of these four equations
is,
x=z=1, y=-2
We find that, the three given points are collinear.
Example 2.8: Show that the medians of a triangle meet at a point that trisects them.

Solution: Let ABC be any triangle with medians 4D, BE and CF (refer Figure of
Example 2.2).

Let position vectors of 4, B, Cbe a, b, ¢, respectively.
Since D is middle point of BC, the position vector d of D is given by,

a+b
==
Let R be the point dividing 4D in theratio 2 : 1, then position vector r of R is given
by,
a+b
+ UG
—a 2( 2 )-a+b+c
142 3

Symmetryina, b, ¢ implies that R will also be the point that divides BE and CF in
the ratio 2 : 1. This in turn yields that R is the required point where the three medians

meet and it also trisects them.

Example 2.9: Show that the internal bisectors of the angles of a triangle are concurrent.
Solution: Let ABC be any triangle w: AD, BE, CF as the internal bisectors of the
three angles.

Suppose, AD and BE meet at the point R.

Let position vectors of the points 4, B, C.D,E ERbea,b,c,d,e,f, rrespectively.

And, AB=1u
BC=v
CA=W
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Now, E divides C4 in theratio BC: 45 ie
‘ABie., vy

Thus, by section formy]g o it T UL
o=

Viy (1)
Also, EE_ v
E4 4
= CE
S el iy
v l b c 2 3 R C k
= __uw
AT T
Utwy
Again from triangle ABE o Rdiv;
IVideg BE in the ratj
TG e, 04B:A4E
U+y
We get,
ue4 Uw
r= Uty .b
u4 Uw
S
=
va 4
r= wh 4
: A e g
Similary, ; Uty g
res 1 b Veg =
Hence, p e ®Cause ofg the poin¢ Ofintersection of 4D and cf
Coplanar pyy, Where ¢, Ma,b,candy, .,
It ts bisectorg AD, BE ’.
canbe proveg FRand CFm
t eet
1Iwe can fing POintg . -
Scalar (not all ZS i 1th position ”
T+ . ot o)xsy,z,ts “Ctors g, ¢, d Iy
And, id = Uch that, »@are coplanar ifand 0
X+ Y+ z4 L i

Example 2.10: Show that the points with position vectors 6a—4b +4¢, —-a—2b-3c,
a+2b — 5¢, —4c are coplanar.

Solution: The four points will be coplanar if we can find scalars x, y, z, 7 (not all zero)
such that,

x(6a—4b + 4¢) + y(—a —2b —3¢) + z (a +2b—5¢) + #(-4¢) =0
andx+y+z+t=0
The first equation suggests that,
6bx—y+z=0
—4x-2y+2z=0
4x -3y —-5z—-4t=0
Also, we should have,x +y+z+¢=0
Which gives,x=0,y=1,z=1,t=-2

This is a non-zero solution of the equations and thus the four points are coplanar.

2.2.5 Product of Vectors

Product of two vectors is defined in two ways, the scalar product and the vector
product.

Scalar Product or Dot Product

If a and b are two vectors then their scalar product a . b (read as a dot b) is defined by,
a.b=abcosB

Where a, b are the magnitudes of the vectors a and b respectively and 0 is the angle
between the vectors a and b.

It is clear from definition that dot product of two vectors is a scalar quantity.
Hence, it is proved.

Scalar Product is Commutative
a.b=abcos0

=bhacos 0

=b.a
Theorem 2.3 . .
Two non-zero vectors aand b are perpendicular if and only if,

a.b=0

Proof; Let a and b be two non-zero perpendicular vectors. Then,

a.b=abcos90=0

Conversely. Leta.b= 0

~ abcos =0

Where 6 is the angle between & and b.

= cos8=0 [As a and b are non-zero]
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= 9

o a

= aandb are perpendicular.

The following results are trivia]:
i.i=j.j=k.k=1
i.j=j.k=k.i=0

Definition. By a*> we will always meana . g

Thus 5 s
. @ =aacos (=g

“Example 2.11: Show that a, (-b)=-a.p

Solution: We have,
a.(-b) =ab cos (n 0)
—Y) When 1
=—ab cos @ Ois angle betweep dand .
=) b;
Distributive Law
Prove that,
a'(b+°)=a-b+a_c
Let, 04 oy
OB =}
BC=¢

LetBLandC
Perpendicular f; P CIpendic
Then, omBoncyy T Marstron and C o i3
a.b=g °°SW=a " noAsreSPectivelyandBKbe
- 0L
= RHS=, bc AR gy
= s i :':a-L

L

e s 5t oi; ( L+ Ly

= OB+§—6"‘=GE’
b+(‘.= ‘E.

= LHS= a(b+c)=a.0C
=a.O0Ccos ¢
=aq.0M
Hence, the result is analysed as follows:
An immediate conséquence of the above result is,
(a+b)*=(a+b).(atbh)
=a.a+ta.b+b.a+b.b
=a’+a.b+ab+b?
=a’+2ab +b?
Similarly, we can prove that,
(a—b)*=a>-2ab + b’
(a+b).(a—b)=2a’-b?
Scalar Product in Terms of the Components

n

Let, a=(a1,az,a3)=alf+azf+a3k
b=(b,b,b)=bi+bJ+b [
If a and b be any two vectors, then,
a.b=(a, i +a,Jj +ta k). (b, i +b, ] +b, })
=ab i.i +ab, T 7 _agbs £, i

[Other terms being zero]
=a1b1 + a262 + a3b3

Example 2.12: Show that the vectors a, b and ¢ given by,

7a=2} +3]j +6k \
Th=37 —6]+2k
Te=67 +2]-3k

are of unit length and are mutually perpendicular.

Solution: The three vectors are,
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Now, a

() 6] (5 -3
S ORGEOE
-G -

This shows that the given vectors are of unit length,

Again,
=Xt oX| — |+ =xZ =1
a.b 7 7 7 (7)+7x7 49 =[6—18+12]=0

= aand b are perpendicular,

b.c=oX=4 —|x<4+2 el
77 (7) 7+7x(7)‘4*9=[18—12_6]=0

X—=__ _
7

7 a9 - [12+6-181=9
This implies that b is perpendicularto ¢ and cis
Example 2.13: Show that the altitudes ofa triang],

Solution: Let 4BC be any triangle and Jet the altj
We have to prove that the third altitude CF also p

Let a, b, c, d,e,f,
respectively.

| 6,2.2 3 (3) ¢
C.a=—xX—4Zx=" |2 1
.1 7x7+( )

perpendicular to a,
Cmeetatgy point,

asses through R.

: C
Since, AR | BC
We have, AR . B3O - 0 .
= (r‘a).(c-b)=0
Again BR 1spe1pen'dicularto C4, 1)
= ﬁ . EZ =0

PR —

= (r-b).(a-¢)=0 -(2)
Adding Equations (1) and (2) we get,
(r-c).(a-b)=0
= CR.BA=0
= CR1BA

= CR is coincident with CF, i.., the altitude through C.
Hence, the three altitudes meet at a point. .
Example 2.14: Show that the perpendicular bisectors of the sides of a triangle are

concurrent. ] . )
Solution: Let ABC be any triangle and let D, E, F'be the middle points of the three sides

AB, BC, CA, respectively. |
Let the perpendicualr bisectors through D, E meet at the point R.
Show that the bisector through F also passes through ..
Let a, b, c, r be the position vectors of the points 4, B, C, R respectively.
9 My &y

f of the points D, E, F are given by,

Position vectors d, e,
b+c¢
d= =
ct+a
e=
at b
f= 2
Now, RD L BC
= RD.BE=0
= (d-r).(c-b)=0
(1)
= (m—r}(c—b) =0
2
Similarly, RE 1 C4

= (e~-r).(a-¢)=0

(2
= (L;a-—r].(a—c) =0 2)

Equations (1) and (2) on addition &V
(a +b —r). (a-b)=0
2

= RF 1 Bj=0
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= RF1BA
= RFistheright bisector through F.
= The three bisectors meet at the point R.

Example 2.15: Ifa= (a,a,a)andb= 0,5

» b;) are two vectors and @ is the angle
between them, then show that,

sin%0 = (a,b, - a;b,) + (a,b, - ab)’ + (ab, - ab)*
(@ +a +a?) (B +8] +57)
Solution: We have already proved that,
axb =(ab,~ab)i+(ap —ap);+ (@b, -apb)k
- (axb) = (ab, - ab) + (ab, - ab.)? + (ab, - ab)y ..(D
Also,axb=absin0 #

Where a= /a,2+ @ +a

= (axb)2=azbzsin29,asﬁ.ﬁ=l
= 2
(@++0) @ +8 487 sinz g @
Equations (1) and (2) give,
- 2
Sin%g = (a,b, a3b§) +2(albsz_ ab)? 4 (a, b, - ah )2
(4 +a2+a3)(b.2+b22+b32) 1

2§ —2j+4f.
Solution: We have,

@, a,a)=(3,1,2)
(b, by b)) =(2,-2, 4)

. (I1x4-9y o2
Sin’g = 2x-2) +(3><4-2><2)zst_z‘1 .
(9+l+4)(4+4+16) X2)
(4+4)2 + (12_ 4)2

= *+(-6-2)?
14x24

6
= 2464+64 19
36~

= sme=J@= 2
336 5

Theorem 2.4
Two vectors a=(a,, a,, a,) and b= (b, b,, b,) are parallel if and only if

4_%_%

b b, b

Proof. Let a and b be parallel.

=> Angle 0 between them is zero.
= sin6=0

= axb=0

= a a a =0
bl b2 b3

= (azb3_a3bz) ; +(a3b| —albs) }+(alb2—a2bl) k=0 =0i +0J +0k

= ab, - a3b2 =0
ab, - a,b, =0
albz - azbl =0
= 4_%_9%
b b b :

Converse follows by simply retracing the steps back.

Vector Product as Area
Let OABC be a parallelogram such that,
=a
5z ="

and let 0 be the angle between aand b.

=Y
>

Fig. 2.12 Vector Product as Area
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Now area of the parallelogram OABC,
04 =04 - ck (Where CK | 04)
=ab sin 0
Also, axb=(absin )

Cf)mparing the two we note that, a X b=Area of the parallelogram OABC, i.e., the
magnitude of the vector product of two vectors is the area of the parallelogram whose
adjacent sides are represented by these vectors,

Corollary. It is easy to see that the area of the triangle O4C is 1 axbh.

Py
Now, axp=l 2 3
3 <21

= i(2+6)—.;'(1—9)+ k"(_2_6)

=8 -J-p

= laxbl= /64764764 = 873 is the requireg area.
2.2.6 Triple Product (Scalar, Vector)
Scalar Triple Product
’cl‘rl::: :;:Lz:lrut:?;l; t{)l?:tlliztr ltzv ieféi;i) z: :t: l(:?:, g:g:::eoje(:tle of the vectors with the
vector and thus Wecantalk ofa. (b x ¢), which would, of ors bxeis 2gaina
called scalar triple product of three vectors, ' Pourse, be a scalay. - This is
Let, 8=(aa,q)

b=, 5, 5,)

€=(cpc, c;)
Then, bxe¢= (byc, - b, b, ~ b, blc2 - bzcl)
s a'(bxc)=a‘d=ad‘,;cjzh,d;;)=d,(say)

1“1 ad, + ad,

=a(bye, - p +
- 3c2) a2(b3cl - c3b1) + a3(blcz ~be )
27

q a a
=|b b, b ..(2.6)
G 6 G

Hence, this is the value of the scalar triple product a. (b x ¢)

Suppose we had started with b . (¢ x a), it is easy to prove that the resulting
determinant would have been,

b b b
G a6 G
q 4 a4

Which is same as Equation (2.6) [As per the properties of determinants] and SO,
a.(bxc)=b.(cxa)

Similarly b.(cxa)=c.(axbh)

= a.(bxc)=c.(axb)=(axb).c [ByCommutativeproperty]

Dot and cross can be interchanged in a scalar triple product and we write the scalar
triple product as [a, b, ¢] or [abe] where it is upto reader where to put cross and dot.

Note: It can be verified that,
[abc] = [bac]
and, [abc] =[bea] = [cab]
Example 2.18: Prove the distributive law a x (b+¢)=a x b+a x c using scalar triple
Product.
Solution: Letg=a x (b+¢)—axb-axec
Taked = ¢

Leteb
yanyvector,then,e d=e.[ax(+c)]-e.(axb)—e.(axc)

—(exa).(b+O)—(exa).b—(exa).c

Interchanging dot and cross in the scalar triple products,
=(exa).[(b+c)-b—c]

[Distributivity of scalar product]

=(exa).0=0
= e . d =0 for all vectors e
We can take e to be a non-zero
= d=0 [vector, not perpendicular to d ]
Hence proved.
Vector Triple Product

A vector triple product is defined as the cross product of one vector with the cross
Product of the other two.
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A product of the type a x (b x ¢) is called a Vector Triple Product.
We prove in the following way:
ax(xc)=(a.c)b-(a.b)c
Let, a=(a,a,a,)
b=(b, b, b,)
c=(c,c,Cy)
Then, bxe=(be,—~bye, be, - b, be,~ bye,)

2 M371 3» "1

=(d,, d,, d,) = d (say)

3
Then,
aq X (b X C) =axd
=(ad, - ad,, ad, - ad,, ad, - ad)
=(ad,-ad)i+ (ad, —ad)j+ (ad,-ad)k
=Z(ad,~ad)i
=Z[a,(b,c, - bc,) - ab,c, - be)li
=Z[abc, - ab,c, — abec, + ab.c, + abc -
abecli H
[Adding and subtracting ab.c,
=Z[b(a,c, + ac,tac)—c(ab, + ab, + ab)li
+lbfac +agc,+ac)- cab, +ab,+ a;b)1j
T [byae, +ac,+ ac,) = cyab, + ab, + a,b))] k
=(ac, +ac,+ac) (Bji+bd,j+ b,k)
—-(ab, +ap,+ ab) (ci+ ¢ +c k)
=(a.cb-(a.b)e
This proves our assertion.

Note: There is neither a cross nor a dot between (a.c i F
-€)andbin (a. ¢)b, Fing
- ©)b. out why!

Example 2.19: ProvethataX(bxc)+b><(cxa)+cx(axb)-0

Solution: We know that,
ax(bxc)=(a.c)b—(a.b)c
bx(cxa)=(b.a)c-(b.c)a

¢ x (8xb)=(C.b)a—(c.a)b
The result is computed using addition,
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Thus, in a set of n-vectors A7 /. »V;}, linearly dependency is there if there are
scalars¢;, ¢, ,...,c, (not all zero) such that ¢,v, + GV, +..+¢v, =0,

Thus, an indexed set of n-vectors {¥):V; ........, v,} is linearly independent if the

vector equation xv, +x,v, +..+x.v, =0, gives only trivial solution, i.e.,

X =x,=..=x,=0.
LetS= {v,V,...,V,} beasetof vectors in R". If » > n, then S is linearly
dependent.

A finite set of vectors that contains the zero vector is linearly dependent.

A set with exactly two vectors is linearly independent iff neither vector is a scalar
multiple of the other.

0 0 1 4
Example 2.20: Let v, = 0 sV, =|— 2 s V= — 2 and v,= 2|.1s {vl, Vy Vg, V4}
1 2 1 3

linearly independent?

Solution: No. these vectors are not linearly independent. First three vectors are linear]
independent. But these four vectors have linear dependence since one of these vector}s,
can be expressed as linear combination of other vectors in the set of vectors. Vector v
can be expressed as a scalar combination of other three vectors, ¢
Here, v, =9v,+5v,+ 4v,.

Example 2.21: The following vectors in R* are given as

(1] [7] [-2]
4 10 1
v,=| 2 |,v,=|-4|andv,=| 5 |.Aretheylinearly dependent?
-3 -1 L~ 4

Solution: To prove linear dependence, we must find three scalars £,, , and k, such
that kv, + kv, + kv, = 0.

) 7 2] |0
4 10 1 0
Thus, k| 5 [+k,|-4|+k| 5 |=|0
-3 -1 -4 0

We get following simultaneous equations:
k+ 7k, —2 k=0
4k + 10 k, + k, =0
2k 4 k,+5 k=0
3k, +k,+4k=0
Solving these we get, k, =03 k,/2 and k,=k,/2. Here, k, can be chosen arbitrarily.

ese give results which are non-trivial, hence they have linear dependence.
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Geometric Interpretation

Geometric Interpretation of Linear Independence in R? and R? is as follows:

1. Two non-zero vectors in R? or R? are linear dependent if they are on the same
line passing through the origin.

2. Three vectors in R are linearly dependent ifthey are on the same plane passing
through the origin. Y praneP

3. The span of two vectors in R? and R3 i

linearly dependent or the plane d
independent.

A geographic example can be used to clarify the concept of linear independence. While
telling about the location of a certain place, a person may describe as, ‘It is 6 kilometer

north and 8 kilometer east from here.’ This statement has . . .
. . en:
the location. There is another way of sa ough information to describe

\ ying the same thing. One may say, The place is
10 kllometgr northf:ast ofhere.” Here, ‘6 kilometer north’ vector anci/ ‘8 i’ilometre,:r east’
vector are linearly independent, since th

ey cannotb : i
of the other. The third statement ‘10 ki, ¢ expressed as a linear combination

Ometer northeast’ ve Ct . . . .
of the other two vectors and it makes the set of vectors or is a linear combination

linearly dependent.

saline through the origin if the vectors are
efined by the vectors if they are linearly

2.2.8 Characteristic Roots anqd Vectors
Statement of the characteristic root problem

Find values ofa scalar A for which there exist vectors x = 0 satistying
Ax=2x
where 4 is a given nth ord - -(2.7)
g order matrix. The values of A that solve the equation are called
: e calle

atrix 4. To solve the problem, rewrite the

SAU-4)x=0 x=x0

For a given A, any x which satisfieg 1 will sat;
homogeneous equations in # unkng set of x' Sitls
s for

wns. T
called the null space of the matrix (AI-4) '11};18 equati
. onc

if the matrix (AZ - 4) is singylar Thi
determinantal equation of the matrix °

asimple 2 x 2 case. First solye the s - OSeewhy the matrix myst b

4,20

=a+ apx, =0

..2.8)

2. This gives a set of #
Which the equation is true is
athave a non-triyial solution

h tayx, =(

==>xl =_a12x2

—

a9,

.. (29

Now substitue x, in the second equation

a,,X.
1242 —
_a2l—+a22x2 =0
11

4 A
a,a
= x| a,-2%2 =0
\ a, )
/ A
a
=x,=0o0r a, —25%2 | =0
\ a; )
a,a '
=x,=0o0r kan———"z '2)=0 ..(2.10)
1
( a,a, )
If x, # 0 then ay—-—2—%1=0
\ a,y J
=|A4=0

Determinantal equation used in solving the characteristic root problem. Now
consider the singularity condition in more detail

(AI-4)x=0
| AI-A|=0
Av - a“ —alz o _aln
_ | R L 21D
-a, —a,, )’—arm

This equation is a polynominal in A since the formula for the determinant is a sum
containing n! terms, each of whichis a product of n elements, one element from each
column of 4. The fundamental polynomials are given us

|lI - AI =A"+b, A" + b, A"+ + hA+b,

This is obvious since each row of |\ — 4| contributes one and only one power of
A as the determinant is expanded. Only when the permutation is such that column %ncludéd
for each row is the same one will each term contain A, giving A”. Other perm.utatlons will
give lesser powers and b, comes from the product of the terms on the diagonal (not
containing A) of 4 with other members of the matrix. The fact that b, comes fro all the
terms not involving A implies that it is equal to |- 4.

(2.12)

Consider as 2 x 2 example
A-a, —4;
IAI - Al | -ay A-an

= ()l—a,,)(l—azz)—(auan)
=A2-a,A- aph+ @,y = Gpdy
=A? +(—a“ - an)l +ay,a,, — 41,8y
=A* —/1(0“ +azz)+(anazz - a,a,)
=M +bA+b

by =|’A|

(2.13)
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T onsideralsoa3x 3 cxample where we find the determinant using the expansion is called a matrix in . We denote this matrix by (a;),i=1,..,mandj=1,..,n Wesay Matrix Algebra
ofthe first row 8 P ._ that it is an m x n matrix (or matrix of order m x nf. It has m rows and n columns. For
A-a, -q, ~a, example, the firstrow is (a, , a,., ..., @,,,) and first column is
NOTES WA= e 1-0, 1 NOTES
-031 1-332 l - a” . 0.21
=(A-gq)|" "% -a, - 2.14) .
( a) ay A-g +a, :321 , a, —a, ~a, A-a ( a
Now expand each of the three ey | "s o Also, a;; denotes the element of the matrix (a;) lying in ith row and jth column and we
first Srininants in equation 2.14. We start with the call this element as the (i, /)th element of the matrix.
A~ i atrix
(A-ay) "% l= (ma)[z For example, in the m
Gy, l-a” 1 -10”-.1%*%%_%0, 1 2 3
= ( A~ 2_ 2
e i
<o, w*Maga, g oy 2.15)
N ¥ % (a4, +ay) 2.(0,,%,+2 :" *4a(a,, +8y)~a, (a0, —aya,,) o a,=1,a,=2,a;,=8. ie (1,1)thelementis1
OW the second ey, T ~0n00) - 000, 4.0 (1,2)thelementis 2
T -a, (3,2)thelementis 8 .
a
’ —G; A~ a, =a, [-/'\.a21 +a,q Notes: 1. Unless otherwise stated, we shall consider matrices over the field C of complex num-
? "3 =aya ] bers only.
= §lalza + (2- 16) 2. A matrix is simply an arrangement of elements and has no numerical value.
NOW the thifdterm 21 a]Z 21033 - alzazsas cer :
' l 2.3.1 Transpose of a Matrix
—a,| % A-a Let A be a matrix. The matrix obtained from 4 by interchange of its rows and columns,
% ~a,, =-a, [%,a, + ' is called the transpose of A. For example,
_ 2 A'a;n ‘azza:ﬂ] ‘ ) 1 2
T TAayq 2.17) . (10 oseofA=|0 1
termwivlﬁca;gthenc bine the g 5% *aya,a, - if, 4=\, | othentransp 2 o0
© A, the othery ® €Xpreg;
. . . 0 . .
Isthe negative Ofthe detey,: Elve Polynop;, s t‘;’ Obtain the determinant. The first Transpose of 4 is denoted by 4'.
A-g tofy, Expressil:nt;and A Note that the constant tor™® | It can be easily verified that
1 ‘a] - 0 b .
M- 4)=| 2 ~a, Obtain, =4
2 A
Check Your Progress ~a, -aazz 1~% (ii) ( A+ B)' =A'+B'
1. What is =gy o ATay . -
- ;nodulus of A (a" +ay, 4 (lli) (AB)
a vector 3 : 3 i +B)=A4"'+RB'
2 What is 3 unit ' | Example 2.22: For the following matrices 4 and B verify (4 + B)
vector? . 1 2 3 _ 2 3 4]
3. When two vectors | A=(4 s 6l B= ] 8 6}
4. What are coinitia| i (1 4 2 i;
i ! —
veetors? } Solution: A'=(2 5| B'=38
5. What are conditions - 4 6
: , 3 6
of coplanarity of 1
four points? ; ( 3 5
6. What is the scalar i ' — 13
product of two | So, A'+B'=|5
vectors? ' \7 12
7. When is a set (3 5 17
linearly dependent? Again 4+B= 5 13 12
f \
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3 5
So, (A+BY=|5 13

7 12
Therefore (4 +BY =4' + B’

2.3.2 Elementary Operations

Consider the matrices,

. tary operation jg o;
Operation and is of the foj, IS either eleme,,
. OWing three typ - FOW Operatio Jumn
?}; e 2 TTI: inerchange ofany m:yr!:)es. n or elementary cO
el], T ws
el ThZI:du;:l?hcatmn ofany roy, (or
ton of myjtip, Colurnn) by anop-
We shall use the follows of o W (orc | zero number.
The interchange of :;ng Motations foy three ) to anoher row (or colums)
Co C). and j; rows (°01untzl:e)s OfElementary operations.
The multipljcay; S) wil] b R;
tion of ; ¢ denoted by R; <> *J
Ri'—)kRi(Ci__)kC;Of y &
The addition of, ¢
R,. >R+ ofk

(OI' COIumn).

rOW (COIumn
)b
esthe ; Yhonzero umber k will be denoted bY
kR (C,— ¢ eJthrow(
I Gk, Colump) ,, .

2.3.3 Elementary Matric row (column) will be denoted bY

Matrix obtained frop ;. .. CCS

matrix. fomi utyma‘ll'xbyasin
glee)

Ceny
01 "ary operation j tary
For example[ - g 2.0, onis called Elemen
03
00, 0 o (l)

are elemeny )
m
on the identity magl(c
We State the fouo .

‘An elementary .. Eresult y,;

TOW Operation oy pre fact‘:)l?erati(,n on
r‘ b}

YR
1 (‘)Rz and the second by Cl —> ZC 1

(V] matn . .
©es 13 equivalent to elementa’y

It means that if we make elementary row operation in the product 4B, then it is
equivalent to making same elementary row operation in A and then multiplying it with B.

1 2 3 12
Let A=(2 ; 4), B=|1 1
2 3

Th (9 13

en 4B = (13 19]

Suppose we interchange first and second row of 4B.
Then the matrix we get is

Co 13 19
"o 13

Now interchange first and second row of 4 and get new matrix

D=(2 3 4)
1 2 3
Multiply D with B to get DB,
. 1 2
2 3 4 13 19
where DB—(l ) 3)[1 IJ—(9 13)
2 3
Hence, . DB=C

2.4 TYPES OF MATRICES

The following are the various types of matrices:
1. Row Matrix. A matrix which has exactly one row is called a row matrix.
For example, (1,2, 3, 4) is arow matrix.
2. Column Matrix. A matrix which has exactly one column is called a column matrix.
5

For example, | 6 | is a column matrix.

7
3. Square Matrix. A matrix in which the number of rows is equal to the number of

columns is called a square matrix.

For example, (; i) isa 2 x 2 square matrix.
4. Null or Zero Matrix. A matrix each of whose elements is zero is called a Null
Matrix or Zero Matrix.

00 O]isaszNullmatrix.
000

5. Diagonal Matrix. The elements a;; are called diagonal elements of a square matrix
(a;). For example, in matrix

For example, (

2 3
5 6
8 9

R I

. = =5.a =9
the diagonal elements are 4y 1,85 =3,033
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A square matrix whose every elemen i
t . .
a Diagonal Matrix. For ejgmple, e than dingonal clementsi zero iscalled

1 00
0 2 0|isadiagonal matrix.
0 0 3

Note that, the dj inadi
diagonal elements jn a diagonal matrix may also be zero. For example,

(0 0 00
0 2 and (0 0] arealso diagonalmau-ices.

6. Scalar Matrix. A dia
gonal i .
Scalar Matrix, For examplgmrlx Whose diagonal elements are equal, is calleda

(50)100 000
0 0

are scalarma ]
00 ¢ trices.

(l 0) | ‘ ). For €xample,
| 0 /Sanident i

Triangular Matrix, A Square magy; T
called a Lower Triangylg, Manrfltrlx
Similarly, 4 Square matriy (a o

Upper Trian i) Who
For example, i 1$a;=0 whenever i > jis called a8

(100
1o

7

(a, y
y); Whose elements afj = when i < j 1S

If4and B , TRA
the mamift;}”n‘;‘f{j‘;"gzrfme semeq CTION OF MATRICES
F.

add; rd

g th Cr th "

s ' enladd“mn 0f  and Bis defined 0 *°
ge Cments of 4 and B

tri .
Cesig deﬁned Only when A and B are

2.5.1 Properties of Matrix Addition

The following are the properties related to matrix addition:
(/) Matrix addition is commutative
ie, A+B=B+4 .
For, (i,j)th element of 4 + Bis (a; + b,.j) andof B + A4 is (by.+ aij), and they are
same as a;, and b;; are complex numbers.
(i) Matrix addition is associative
ie, A+B+C=A+B)+C
For, (i, j)th element of A + (B + C) is a;+ (b,.j + c,.j) andof (4 + B)+ Cis
(a;+by)+cy which are same.
(iii) If O denotes null matrix of the same order as that of 4 then
A+0=4=0+4
For (i, j))th element of A + Ois a;+ O+ay, which is same as (i, /)th element of 4.
(iv) To each matrix 4 there corresponds a matrix B such that 4 + B
=0=B+A.
For, let (i, /)th element of B be - a;. Then (i, /)th element of A+ B is a;— a,.j=0‘
Thus, the set of m x n matrices forms an abelian group under the composition of
matrix addition.

2.6 MULTIPLICATION OF MATRICES

l The product 4B of two matrices 4 and B is defined only when the number of columns of
? A is same as the number of rows in B and by definition the product 4B is a matrix C of
order m x p if 4 and B were of order m x n and n X p, respectively. The following
example will give the rule to multiply two matrices:

| d ¢

| Let A=(:‘ :'2 Z) B=[d2 ez]

| ’ dy e

| order of 4 =2 x 3, orderof B=3 X2

| So, AB is defined as,

| G=AB= (aldl +hdy +ody  ag +he, +ce J
. aydy +bydy + 0ydy arey +byey + ey

|

| - (g 1 812 )

| g1 &2

, g;;: Multiply elements of the first row of 4 with corresponding elements of the first

| column of B and add.
g;,: Multiply elements of the

column of B and add. _ '
8, : Multiply elements of the second row of 4 with corresponding elements of the first
column of B and add. . .
Multiply elements of the second columns of 4 with corresponding elements of the
second column and add.

Notes: 1. Ingeneral,if4 and B are
1 1) p= 1 0} thendB= (l 0)
A = (0 s 0 0 0 0

0
l)_ SO,AB*BA
0

first row of 4 with corresponding elements of the second

8

two matrices then 4B may not be equal to B4. For example, if

1
and BA—(0
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2. If product 4B is defined, then it is not necessary that B4 must also be defined. For
example, if 4 is of order 2 x 3 and B is of order 3 x 1, then 4B can be defined but B4
cannot be defined (as the number of columns of B # the number of rows of 4).

It can be easily verified that,

() ABC)=4B)C
(i) A(B + C)=AB + AC
(4 +B)C=AC + BC.

2 -1
Example 2.23: If 4= (0 3} and B =(_72 03] write down AB.

AB= (2x7+(—l)><(-2) 2x0+(-1)x(=3)
0xX7+3x(-2) 0x0+3x(—3))

-(% 3)

Example 2.24: Verify the associative law A(BC) = (4B)C for the following matrices:

Solution:

(-1 05 -1 05 B
Sl A o)’ B=[7 -2 o)’ C=(2 o
0 4
4
Solution: a=|* 1%
13 51 0
(-18 96
So, =
(4B)C | 89 -13 ]
(13 -1
Again, BC=]1 3
(-1 19
)
So, ABO= (18 96
B0 | 89 -13
Therefore, A(BC)= (4B)C
Example 2.25: If 4 is a s

quare matrix, then 4 can b inli
2 . € mul .
A”=4. A (called powerofa matrix). Compute 42 for the foll ped b itself. Define

owin ‘e
(1 0) gmatnx.‘
A=
3 4

(L 92

(Similarly, we can define 4%, 44, 45, g any square matrix ()

Solution:

Solution: 21 2][ 1 2) (=5 5

\-3 0 -—3 0 [_3 ‘6]
(

3= 3 6)
(9 0
)

<! o)
0 1

) 36+(10]
3 —6)7 -9 0)7lo 1

B= [0 'i) show that, 4B =—BAand 42 =B?=1
’ 0

This proves the result.

27 MULTIPLICATION OF A MATRIX BY A SCALAR

Ifk is any complex numberand 4, a given matrix, then kA isthe matlnx obtained from 4
by multiplying each element of A by k. The number k is called Scalar.

For example, if
1 2 3
= and k=2
4 (4 5 6)

2 4 6
then kA:[g 10 12

It can be easily shown that
(t';a:(Ae:B) —kd+kB () (g +e)Ad=kAd+ kA
(iif) 14=4 @) (k) = k (k)

123 dB—(o 1 2)
Example 2.28: IfA=(4 5 5)33 345
Verify 4 + B=B +4.
1+0 2+1 3+2]=[1 3 5]
Solqtion:A+B=(4+3 5+4 6+5 7911
0+1 142 2+3)_ (13 5]
B+A=(3+4 4+5 5+6) |7 9 1
So, A+B=B+4 .
Example 2.29: If 4 and B are matrices asn Example 2.28

: I}VerifY(A+B)+C=A+(B+C)

-1
and C—[l 2 3

1353
Solution: NOWA+B=[7 9 11)
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So, (A+B)+c=[l—l 340 5+1)_(0 3 6
7+1 942 1143 8 11 14)

Again B+C.=(0_I 140 2+1\_(-1 1 3
3+1 442 5+3 4 6 8]

So, A+@B+0)=[1"1 2+1 3+3) _(0 3 ¢
4+4 5+6 6+8) |g 1 14)

Therefore, (4+B)+ C=A+(B+ 18)

1 2)
Example 2.30: If4 = i
p A ; ;,ﬁndamatansuchthatA+B=0
J
. CTR
Solution: LetB= by by,
G’y
fl"l'b“' 2+bl
Then A4+B= i -
B 3+b21 4-'|-b22 =10 0
. . O+by 648, ) {0 o
implies, b“=_1,b12=-2,b21=3,b22=_4,
by ==5,by,=-6
-1 -2
Therefore required B=| —3 -4
-5 -6
Example 2.31: (i) If 4 = g ;2
y 3 4 andk =i k =2 veri
ko s g 2= S Verlly (k) + k) 4 = g, A
(ii)IfA=[0 A I (A
2 1 4 5(1 ) fin
4 5| indthe valye o4 +3B
. o 0 j j
Solution: () Now kd =|y; 3:1’ i’ 0 2
« 4 5i 6 d S|4 608
S, kd+hgo|, o 2t / con
4 thd = 442 6+3; :+2l
_ +4
844i 1045 12+6’i
Also, 0 24y
(ky+ k) 4 = oy 6:1. 442
8+4;

8+4; i
Therefore(kl_,_kz)A:kA-: 10+35; 2+
I

(i) 2A=(0 4 6
\4 1 3]
B2 18
(3 12 15
So, 24+3p-{21 2 |
\7 13 23)

1 2 3
E . 14 5 6 find ’ :
xample 2.32: If4 = ; 8 nd ay,, 9y, 933, G315 Ay
o 1 2

Solution: ap, = Element of 4 in first row and first column =1

a,, =Element of 4 in second row and second column =35
ay, =Element of A in third row and thrid column =9

ay, =Element of A in third row and first column="7

a,, =Elementof 4 in fourth row and first column=0

Example 2.33: In an examination of Mathematics, 20 students from college A, 30
students from college B and 40 students from college C appeared. Only 15 students
from each college could get through the examination. Out of them 10 students from
college A and 5 students from college B and 10 students from college C secured full
marks. Write down the above data in matrix form.
Solution: Consider the matrix

20 30 40

15 15 15

10 5 10

First row represents the number of students in college 4, college B, college C
respectively. :

Second row represents the number of students who got through the examination in
three colleges respectively.

Third row represents the number of students who got full marks in the three colleges
respectively.
Example 2.34: A publishing house has two branches. In each branch, there are three
offices. In each office, there are 3 peons, 4 clerks and 5 typists. In one office of a
branch, 6 salesmen are also working. In each office of other branch 2 head-clerks are
also working. Using matrix notation find (i) the total number of posts of each kind in all
the offices taken together in each branch, (ii) the total number of posts of each kind in all

the offices taken together from both the branches.
Solution: (j) Consider the following row matrices
4,=3 45 60), 4,=34500), 4,=C34500
i t the three offices of the branch (say A) where elements

appgal:sge il: ?ht::g\irzzlgrzss?:lt the 1.1umber of peons, clerks, typists, salesmen and head-
clerks taken in that order working in the three offices.

Then A1+A2+A3=(3+3+3 4+4+4 5+5+5 6+0+0 0+0+0)

=(9 12 15 6 0)
Thus, total number of posts of each kind in all the offices of branch A4 are the

elementsofmat:‘ixAl+A2+A3=(9 12 15 6 0)

Now consider the following row matrices,
B=(3450 2), B,=34502), B;=(34502)

nt three offices of other branch (say B) where the elements

Then B,, B,, B, represe .
in the row lr’epies éntspnumbef of peons, clerks, typists, salesmen and head-clerks

respectively. -
Thus, total number of posts of each kind in all the offices of branch B are the

elements of the matrix B, + B, + B3 =© 12 150 6)
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(i) The total number of posts of each kind in all the offices
branches are the elements of matrix

(y+4,+43)+ (B, +B,+B)=(18 24 30 ¢ 6)

(10 20
Example 2.35: Let4= ( 30 40 where first row Tepresents the number of table fans

taken together from both

Solution: 5A=[ 30 1°°]
150 200

() the number ofitems immediate
(@) the number ofitems atthe end
(iii) the number ofjtems needed to

ly after delivery of items,
ofthe week .
bring stocks of all jteryg inaj) shops to 6

Solution: ()4+p= 5579

Then({4 +B)‘C+Disa
number of jtemg needed o s
Example 2,37,
B.Com. class:

Atrix in Which
all elem,
: te » Drepresents the
The followmg maty; represe:]:: :;fall Sh0ps to 6, D!

e res
ults of the €Xamination of

5678
9101112

The rows represent the three sections of the class. The ﬁrst.three'columns represent the
number of students securing 1st, 2nd, 3rd divisions respectively int tha.t order and fourth
column represents the number of students who failed in the examination.

(a) How many students passed in three sections respectively?

(b) How many students failed in three sections respectively?

(c) Write down the matri in which number of successful students is shown.

(d) Write down the column matrix where only failed students are shwon.

(¢) Write down the column matrix showing students in 1st division from three sections.

Solution: (a) The number of students who passed in three sections, respectively are
1+24+3=6, 5+6+7=18, 9+10+11=30.

(b) The number of students who failed from three sections respectivelyare 4, 8, 12.

(1 2 3
|5 6 7
9 10 11
\
(4
(d) | 8 |represents column matrix where only failed students are show.
(12

1
(e) | 5 | represents column matrix of students securing 1st division.
9

2.8 UNIT MATRIX

Consider the matrices
2 0 -1 3 -1 1
A=|51 0|, B={-15 6 -5
01 3 5 -2 2
It can be easily seen that o
AB = BA =1 (unit matrix)
In this case, we say, B is inverse of 4. Infact, we have the following definition:
‘Ifdisa sql’xare matrix of order n, then a square matrix B of the same order » is said
to be inverse of 4 if AB = BA =1 (unit matrix). |
Notes: 1. Inverse of a matrix is defined only for square matrices. )
2. If B is an inverse of 4, then 4 is also an inverse of B. [Follows clearly by definition. ]
. 1S ’ . :
3. If a matrix 4 has an inverse, then 4 is said tobe invertible.
4. Inverse of a matrix is unique.
For, let 8 and C be two inverses of 4.
Then,4B=BA=Iand AC=CA=1
So B=BI=B(AC)=(BA)C=IC=C
’ -1
Notation: Inverse of 4 is denoted by 4
5. Every square matrix is not invertible.

1 1
For,letA=(l 1]
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. . g ix Al
[ 2 x,) Solution: Consider the identity Matrix Algebra
If A is invertible, let B = ’ i
y ) beinverseof 4. 1 3 -2 1 0 0)f 1 3 -2
Xty x'+y’ 1 0 -3 0 -5(=|01 0}}|-3 0 =5
Then AB =TIimpl.ies = 5 0 NOTES
NOTES x+y x'+y 0 1 25 0 00 1)L 2
::»‘x Fy=1Lx+y=0, x+y=0, ¥ *+)"=1 which is absurd. Applying R, & R, +3R,, R; — R;— 2R, we have
This proves our assertion. -
. - 00 1 3 -2
6. The necessary and sufficient conditions for a matrix t be i i i & 2 \
tibl 1l be
discussed in next section. 710 be Invertible wi 0 9 -1ij=| 3 1 0}=3 0 -5
] ; _ -2 0 1 25 0
h} the present section, we give a method to determine the inverse of a matrix. 0 -1 4 3
Consider t;le 1de:c1tyA = Applying R; — 9R; and then R; — R; + R, we have
We reduce the matrix 4 on | i
PR e e 11n eft hand s;de to the unit matrix 7 by elementary row [ 3 -2 10 0V 1 3 -2
P yancappty all those operations in same orger ¢ th h
nghthand51deoftheabove1dent1ty In this way, umtmatmu’lsodel:)criezfactm[0nt : ol Tl s
B such that = BA. Matrix B is then the inverse of 4. =SSR SR 00 25 =13 4 2E 3
We illustrate the above method by the following examples 1
Example 2.38: Find the inverse of the matrix Applying &3 — 25 Kool
I 3 3
43 13 =2 1 0 off 13 -2
I 3 0 9 -11|=] 3 1 0|f-3 0 -5
00 1 31 9lLl25 o
Solution: Consider the identity 5 25 25
33 1 0 0\(1 3 3 Applying R, = R, + 11R;, Ry — R, + 2R,, we have
14 3|l=01 ¢ 1 4 3
134) (00 1)1 34 (1 2 1)
| 5 25 Blry 5o
Appl RS N 1 30
PPlymg R, — R, RbthenRa‘*Ra-—Rl,wehaVe - _18 36 91 . 0 -5
5 25 25
o0 ) | aofres 5 % =)
00 1) 10 1fly 34 { .
. ing R, > — Ry, wehave
Applyngl—~>R1—3R2—3R3, we have Applying &, 9
2 18)
100 7 -3 -3\(1 3 A 2
3
i 5 25 25 -
o e TS B | P 1 3 0 41113§
At = T N | 910:‘?5355_25—0
So,thedesiredinverseis A B L e,
(5 25 25
7 =3 -3
-1 1 o Applying R, —> R, -3R,, wehave
e 3 3
Example239- Find the j ! va 8 2
D78 elnverseofthem i i 3 =
[ 3 01 0f= 25 31,5 ¢
-3 0 5 001 19
Self-Instructional 5 25
102 Material . 25 0 . »
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Ztrixfﬂgel_zra ‘ So, the desired inverse is

i Apply the following elementary row operations on 4. Matrix Algebra
( , 2 _3) . R,—>R,-2R,, R;—>R;-3R,
NOTES 5 5 and obtain a new matrix.
2 41 12 3 4 NOTES
5 25 25 3 3 3 6
3L | B=10 -3 -
L 5 25 25) : ; 0 -5 -7 -8
1 2 - 1
Example 2.40: Find the inverse of the matrix | -4 -7 4 Apply R,—> -3 R, on B to get
| 495 1 2 3 4
A = 1 2
Solution: Consider the identity C g _15 L2
12 -l Loyt 24 R,— R,+5R,on Cto get
{—4 . 4} ) [0 ; 0][_4 s 4] A'pply 3 1 3.2 32 4
-4 -9 s5) \oo 1)l-a -9 5 |
Applying R, = R, +4R,, R;— R; +4R,, we have : 00 -2 2
1 2 -1 100) 1 2 - i The matrix D is in Echelon form (i.e., elements below the diagonal are zero).
- = | . .
0 1 0{=|41 0|-4 -7 4 | We thus find elementary row operations reduce Matrix 4 to Echelon form. .
0 -1 1 4 0 1\-4 -9 5 : In fact, any matrix can be reducedto Echelon form by elementary row operations.
i : | The procedure is as follows:
Applying R, - R, + Ry then R, — R, + R,, we have ‘ Step L Reduce the elementin (1, 1)th place to unity by some suitable elementary
110 5011 2 -1 TOW operation. .
0 1.01=14 1 off-4 -7 4 | Step IT. Reduce all the elements in st column below 1st row to zero with the help
A R | of unity obtained in first step. el
) . ita
Applying R, — R, - R,, we have 1} Step III. Reduce the element in (2, 2)th place to unity by suitable elementary row
] Operations, _
;oY A | Step IV, Reduce all the elements in 2nd column below 2nd row to zero with the
g o il RO | 4 | help of unity obtained in Step ZI/.
01 8 1 1jl-4 -9 5 | Proceedin g in this way, a0y matrix can be reduced to the Echelon form.
So, the desired inverse is s 10 5
b-l Example2.41: Reduced=|-1 12 "2] to Echelon form.
4 10 1 -5 2
51 Solution;
| Step . Apply Ry > Rytoget |
29 MATRIX METHOD o SOLUTION | L T2 -2
SIMULT OF : - -
ANEOQUS EQuU ATIONS | 3 =10 5
This section will discuss hoW Step II. Apply R, —> Ry + Ry, Ry —> R;— 3R, to get
2.9 . taneous Cquations ysin, . 1 =5 2
9.1 Reduction of a Matriy ¢ 8 matrix method. ; o 7 0
0 Echelop Form j 0 5 -1
. 1234
Consider T121 3, Step III. Apply R, —> ~ R, to get
Self-Instructional 31 P 411, pply 2 7 2
104  Material 2 4
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1 -5 2
0 1 0
0 5 -1

Step IV. Apply Ry — Ry — SR, to get

Step I11. (2, 2)th place is already unity.
Step IV Apply Ry — R, - R,, R, —» Ry~ R, to get

11 2 o
01 o0
01 ~1
00 -2 o
Step V. Apply Ry — (— 1) R, to get
11 2 o
01 o
00 1
00 -2
Step VI. ApplyR, — Ry+2R; to get
11 2 2
00 1 1
0 0 ¢ 0

which is a matrix in Echelon form,

1 -5 2
[0 1 0] which is a matrix in Echelon form.

0 0 -1
22 4 4
42:Reduced =2 > * °| o Behel
Example 2.42: Reduce 3 4 5 ¢ |t Echelon form.
4 5 6 7
Solution:
Step 1. Apply Ri—)%R, to get
112 2
2 3 435
34566
4 56 17
11 2 2
01 0 1
01 -1 o
01 -2 1

0 1 2 3
0 2 6 4

Example 2.43: Reduce 4 = 03 93 to Echelon form.
0 4 13 4

Solution:

Step I. Since all the elements in 1st column are zero Step I and Step II are not
needed.

1
Step III. Apply R, = 5 R, t0 get

01 23
01 32
03 93
0 4 13 4
Step IV. Apply Ry = R, —3R,, Ry Ry— 4R, toget
012 3
013 2
000 -3
00 1 -4
Step V. Apply R, <> R, to get
o012 3
013 2
00 1 -4
000 -3

Step VI. Since elements below (3, 3)rd place are zero. Step ¥7is not needed.

Hence 4 is reduced to Echelon form.
2.9.2 Gauss Elimination Method

Suppose we have a system of equations in the

4
aq b 4 * _
A= a; b o x=[y] B-[dz

Y B R

matrix form AX= B, where

a3
The matrix
aq b o a4
Cc=[4/Bl=| & b, & d
a; b 6 ds

. ions. Instead of writing the
: . ven system of equations. Inste :
is called the augmented matrix of the grrln entary row transformations to it, we sometimes,

. ingele . . .

solution, We explain this method by considering the following example.
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Suppose we have the system of equations

x+y+z =7
x+2y+3z =16
x+3y+4z =22

Which in the matrix form will be AX= B, where

111 x 7
A=11 2 3|, x=|y| B=|16
1 3 4 z 22

Augmented matrix of this system of equations is

11 1}7
1 2 3116
1 3 4|22
Which becomes
11 1]7
01 2f9 [R
2—)R2*R R, - -
1 2 315 PE A &)
11 1]79
01 219
or [Ry - R, -2
0 0 | 3> R3-2R]
HencewegetZ=3,y+22-_-9,x+y+z=7

Giving us the solution x = Ly=3,,=3
Thus we notice itrequires s ’
: A ame o i .
way of expressing the sy thing Perations as were yseq earlier. It is only a different

tion Meth,
Some eéthod of 5o
times we proceed further angq reduce the augmented m thnnf “duations
a
10 <jp to
01 2 9
R -
0 0 3, (R >R -p,]
,1 0 =2)
01 30p
0 0 ~1 “3J [Rzﬁ)RZ"R]
(1 0 o 1
01 3
‘ \0 ~1{<3
(1 0 o[y
or 0 03
' 0 0 3

and the solutionisx=1,y=3,z=3
This method is called Gauss Jordan Reduction.

e . if

Notes: A matrix is said to be in row echelon formif, '

1. All rows in the matrix which consist of zeros are at the bottom of the matrix (such rows
may or may not be there). . .

2. The first nori-zero entry in each (non-zero) row is (called the leading entry).

i ing some non-zero entry) then
d (k+ 1)th rows are two consecutive rows (having :
* :liektll;:;ing( entry) of the (k+ 1)th row is to the right of the leading entry of the kth row.

Thus. the Gaussian elimination method requires the augmented matrix to be put in the

row echelon form. . .
If in addition to the above three conditions, the matrix also satisfies.

ies in that column are
i ing entry of some row then all other.entnes int
b c?l!llig:xnvtg r;:ﬁ; z:(ti-li.;cgi: inu;yeduced Echelon form and this method is called Gauss-
ZEero.

Jordan reduction.

i ires few extra steps than the Gauss

i -Jordan reduction requires fey : .
lim\iZZttih usrrr;itlzfi tg::tctifeujs in the former case the solution is obtained without any back
e on .

;:u:::lnu;t::;. 44: The equilibrium conditions for two substitute goods are given by

SR—2h =15
-R +8R = 16
Find the equilibrium prices ions in the matrix form as
Solution: We write the given system ofequations il
s 2R ) B (15) ‘
(-1 s \p) \6
The augmented matrix is
. 3 1 -2/5 3
S ~(1 ‘2/5|6)~ 0o Bl
(_1 g 16) \-1 8 5
roR R, R +R
5
Solution is then given by

2, -

5
- P=—
ie., pl_4and 272

company uses three types of steel S}, S,, S, for producing

Example 2.45: An automobile Steel requirement (in tons) for each type of car is given

three types of cars C;, Cp» C3:
as
G G G
s 2 3 4
s, 112
s; 3 2 1
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Determine the number of cars of each
tons of steel of three types respectively.

Solution: Su
Then ppose x, y and z are the number of cars of each type that are produced.

type that can be producd using 29, 13 and 16

2x+3y+4z =29
x+y+2z =13
Ix+2y+z =16
This system of equations can be put in the matrix form ag
2 3 4\(x 29

L1 2fyl=[13
3 2 12 lis

Augmented matrix i
2 3 4{29) (1
2 13} (1
\ [ 2
3;];.\3~23429 010\??
16 2 1 1% 0 -1 5|23
R 5 |
o ) e R3-«)R3—3R
S AR i) 3
L =20
R3“-)R3+R
We thus have X+y+2, ‘-213
V=3
[ —hsz:—h
giving z=4,y=3andx~220
the requireq Number of ¢,
Example2.46: 4 e

firm
M, and M, before COHI:;?;‘_I%S two Produggg
per hour. A, can progy, 00 31, can, Plangp s ik
and P ifthe time gygiy L M5 of i, CLUCE eithe ] - 1 tHrough two mach!
Solution: § Vailable i 12hg erproduct units of P, or 15 units of 12
* SUppose dajjy i

el
urs on per h()ur F ) ) f j
Uetion of p ., ! Nd 10 by, Ind daily production ©

x .

Le., x+y=150

—y=-90 orthatx=60,y=90 (daily production of P, and P,)
Example 2.47: There are three types of foods, Food I, Food IF Food I]I FoodI con_tains
[ unit each of three nutrients A, B, C. Food II contains 1 unit of n}lment A,‘2 units of
nutrient B and 3 units of nutrient C. Food III contains 1, 3 and 4 units pf nutrients A, B,
C. 7 units of A, 16 units of B and 22 units of nutrient C are required. Find the amount of
three foods that will provide these.
Solution: Suppose x, y, z are the amounts of three foods to be taken so as to get
required nutrients.

Then x+y+z =17
x+2y+3z =16 .
x+3y+4z =22

In matrix form, we get

1 1 1)=x 7

1 2 3| y|=|16

1 3 47z 22
Augmented matrix is

which givesz=3,y+ 2z=9,x+y+z=7
or that x=1,y=3,z=3
is the required solution.

2.10 RANK OF A MATRIX

Suppose we have a 3 x 4 matrix

1 2 3 4
15 6 7 8
9 10 11 12

If we delete any one column from it we get corresponding 3 x 3 submatrix. The

determinant of any one of these is called a minor of the matrix 4. Thus

567568578678

; are called minors of 4. These
o 10 11l ’lo 10 12/ [0 11 12 10 11 12

are 3 x 3 determinants (sometimes called 3-rowed minors).

Similarly, if we delete any one row and two columns of 4, we get corresponding
2-rowed minors.
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Deﬁnition:LetAbeanmxnmatrix We sa isri
' : . yrank of 4 is rif (;) at least i
of order r is non zero and (if) every minor of order (r + Dis zero( .) Fishonemior
Example 2.48: Find rank of the matri

1 2 4

sinceitis 3 x4 matrix, it cannot have a
Solution: Now 3 x 3 minors of this matrix

are
124124124_1_2
'1'2'4,‘1‘2‘4248248
248—3—6_9’3 ’
9

Againsincea2 x2 minor

8

-9 #0
We findrankis>,2, i, rank of 4 js 2

Example 2.49: Find rank of the matrix .

0 i -

Notes: 1, 1; =
2 If is:jymseethat ifthe given gy
~l. s eVery rx, detenm ) lSanmatnx
. If3 anon_Zeror T s l m' n)
Xpr dete . €8s
:. iankomm Terixs rm:am 1060 Fank i greqge * oqual to
- Hevery rro . zero, ore
2Zer0, Wed minor jg 280 they Qual gy,
Onecan tha SVery higher order
In view of th; trank ofg ... . Would gy
given mau-it;1 tsorm € Procegg ofﬁ?;j;emams challgedb Omatically be
form 8 rank Vel
Yele Can be gjm1: e
Tetary roy oper Plifieq W:tgrry Operations
18 and e, ﬁnSt reducef ﬁe
ank of'the

new matrix which is the rank of the original matrix. We illustrate this through the following

examples:
Example 2.50: Find rank of the matrix

1 =3 2
2 -6 4
Solution: We have
1 =3 2 1 00

A=|3 9 6| [3 00 Using[

2 6 4 200

SorankofA4is1.
Example 2.51: Find rank of the matrix

00
00 Using[
00

¢, —C,+3¢
C, -G -2C

R, — R. 43R,
Ry — Ay —2R,

2 3 -1 -1
1 -1 2 -4
A=16 1 3 =
6 3 0 -7
Solution: We have
2 3 -1 -1} (1 -1 =2 =4} (1 -1 =2 4
| -1 =2 4| |2 3 11 [0 5 3 7
Ad~le 1 3 -2l~|6 1 3 =2|~|0o 7 15 22
oo o o) loo o o0)loo oo

R,->R-R-R-R R OR

1 2 2 4) (1124
0 35 21 49 0 35 21 49

~lo 35 75 110|~|0 0 54 6l
oo o 0) oo 00
1 -1 =2

Here [0 35 21[#0
0 0 54

Hence rank of this matrix is 3.

Thus rank of 4 is 3.

R,>R,~2R R,—>R,-6R,
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| Matrix Algebra Example 2.52: Find rank of the matrix & a ... @, Matrix Algebra
. . =
] 5 3 14 4 4 [% G - a,,,]
4=l0 1 .2 1 th i b
NOTES . en det 4 will be denoted by
) a1 42 QG NOTES
Solution: Apply Rl TR R3’ then ‘ Ay Gp2 Gy
L2 0\ (1 o, ? Notes: 1. detA or|A |is defined for square matrix 4 only.
A [0 1 9 l] [0 L g 0] 2. det A or |A| will be defined in such a way that 4 is invertible if
~ ~ 1 detA#0.
53 14 4 B -
0 8 44 YR~ R, SRI 3. The determinant of an n x n matrix will be called determinant of order ».
1 -1 2 o | 2.12.1 Determinant of Order One
~10 1 2 .
| 00 -2 4 Using R >R _gR Let 4 = (a,,) be a square matrix of order one. Then det4 =g,
: ) ) 3 ition, if 4 is invertible, then a,, # 0 and so, det A = 0. Also, conversely if det
: Since thi . By definition, if 4 is mve'rtl. ,thena,, s . \ y
D ' e fisreduced matrx has non-zero 3-rowed miny A#0,thena,, #0andso, 4 is invertible.
= I -1 2
t 2.12.2 Determinant of Order Two
) 01 2 )
‘ "o n LetA=|“" %2 | peasquare matrix of order two. Then we define
its rank is 3. Also there g 10 4-rowed ay ap
also3 minor. Hepgee rank of
OI given matrix is det 4 = ay,a5; — @139,
RMAL FORM OF A MATRIx For example, if 4= (3 4) thendet 4 =4-6=-2
said to be equa] ;- ; ay ). . .
()) 4and B are of same order €qual if: Suppose 4 = (:: a;) is invertible.
(#) Correspondin - . .
: g elements i sts a matrix
matrices are equa], 4 and B are Same, For €Xamp| Theaby dofiniion e
ple, the following two B= ( x J’) where x, y, Z, w are complex numbers such that AB=I= B4
zZ w
| The above identity implies,
1 aux+a122=1, a“y+a12w=0
; ax+ 0222=0, a21y+a22w—l
| which in turn implies
| Axmag by
f Az=—a,, AW=4y;
|
| where A = a,,a,, — 912921 . _ :
| Clearly A 0, for otherwise x, y, z, w will be indeterminate. This means that det
| %0, Conyorsely, if 4 is a square matrix of order 2 such that det 4 # 0, then A is
? Invertible as
- —-a __—ay = ﬂ.l.
| x=Z, y=— T YT
{ will determine B uniquely satisfying 4B =1 =B4
Self-Instructional t
114 Material |
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Matrix Algebra
N Matrix Algebra 2.12.3 Determinant of Order Three ayp a3 ay
] Then we define det 4 = aj; Xdet| a3, a33 ay
! aq; a; a3 Gy A4 Gy
' Let A =|ay ay ay|bealx 3 matrix, ‘ NOTES
NOTES as azy 033 (azl a5 ar
Then we define det4d= al 1(022033 - a32a23) —ap; X det az) a3z Gy
= 01291933 — ay,ay,) gy ai au
+ ay3(ay,83; - a3,a,,) )
The above definition may be explained as follows: an an 9a
The first bracket is determinant of matrix obtaj ) + a3 xdet|a) g Ay
column. ined aﬁe"emm’mg first row and first \d41 Qg G4
The second bracket is determinant of matrix obta;
ob .
second column, faimed after Temoving first row and ay 4 93
The third bracket is determinant of matgiy gy ~d X et a5yl %3
o . * | third column. obtained after Temoving first row and dn G2 94
! The elements before three brackets
| X are first, sec : | : ) -
I first row with alternate positive and negative signg ond, third element Tespectively of Note: A determinant “ lI:lz of order 2 can also be obtained when we eliminate x, y from
. ap
123 is non-zero. Similarly determinant of order 3 can
- _ . fx, y is non-zero. Similarly
Forexample, let 4 =| 4 5 6 | g,x;b!y—O, ay +.bzy.—0prov1<;:(¢)i oneofx,y
7389 : ¢ obtained by eliminating x, y, z from,
by+cz=0
T a)x+0o, 1
T;fnﬁfsfzzkt‘ the d apg+by+cz=0
€t the eﬁniti 3 . =
onofdet 4 ig determinang of ax+by+c;z=0
(5 6) 45 ‘ Provided one ofx, y, z is non-zero.
. T43-48=_ : .
The second brack 2 3 : 2125 Properties of Determinants
cond bracket is determ; . . .
Tt of The following are some of the imortant properties of determinants:
(4 6) 36 L. Iftworo (or col )are interchanged in a determinant it retains its absolute
79 =36-4)=_ 6 . WS (O] .llllms.
. o | Value but changes its sign.
The third bracket is determinant of | a0 as b b b
' | ) aq @
q, 45 | ie, b b B|=-la 2 B
7 8 =32~35=~3 o ¢ o q ©€ (47} . '
= i ant rem
. So,detd = 1G-3)-2(- 6)+3(~3)=_ 3+1 | 2. Ifrowsare changed into columns and columns into rows the determin ains
ItcanbeseenthatlfAlsas 2-9=9 | unchanged
A#0 quare Matrix 0f0rd .
r 33 then e 1 a a] bl cl
2.12.4 Determinang S Vertible it gef | o b o
e ant o e ! ie. = (4
f Order Four ’ % gz 2 a b o
a < . . .
TR T erminant it vanishes.
% ay g, : 3. Iftwo rows (or columns) are identical ina det
a |
I-oet A = 021 022 a23 024 | al az a3
31 a
ay, 032 a33 034 ‘ i'e.’ @ a a = 0
% ay g, |
Cl Cy 6'3
Self-Instructional . - '
116 - Material
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! Matrix Algebra
| . . - . e
| Matrix Algebra 4. If any row (or column) is multiplied by a complex number £, the determinant so Applying €, > €, - €, G > G- C
& obtained is k times the original determinant, | | o o
. (] ay as al az 03 = a b -a c—a
- NOTES
ie., Kby kb, kby|=k|b b, b b+c a-b a-c
NOTES
a & g a 6 g
5. Ifto anyrow (or column) is added k times the corresponding elements of another b oo
| row (or column), the determinant remains unchanged, ‘ =(a-b)a-c)| a -1 -1|=0,byproperty3
| ' l
. G kb ay+kby ay+kby| g a a bre 1
ie., b by b =\t 5 b Example 2.54: Show that
(4] %) C3 q Cy C ] b bec c-a
6. Ifany row (or column) s the sum of two or more elements then i | 2 ] —p| =
, can be expressed as sum of two or more determinants, ’ the determinant boe c- : : i -0
: c—a a-— -
‘ ) ) a + kl a +k2 a + k3 a a a; kl k2 k] |
i ie., = ‘ a-b b-c c—a
| b by by blb2b3+b|b2b3 ; Solution: |b—c c-a a-b
| a 13 C a ¢ ¢ 9 ¢ ‘ olution: Y bc
I -1 Ifdeterminantvanishesbyputﬁng x=a, then (x—q) is . c-a a- -
5: Lo )is a factor of the determinant. l Applying R, - R, + Ry +R;
N \ 0 0 0
: ©8s|a b c|has(a-p)ag one of its factg ; |
TS (by putting 4 < | =|b-c c-a a-b
2 2 2 €a=b, first and b-c c-a
a c . 1‘ e—a a- b b -C
second columns become identical), | ~0
8. Ifkrows or columns become identical b i = y
of the determinant, YPUtng x = athen (r~ayk=15 afactor ‘ Example 2.55: Prove that
Forenample conside it olowing determingy, | o b o|=(a-BE-0-9
cl=(a-
B+ c)2 a® &2 ‘ az 2 2
2 ‘ a b ¢
b (c+ 0)2 b? | 1 0 0
2 '
e e ows oo Solution; | 4 o|=[a b-a =
e Tows become identical ty : ! i 2 pPogt F-d
ofthe faotorsofthe given detemmingg 59 * 5+ =085, @+ oy j o I L c
Example 2.53: Show that one | Applying C, — C,— Cy and C3 = G = (1
1 a p+ c ! 1 0 (1)
I'b c+al =9 ; = p-ac-a|a !
1 ¢ g+p at b+a c+a
: Solution: Now ? —(b-a)c—aNcTa- b-a)
1 —(b-a)c-a)c—d)
1 Z 2:0 ‘: =(a-b)b-9)c-a)
a !
1 ¢ g4p | Example 2.56: Prove that
‘ 2a
ooy : a=b-c 2a 2 |=(@+b+c)
= | 2 b b -c—a
b a b ¢ [mter i 2 20 c— a— b
. C
Self-Instructional -!:\c Cta g4 b ) Changlng rows and Co} ;
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a-b-c 2a 2
Solution: | 26 b-c-a 2
2c 2c c=a-b
ApplyingR, >R, +R,+R,
a+b+c a+b+c a+b+c
=| 2 b-c-a
2 2c  c-a-b
1 1 1
=@+b+0)|2b b-c-gq 2
2C 2c c_a_b

Applying €, - C,~C,, ¢, C;-C

1 0 0
=(a+b+c)|2p (a+b+c) 0
2c 0 ~(@+b+c)
=(a+b+0)(a+b+c)2=(a+b+c)3
I+a ] 1
Example 2.57: | ; 1+p =abc(1+i+i+l)
I 1 I4c a b e
i+1 L1
l+a 1 1. a a a
Solution: 1 1+b =abe| 1 1+l 1
S T P b b b
1 1 1.l
[4 c +;
Applying R, >R, +R,+R
1 1 1 1
l+—424 2 .11 1
alb+c 1+a+-+- 1+;+%+1
= abc = 1+1 1 €
i K s
c ; l+%
1 1 1
=abc(l+l+l+l)l 1.1 1
a b cjlp +3 Z
1
< - l+l
Applying C, - ¢ _ ¢
852G~ Cs*)Cs‘Cl
1 14"":0 0
""bc(1+‘+~ LA] R
a pt3 3 1o
1
(4 1 .

1+l+l)
=abc(l+; P

Example 2.58: Prove that x = 2 and x = 3 are roots of the equation

-5 2
x-3 —0
-3 x
x-5 2 o
Solution: Now | _5 =

= x*-5x+6=0
= x-3)(x-2)=0 . .
= x=3.x=2 areroots of the given equation.

2.13 CRAMER’S RULE

The system of equations A
a2x+ b2y+czz=m2
a3x+b3y+c3z=m3

has the unique solution

m q
mhAl e m
m b & o m
= 22 VTR 6
aq b « o b o
a b o . b o
a by ¢

i is zero.
No solution exists if the denomma,to; 1516.
Example 2.59: Solve by Cramer s Rie:

x+6y-z=10
2% +3y+3z=17
3x-3y-2z=-9
10 6 -1
17 3 3
-9 -3 -2 = -s-:: =1
Sollltion: x .—_'__T—-—g—':‘i‘_ 96
2 3 3
3 -3 -2
1 10 -1
2 17 3
3 "9 —2_ =12-2- =2’ z=
y ="‘l—'3—':1— 96
2 3 3
3 -3 -2

z=

2]
a
az

a,
as

W RN =W N -

Bo Ol P\ g

m
my

my

q
C
%]
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'Matrix Algebra 2 -1 1 2 Solution: Mam’xAIgebra.
Example 2.60: Expand 1 2 0 -1 5 -6 4
_21 3 4 1 Here, A=|7 4 -3[=419%0
NOTES o 2 1 6 NOTES
2 -1 1 2
- 15 -6 4
Solution: | 1 2 0 |, s 4 S T D,=|19 4 -3|=1257
"l 34 1| 3 4 1-¢-D|2 -4 I+1-2 -3 i 1 w 1 6
1 1 o ITH 12 L1 o2 |14 2
5 15 4
1 2 o D,=|7 19 -3|=1676
-2|<2 -3 4 2 46 6
I -1 1
=2(—11)—(—1)(_11)+( 1 5 -6 15
. —ID+10)-2(=11)= =
. 1) =— =7 4 19|=2514
?;ls;eadloiexpandmg, 1L1s better to use the properties of determinangs ( : ) .22 D,
col. tocol.3,andaddtvv1cecol.2tocol.landcol4ananh -In this case if we 2 1 46
- Ty ave
0 -1 0 o x _y _z _1
5 2 2 3 5 2 3 Hence E—E 53— A
-8 -3 -7 -5 =_(—1) -8 7 -5 =_1l 2 3 1257
-1 -1 0 o =10 o -7 | =1L = T
3 2 =_.=L76=
E le 2.61 SN A 4 !
Xampe o :Ify+]_ y y|l=0 .
23+l 22 ’glvenx¢y¢ZShOnyz_ 1 and z=%=%=6
F4
\ Solution: In this, the first co} ) | Example 2.63: Solve with the help of determinants
| mn can be split as follows. | xty+z=9
1 3
l x3 xz 12, 2x+5y+7z=352
LHS = |7 V" yl+ll p2 2x+y-z=0
2
Z o2 o2, 11 1
Solution: HereA=|2 5 7|=-4=0
1 -1
X x 1 1 x2 X ) 29 .
W27y 141 L2 x° x
; Y ¥ =Gyz+yy 2 D,=|52 5 7|=-4
z ] 22 z ) Y 1 =0 0 1 -1
+ -
. Gz +1) (x y)(;»-z)(z_x)=0 Z oz {9 1
INCex#y sz Wz=_1 | ; 1
Example 2.62: Solve with the helpogg } D,= 3 53 M
5%+ 6y + 4 s Clerminapgg | 2 9
: 1 1
7x+4y+3z=19 : _
2x + and D3= 2 5 52| =-20
y+62*46 ! 2 1 0
_D Db _
. Hem S S S
: Self-Instructional ‘
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2.14 CONSISTENCY OF EQUATIONS

In this section we discuss a method to solve
elementary operations.
Consider the equations
Q¥ taytapz=>bh
G¥taypy+apz=b),
B+ aypy +apz=b,,
These equations can be also expressed as

asystem of linear equations with the help of

a1 ap a3\ x b“

“1 4 ay|ly|=|by,|ie.Ax=p
41 a3 ay )z by,

where A is the matrix obtained b

. . Y writing the coeffjc; .
respectively, and B s the column matrix consisting of constamnelt;t?n()f xéy ’fz !n three rows
earh\::lre arzc(ilut;e the IlnatnxA to Echelon form angd write the equat; > & veneqations
m’ms oo :1111 ezo ve. This will be made clearin the followin. eons i1 the form stated
CANAONS 18 a”ed consistent if and only if there exist 2 commeamples. A system of
otherwise it is called inconsisten; Mmon solution tg 4 ofthem
Example 2.64: Solve the system of equations
X~ 3y +z=_ 1
2x + Y—4z=_ 1
1 -3 (=1
Solution: Let4=|, L -4| B=|
and assume that there exists a matrjx
x
X= y
¥4
such that given syster
YStem of equatiopg becomes,
=B
1 -3
Then 2 )(x -1
6 =1
Applying R, - p R 7
- J

. 1
Applying R, = = R,
1 -3 1 -1
6 ¥ 1
o 1= y]= 7
0o 11 2J\? 13

1 -3 1
6| 1
l —— e
0 7 J’]

7
80 |\? 80
\0 0 7/ k 7 7

Thus we have reduced coefficient matrix 4 to Echelqn form. Note that each
elementary row operation that we applied on 4, was also applied on B simultaneously.

From, the last matrix equation we have

x—3y+z=—l
_Ez =-l-
ym7t 79
80 _8
7 7
So, z=1ly=1x=1

Hence the given system of equations has a solution, x=1,y= 1,z=1
Example 2.65: Solve the system of equations
2x—-5y+7z=6
x—3y+4z=3
3x -8y + 11z = 11, if consistent.

2 =5 17 6
Solution: Letd=|1 -3 4|,B=| 3
3 =8 11 11

So, given system of equations can be written as

2 =5 T\(x 6
1 -3 4||ly[=]?3
3 -8 11J\z 11

Applying R, <> R,
; ‘z ‘; : _ 2 (interchanging row 1
3 -8 1)lz 1 with row 2)

Applying R, —> R, 2R;, R3 3R,
1 -3 4)\(x 3
0o 1 -1}|ly{=|0
0 1 -1)\z 2

Matrix Algebra
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Applying R, > R,-R,

Since 0 =2 is false, the given
system of equations is inconsistent,
Example 2.66: Solve the system of equations

system of equations has no solution. So the given

x-l-y +z=7
x+2y+3z=16

11 1\(x
12 3|y
1 3 4|,

APPIYin8R2—>R2—R1,R3->R3— R,

O O =
[
W N e
N e
] i
oo - S a

=

Solution: We havye

Applying R, &> R,—R|, Ry > R;—R,, R,—>R,—R, Matrix Algebra
1 11 2
o1 2|7 |3
Then 02 5|7 |9
z NOTES
0 39 19
ApplyingR3—->R3—21?2,R4—->R4—3R2
(1 1 1) (2
X
01 2 _ 3
00 1 [2’ 3
0 0 3) 10
ApplyingR, > R,-3R
A I (1 1 1) (2
X
01 2 _ 3
o0 1||7] |3
¥4
0 0 0) |1
= x+y+z=2,y+22=3,z=3,0=l
This is absurd. So the given system is inconsistent.
Example 2.68: Solve the system of equations,
x-3y-8=-10
3x+y-4z=0
2x+5y+6z=13
Solution: We have
1 =3 =8)(x) -10
3 1 -4}ly|= 0
2 5 6)\z) 13
1 -3 -8Y(x) ([-10
0o 10 20|{y|=]| 30
0o 11 22){z) 33
. |
Applying R, = I R,
1 =3 =8)(x) -10)
0 1 2r»i= 3
o 11 22)\z) 33)
| 1 -3 =8)(x) (-10)
0 1 2(xy|= 3
0 0 0} Z) 0)
= x-3y—-8=-10
y+2z=3
Let z=k=>y=3-2k
and x=9-6k+8k-10=2k-1
So, the given system has infinite number of solutions of the form x = 2k - 1,
Y =3 -2k, z= k where k is any number. SelfInstructional
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Example 2.69: Solve the system of equations,

x+2y+3z+4w=0
8x+5y+z+4w=0
Sx+6y+8+w=0
8x+3y+7z+2w=0

Solution: We have
12 3 4\(x
8 51 4|y _
568 1|
837 2)\w
ApplyingR, — R, - 8R,, Ry — Ry-5R,, R,
Y23 4\(x
= 0 -1 -23 -28 y _
0 -4 =7 -19 z|
OB 17 -s0flw
Applyinng_)_llle
I 2 3 g
23 |l*
0 1 2 4
= ITREETH | kg I
0 -4 -7 1|2
0 -13 -17 _30} w
Applyi
ppyng"'_?R3+4R2’R4">R4+I3R2
1 2 3 4)
o1 B 28,
00 1_5 _91 =
11 11 z
0 o 112 34f\w
_ ST
Applyng?'_)l‘le
2
o1 B ml
00 ;9|7
15| ¢
0 0 112 34w
Applyingr = 112, 1 1
TR
(1
2 3 &
01 By
= 11 ﬁ x
15| %
0 0 =12 10864 |\w)-
11

QO O O

QO O o

(=R — I — )

(=R~ — e —]

= x+2y+3z+4w=0
+§z+§w 0
TR
97
-—=w=0
z 1SVV
w=0
= x=0,y=0,z=0,w=0

Thus system has only one solution, namely x=y=z=w=0

2.15 SUMMARY

o The best way to represent a vector is with the help of “directed line segment.
Suppose 4 and B are two points, then by the vector 4B, we mean a quantity
whose magnitude is the length 4B and whose direction is from A4 to B.

e A and B arc called the end points of the vector AB. 1 particular, 4 is called the

initial point and B is called the terminal point.

o The vector which has same magnitude as that of a vector a, but has opposite
direction is called negative of a and is denoted by —a.

e Let a and b be any two vectors. Through a point O, take a line OA parallel to the
vector a and of length equal to a. Then OA =a[by definition]. Again through 4,
take a line 4B parallel to b having length b, then AB=b.

e By a—b we mean a + (-b), where —b is inverse of b and is also called negative
of b as defined earlier.

o Direction of the vector (m + n)a is same as that of a definition as m + n> 0. Also
directions of the vectors ma and na are same as that of a and, therefore, direction

of ma + na is also same as that of a.

e Let O be a fixed point, called origin. If P is any point in space and the vector
OP = r, we say that position vector of P is r with respect to the origin O and
express this as P(r). , ‘

e If a and b are two vectors then their scalar product a . b (read as a dot b) is
defined by,

a.b=abcosO |
Where a, b are the magnitudes of the vectors a and b respectively and 0 is the

angle between the vectors a andb.
i i f one of the vectors with
1e product is defined as the dot product o
T e ther two. Suppose a, b, ¢ are three vectors. Then b x ¢

duct of the 0 .
;flsl: ;ﬁi I:‘:ctzr and thus we can talk of a. (b x ¢), which would, of course, be a
scalar. This is called scalar triple product of three vectors.

* A vector triple product is defined as the cross product of one vector with the

cross product of the other two.
A product of the type 8 X (b x ¢) is called a Vector Triple Product.

* An elementary row operation on product of two matrices is equivalent to
elementary row operation on prefactor.

Matrix Algebra

NOTES

Check Your Progress

8. Define the term

transpose of a
matrix.

9. What do you
understand by the
addition of two
matrices?

10. State the condition
when any number &
is said to be scalar.

11. When a system of
equations is called
consistent?
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® It means that if we make elementary row operation in the product 4B, then it is

equivalent to makin, ioni
vl g same elementary row operation in 4 and then multiplying it

o Ifkis any comp}ex 1.1umber and 4, a given matrix, then kA is the matrix obtained
from 4 by multiplying each element of 4 by k. The number k is called Scalar

* If 4 is a square matrix of order n, then a .
said to be inverse of 4 if 4B=B4 = ](unistq :lif;iil;am B of the same order  is

2.16 KEY TERMS

1 : . vect, s qe .
magnitude and direction are fixed byt positioniin spg:;eo'r a sliding vector if its
* Inverse of a matrix: Inverge of a matrix is de 1snot fixed,

: fined

« Eoui - . only for i
et matrics: oo maics A and B o e e
ofclementany e ;:ns ob&qned from the other byperfg) er are said to be

* Rank of a matrix: - Equivalent matriceg have the Moo enc®
Raskofam The rank of matrixis te g S$ame order or rank

: g minorsof that matrix. Rank of 3 S orth

Aisanmxp matrix then R(4) orp(4)<

€ orders of a]] the non-
* Determinant: If 4 i a Square matrix with
e

Matrix is denoteq
Minimum of . n)as R(d) or p(4). I
numbers, then determinan .
dorl 4|, Remember thy. ts of 4 is some

ntries from the fj
comp] eld of ¢ lex
determinant of detd or| 4 i deﬁnelziexnumber i oy
terminant of ap, 5, X nmatrix is calleq dete .

fors S denoteq by det

. e
Iminant oforder':XA only and the

2.17 AN ¢
‘ SWERS TO ‘CHECK vouR PROGRE
€ line representing ; s the ‘ b
2

.Itisalso calle

scalars (not all zer, 53,2 tsuch g darecoplananf -
ID+ze+4d= 0 Y1ifwe can find
And’ x +y +z+ =
6. Ifaand p
are tw,
deﬁlled by, 0 Vectors then thell' s Calar

Where g, b are the magnitudes of the vectors a and b respectively and 0 is the
angle between the vectors a and b. Dot product of two vectors is a scalar quantity.

7. A Set Shaving two or more vectors is linearly independent if there is at least one
vector in S that can be expressed as a linear combination of the other vectors in

S.

8. Let A be a matrix. The matrix obtained from A by interchange of its rows and

columns, is called the transpose of 4.

9. If 4 and B are two matrices of the same order then addition of 4 and B is defined

to be the matrix obtained by adding the corresponding elements of 4 and B.

10. Ifkis any complex number and 4, a given matrix, then k4 is the matrix obtained

from A by multiplying each element of 4 by k. The number & is called Scalar.

11. A system of equations is called consistent if and only if there exists a common

solution to all of them, otherwise it is called inconsistent.

2.18 QUESTIONS AND EXERCISES

Short-Answer Questions

. Define the term vector.

. When two vectors are parallel?

. What is vector law of addition?

Write about product of two vectors.
What is scalar triple product?

. What is vector triple product?

What is linear dependence?

When a vector is linearly independent?

© N YA W~

SO
DN e
- O

9. IfA = { ] ﬁnd a”’ alZ’ 0139 azp a22’ 023, a3ls 032, a33

10. Which of the following matrices are scalar matrices?

2 00 000
10 ..51) o 2 0 .o oo
(i) (0 1) (") (0 5 (i) [0 0 2] @) [0 0 0]
11. Which of the following matrices are triangular matrices?
01

1 00 123 2 o o
of 1Y) wfid wlel e

Long-Answer Questions

1. For any vector a, show that, «(-a) =a.

2. Show that the sum of three vectors determined by the sides of a triangle taken in

order is the zero vector, Generalize this result for any closed polygon.
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5. Using vectors, show that the line j

3. fGisthe centroid of the triangle ABC and O/is any point, show that.
04 + 0B + 0t = 3 08
4. ABCDEF is a regular hexagon. Forces AB> 3¢ b, AEand fF actatA.
Show that their resultant is 3. In other words, show that,
BT +ab+ g+ =

. ; joining the middle points of two sides of a
triangle is parallel to the third side and is half of jt.

6. Show that,—(a+b)=—q _p,

=(012) B=(123 (23 4
2 3 4) 3 4 5 C-(4 s 6]Computethefollowing:
@ 4+B)+C () (4-B)+C (iii

\ A-B-

(%) 24+3B (M4+2B+3C ’ ¢

{1 2 4 5
9. If 4= [3 4], = (6 7),ﬁndamatrix Csuch that
() A+B)+C=0 (#) A+B=2C
10. Suppose that Brown, Jones, and Smith
W
the grocery stos ant to purchase the following items from
Brown: two apples, six lemong
Jones: two dozen eggs,
Smith: ten apples, one

and five mangoes

l'e

2 3 gllmtsmoneday
A=(s|, ‘B=|a|.
6) 5

What does the matrix 24 + 33 represent?
(4 4, 4

23 4 3
= 7
B 56»7’0=9111

8 9 19 . 3

11,
delivereq € shop
C shows the numpe t0 three ghop, P34y, 4y, 45,
ofitems g lddurm PS at the ©beginnin
gof
Week Usm
gma

er of tems of different kin

Compute 24 +35

12, 4=

@ the number of items imp,

(i) the number, Fitems o thedlatglyfati;er the deljy,
‘ € week

13. Find the product AB when,

14.

15.

16.
17.

18.

19,

20.

(1 0 0) (1 1 2)

() 4=|0 1 of, B=|0 2 3
0 0 1) \4 5 6)

(2 0 0) (0 1 2)

(i) 4=|0 3 0f, B=[1 0 2
004J \2 3 0

0 0 0)

2 3) (0
(lli)A 56’B=000

/
koooJ

1
If4= 0
(0

[

4= 1) 2= )
0 )
:

0
0] , show that 44 =4
1

(-2 3 -1 1 3 -1
FA=|-1 2 _1], B=|2 2 -1|,showthat4B=BA4.

-6 9 -4 30 -1
IfA_(°°s“ sinex =(c?sa -Sina],showthatAB=(l 0) =BA.
" |\-sina cosa)’ sSma cosa 01
Consider the matrices,
010 0 01
A=|0 0 1| B=|1 0 0f
100 010

(@) Show that 42=Band A; =1
(b) Show that B2=Jand B*=
(c) Find, whatis A%

0 2 -3 16 12 8
] 4|land |12 9 6|isthe
t of the matrices, |~3 0
Show that the produc { 3 -4 0 8 6 4

zero matrix. )
Consider the matrix,

30
1 0
(i o6 )
ommute.
EZ; gEOW $:: :njln:aﬁ f)f diagonal matrices of the same order commute when
ow
multiplied together.
For the matrix,
0100
0010
“loo o1
1 000 .
A=
What is the smallest positive integer k such that
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0 1
4
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6
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Differentiation

UNIT 3 DIFFERENTIATION

Structure
3.0 Introduction OBES
3.1 Unit Objectives
3.2 Concept of Limits
3.3 Continuity and Differentiability
3.4 Differentiation
34.1 Basic Laws of Derivatives
342 Chain Rule of Differentiation
343 Higher Order Derivatives
J 3.5 Partial Derivatives
/ 3.6 Total Derivatives
3.7 Indeterminate Forms
3.7.1 L’Hopital’s Rule
3.8 Maxima and Minima for Single and Two Variables
3.8.1 Maxima and Minima for Single Variable
3.8.2 Maxima and Minima for Two Variables
3.9 Point of Inflexion
3.10 Lagrange’s Multipliers
3.11 Applications of Differentiation
3.11.1 Supply and Demand Curves
3.112 Elasticities of Demand and Supply
3.11.3 Equilibrium of Consumer and Firm
3.12 Summary
3.13 Key Terms
3.14 Answers to ‘Check Your Progress’
3.15 Questions and Exercises

3.16 Further Reading

3.0 INTRODUCTION

In this unit, you will learn about differential calculus, limits, continuity and differentiability.
A function is said to be continuous at a point ifits left hand limit and right hand limit exist
at that point and are equal to the value of the function at that point. A function is
differentiable at a given point if its left b and derivative and right hand derivative exist at
that point and are equal. Ifa function is ‘ifferentiable at a point then it is also continuous
but the converse is not always true. Y« » will also learn differentiation, basic laws of
derivatives, higher order derivatives, Ru:le’s theorem, Lagrange’s mean value theorem
and Taylor’s theorem. Derivative of a function is a measure of how a function changes
With respect to its input. The Taylor’s series is used to represent a function as an infinite
Sum of terms calculated from the values of its derivatives at a point.

You will also learn partial and total derivatives, indeterminate forms, maxima and
Minima for single and two variables, and Lagrange’s multiplier. Limits involving algebraic
Operations are perfrmed byt eplacing sub expressions by their limits. But if the expression
Obtained after this substitution does not give €nov ghinformation to determine the original
limit then it is known as an indeterminate form. Lagrange’s method is used to find the
Stationary value ofa function of several variabies which are not all independent but are
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f Llllllt ()i a F un X Vv i | — i 'V Dgﬁ"?remfaﬁon
0 imi i . 1 1 lasx a lffor any gl €n

er te m T 1 i i Wll l 0 diSCUSS about the applications o f 1 l

ifferentiation connec dby some given elations. Thls unit will als 1[ ; , :

| f(x)=I|<gforO0<|x—a|<3.

UN IVES In this case, we write Lim fx)=lorf(x)—>lasx—a. NOTES
NOTES L ROBIRCT A function f'(x) is said to have a li}pit [, as Ag—) g ﬁo?tgli left if for any given small
: ‘s : : ' itive number ¢, there exists a positive number 0 such tha
After going through this unit, you will be able to: posi
g‘finilimitsofa’function |f(x)-1|<efora-6<x<a.
o - i e
o Check continuity and differentiability In this case, we write L Lim f(x)=1 or xl::;r: f(x)=1, orf(a—0)=1 and we say
! : : - ) imit of ().
Discuss the basic concept of differentiation that /, is the left hand limit o " | U
\ : E:{plain basic laws Ofdelzivatives A ;hnction /() is said to have a limit /, from the right if for any given small positive
/ o Compute higher order derivatives
/

number ¢, there exists a positive number 8 such that
|fx)—1,|<efora<x<a+sé.

e Evaluate partial derivatives, total derivates and indeterminate forms

* Find maxima and minima for single and two variables

In this case, we write RLimf (x) =/, or Hﬂf(x) =l orf(a+0)=1,and we say
o Discuss Lagrange’s multiplier method

that /, is the right hand limit of /'(x).

From the above definition of limit, it follows that Eg f(x) =1 exists if and only if
3.2 CONCEPT OF LIMITS Lim £()=1,=1=1,= Lim f(x).
—— x—ra-0
i b Notes:
t : . .

Limi (?fa function is defined as follows: 1. If Lim f(x)and Lim 7(x) both exist and are equal, then Lim f(x) exists.
Meaning of x — 2 (x tends to 2): Letxbea real variable which takes the values X " at x-ra- '
e o9 119999, ... We see thatas x comes very close to.2, the differonce 2 1f Lim f(x) and Lim 7(x) both exist but they are not equal, then Tl f(x)
between x and 2 gradually diminishes and finally becomes very small. In this case We S r3a-
say x tends to 2 from the left and we write x — 2 —,

does not exist.
x take the values x = 7.1 s 2401

. d Limits
clo?eg;)lg, 1'::e ifference between 2 and x o+ 3'0{:1, 2:0001. We see that as x comes very Some Standard Limi
; 1 2 an x u 1 o -
small. In this case we say x tends tg frgm ally diminishes and finally becomes very

The following are the some standard limits:
ot om the right and we write X—>2+,
So in either case, e=a

. 1Y
i) Lim|l+=]| =e
|<e where g ig iti . : i LimEEJE =1 (i) \-:oo[ x]
x 2 (read as x tends 02 or 5 L ftloszm;lll POsitive quantity, and we write (@) -0 X »
Meamngsofx—)aandx-a:lzoo e, 3 < i RAEE)
e ey it Wlflt:.)tsaé E,i; rea}l vlanable. Then “x tends to o* mean (iid) Lixgn (1+x)* =e (iv) -0 X
erical dj : _ X 1 n
become gradually less and Jegg and it becomeg ve erences from aie. |x a | x N qum e na"!
|x—a|<eforevery given e > 0. We express th; v Srrll)all—so small that we can write (v) Lim< -1 M)
' 1S Symbolically j '
Ifx>aal 1 YOyx—a. =0 X
approach W00 ) isless than any sma) positive x "
pproaches or tends to g from the right anq . e quantity, then we say that o ca (k2) -1
3 We write it Symbolically by x —y q + 0 OF (i) Lim === /
! imits: Let Lim¢(x)=/and Limy(x)=m where / and m
aplliﬁ;ﬁ alwafs acllld 1) is less than any small positjy Fundamental Theorem of Limits: Let Lim ¢ x—a
€8 or tends to ‘g’ from the e f (% quantity the thatx .
and w, o o 4] nwe say are
X—a-, € write it symbolically by y _y 4 0 Of finite, then
Ifa variable x, agsum

() Lim {g(x) £y} =1Em
X—a
any lar € Posit mcreases 5 \
g p 1ve numbel’) we say that X tends i lnﬁ ; Wlﬂl()ut lmt (lt 18 greater [han (11) Lim {¢(X) % w(x)} =[xm
Ifa variable x assuming negative ya, T NIty and we ypite it ag x — o0. x—a
~ismore than any positive €s only, increageg NUmer; : ‘it ey (@ L dedm#0
WIite it as x s _ o P large Dumber) we say that x tend 1, Jllically i lér‘r;e (u) Iril:? {\_tfx_)} “m provie
: Ius infinity an '
Se!f-]nsm.rc!fona.’
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Differentiation

Differentiation
(iv) |f(x)|or|g(x)|is continuous atx = a.
(iv) Lim F{$(x)}= F{ Lim (x) 1 = F(]) where F(u) is a continuous function of u.
x—a X—=a

(v) A constant function is continuous at any point.
) o) <f(x)<y(x)in(a—h,a+h)(h>0)and L_im d(x)=1and L_IQ w(x)

Notes: R—
NOTES gl (). 1. The identity function f (x) = x and the constant function f (x) = ¢ are continuous for all
v values of x.
3.3 CONTINUITY AND DIFFERENTI_ABILITY 2. The function f(x) =" (n is a positive integer) is continuous for all values of x € R..
' 3. Letp(x)=ayx"+ al.xc”'1 +..+a,_ x+a,beapolynomial inx of degree n, then p(x) is
; Continuity of a function is defined as follows: continuous for all values of x € R.
Definition: A function f (x) is said to be continuous at x = 4 ifth Differentiability of a function is defined as follows:

: ¢ following conditions
are satisfied:

Definition: Let/ (x)be a function defined in the closed interval [a, b] and c be a point
(@) f(x)is defined at x=gq.

in (a, b). If Lim S+~ () exists, then this limit is called the derivative of f (x) at
e h—0 h
(i) Limf (x) exists.
x—>a ' i i is said to be derivable
= : b ¢) or —= at x = c and the function f'(x) is sai
() LimfG)=1(a) x=c and is denoted by /'(c) £ o :
x—a j at x = ¢. If f'(c) exists finitely, then we say that f(x) is differentiable at
Le., A function f(x) is said to be continuous at i =1
X=aif Lim f(x) = f(aq) or . s
fla-0)=f(a)=f(a+0). a S @) =f(a) Geometrically, /() represents the slope of the tangent line to the curve y =£(x) at
Left and Right Continuous: A fypct; . the point (¢, f(c))-
. : tion f(x) is said t ; t ; svati
x=aif Lim F®)=f(a), ie, fla-0)=7(a). © be left continyous @ Left Hand and Right Hand Derivatives | '
A i The left hand derivative of the function y =7(x) atx =c 1s denoted by f'(c — 0) or
function £ (x) is said to be right continuoys atx=aif Liy f G, Lo : L f'(c) and is defined by
+ = 3 - y Leed
f(a 0) f(a) X—a+ ,( B O) = Td%i f(r:'-!'-h)—f(h) g (lflt EXiStS)
Notes: fi(e h—0- h

1 1 = == 1 d b
i ivative of the function y = f(x) at x = ¢ is denoted by
*Y X in the interval (g, p) The right hand derivati

terval. » then it is sajq to be FerO)or Rf'(c) and is defined by
2. A function which is not co h) - f(h) Pl 1
nt . . flcth) t

e 1IUOUs at a point s sajd to have a dzscontmmzfy at flc+0)= ;,I;ugi " (if it is exists)

Analytical Definition of Cq
ntinuity: A fi, ;

if for eve ction £ (x) is saj - Notes: _

Ty small positive number € Wecan find 5 P(Os)itiVeaiigse %ontlnuous atx=a L ) existicanonty i£/'(c— 0) and f"(c +0) both exist and are equal.

er . . fllc)e
‘f(x)*f(a)|<5 for \x“at<§ Such that:

Notes '

2. If fails to exist or if both exist and are unequal, then f'(c) does not exist.
. Ifany one

: finite derivative at x = ¢, then it is continuous at
: i T m3.1: Ifafunctionf (x)hasa: : i :
I, ‘A fun.CtIOIl f(x)is continuous gt , — . heorem 3.1: If oty tru; Lo fimetion may be continuous at
function y = f(x) at the ol xfE a if there is 1 break in g, X = ¢ but the converse is
a, (a ¥ n the a
2. A function 7’ ) graph of the

o point, yet may not have a derivative at that point.
: *) 18 continuoys jn S
the point (g, 1 (@) to the point ([b ’f 2;§)the graph of ),

o Standard Formulae for Differentiation
(%) is unbroken from
Theorem of Continuity: Le

tf(x)and The following are the standard formulae for differentiation:
® £&) % g(x) is cont; &(x) be both continuoy
il Contlnuous Ao a. Satx= a, then (1) i X" = nxr!—l (n is pOSitiVe integer)
@) £(x) gx) is continuous at y <, =

140 Material

(@) £ (x)/g(x) i also continygyg
Self-Instructiong| atx= a prov'd
! lded g(a) 0,

: ' i F 1 )_' 0SS X
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(iv) —j;(cos x)=-—sinx ) % (tan x) =sec” x

(vi) -gx—(cotx)=—coseczx (vi1) %(secx)=secxtanx
(viii) i(c:os.e:c x) =—cosec xcotx (ix) i(ej'f)z
dx dx
d x . d 1
(X) —(a*)=a"log,a X1) —(I =—
= (xi) —(log, x) o
G , - eos™ = L
J——— o= C1<x<
—-x
o i =Ty b 1 d B -1
(i) —-(tan x)—1+x2 » 5 (oot ]x)=1+x2 (-0 <x < o0)

(xiv) fr-—(sec X)=——

‘—(COSec x)=-_.1_._
x'\lx — x\/xTI (x|>1)

(xv) —(smhx) coshx and —-(coshx)—smhx

(xvi) —(u:i:v:lzwﬂ: )—d” dv  dw

o 4 dv di vd_u_ dv
(xvil) —(@v) =u—+y 2% d(u Tk
dx & VC& and " _v.. __dx dx

I g, e —
2

(eviii) Ify = () and w = £ (x), then & - & du
=f(x), then =L = S Chainrule)

_ &
(ix) Ify =) and x = g(r), then & _ dt _ f'(t)

@ gy
Note that: dt
- /3 . 1
(1) Limxsin—=g
50 ¥ (il) le x2 Siﬂ 1
x50 ; =0
(iii) Lilgtxcos-l-:o @)
x— X V) Lim 2 c 1
08§ — = 0
x-30
A
™ E_“E; does not exist.

Example3.1: Show that the funct; onf (x)= 30 45,2

+7x
_'_'—‘_S‘—“-l—;._,_‘___ fO[‘ X # 0
is continuous at x=0, ¥ forx=g
Solution: Now 1, f(x)= Lim 3 4552 1
x—0 +ix
T e x(3x2
sin x EL‘%%
X

3x +5x+7 ( ._sinx ]]
= Lim———=7 s Lim——=1
%—lgll sinx =0 X

x
=£(0)

Hence f'(x) is continuous at x =0.

Example 3.2: Show that the function defined by f(x) =

X

x_lxlwhenx;to
2 whenx=0

is not continuous atx=0.

\ e Xx—=(=x) _ . 2x
Solution: NOWf(O - 0) = YE:(I)IE f(x) = tI__,:xg]_ . - x[::l(;ri = =
-Xx
and f(O+0)= lef(.vc)—x_>0+ . =0
and f(0)=2.
Since F0-0)=f(0+ 0), f(x) is not continuous at x = 0.

Example 3.3: If [x] denotes the largest integer < x, then discuss the continuity at
x = 3 for the function £ (x) =x— [x].

Solution: Now f(3—0)= Lim f(x)= Lim [x-[x]} =3-2=1

) _jx—2for2<x<3
RS x—3for3<x<4|

wd  SG+0)= LB /)= Hps-(1=3-3=0
Since f3-0)=f(3+ 0), f (x) is not continuous at x = 0.
1—cosx
i _ s forx=0 , g
Example3.4: Show that the function f (x) defined by f(x)= 3 _—
1 forx=0

continuous atx=0.

Li 1—cosx _ Limzsm 2 [l)
Solution: Now E_{gf () =BT T LR |l
4
sin> sin=

. ey 7 1
= Lim>—=.—=2=2# f(0)

x51012 X x 2

2 2

Hence f (x) is not continuous atx= 0. |
Example 3.5: Show that the function 7 (x) defined by £ (x) = | x | is continuous at
ple 3.5:
x=0,

oh e B
Solution: Here /(0-0)= L1m f(x)= Lim —x

x—0-
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f0+0)= Lim f(x)= Lim x=0andf(0)=0

Since f(0-0)=£(0+0)=,(0), f(x)is continuous at x=0.
Example 3.6: Show that the function f(x) =| x | is not derivable at x = 0.

Solution: Now f'(0—0)= Lim A (0+h})l‘f O _ iy B -100)

h—0- h
=Limﬂ=_l
0k
and F'0+0)= Lim QNSO _ . Ft-7©) _ . h-0 _
0 h B B oo k)

Since J' 0-0)#f"(0+0), f(x) is not derivable at x=0.
Example3.7: Examine the continuity and differentiability of the function

1
f(x)={ ' when x<0
1+sin x when x > 0
at x=0.

Solution: -0)= Li = Li
on: Here (0 - 0) Ei,lﬁf(x)_fi,lﬂ‘il=l

fO+0)= Lim f(x)= Lim (1 +sinx)=1

and fO)=1
Since  f(0-0)=f(0+0)=f ),

hence £ (x) is continuous at x = ()
: MO—0\ = 1:0 JO+AR)—
Agin f'0-0)= Lim %= Lim L®-£(0)

h—0-~ h

md  f0+0)= Lim &M Lim £~ £(0)

b0+ h

=71 l+sin p—
L '\l .
) h—ﬁﬁ h =h11>iltﬂ¥=l
ince f' (0 - '
e j; ; E:) zf 0+0), JF(x)is 1ot derivab)e atx=(
e3.8: amine the contip, i .
uity and dlt'ferenuabmty of the funcg f
onf (x) defined
Fo)= {;2+x+lfor05x<l
. x+1 forlesz
Solution: No -
wf(1-0)= Lim f(x)= Lip, O +x+1y=g
x5] = Tliis=y

f(1+0)= E,T,f(x): }_1)111: 2x+1)=2+1=3
and f()=2+1=3
Since f(1-0)=f(1+0)=f(1), f(*) is continuous atx =1

. 1+h)- f(1
Agin f'(1-0)= Lin L4*D=/O

2 -
= Lim (1+h)* +(1+h)+1-(2+])

h—0- h
K +2h+1+h+2-3 . h*+3h
= Lim = Lim
h—0- h h>0- h
= Lim (h+3)=3
h—)u()li ( )
I fa+m) -1 S 21+ h)+1-(2+1)
and  f'(1+0)= Lin=—y o A
_ 2h+3-3 _ 1. a9
h—0+ h h—0+

Since f' (1-0)=f" (1+0), f(x) is not derivable at x = 1.

3.4 DIFFERENTIATION

Let y be a function of x. We call x an independent variable and y dependent vari-
able.

Note: There is no sanctity about x being independent and y being dependent. This depet}ds
upon which variable we allow to take any value, and then corresponding to that value, determine
the value, of the other variable. Thus in y = x2, x is an independent variable and y a dependent,
whereas the same function can be rewritten asx = JJy - Nowy is an independent variable, and x is

a dependent variable. Such an ‘inversion’ is not always possible. For example, in y =sinx + o+
logx+ x!2, it is rather impossible to find x in terms of y.

L)

Differential Coefficient of f (x) with Respect tox

Let y=fx) o ~(3.1)
and let x be changed to x + 8x. Ifthe corresponding change in y is 8y, then
y+8y=f(x+dx) (3.2

ions(3.1)and (3.2) imply that
it Sy =f(x+8x)—f(x)

&y _ fa+8)-f()
= ’ o ox

Lim
x—0

respect to x and is written as

&
. 8) - £(x)
& _ oo o L& .
Thus, b o0 8

Diffferentiation

NOTES

Check Your Progress

1. What do you mean
by x —» + ?

. Define the terms
left continuous and
right continuous.

. 'When a function is
continuous
throughout the
interval?

. When are the
identity and
constant functions
continuous?

. Define derivative of
a function.

f(x+80) - f() jfitexists, s called the differential coefficient of y with
ox
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Differentiation Let f(x) be defined at x = a. The derivative of f (x) at x = a is defined as £(0+h)- £(0) , Diferentiation
Lo f@ER @) Consequently, Lim == —— doesnotexisl
i S prov;dedthe limit exists, and then it is written as /*(a) or (% l Notes:
. - 1. A function f (x) is said to be derivable or differentiable at x = a if its derivative exists at
NOTES We sometimes write the definition in the form f”(q) = Lim S - f(a) x=a NOTES
x»a x—-a 2. A differentiable function is necessarily continuous.
- Proof: be differentiable at x =a.
Note: f’(a) can also be evaluated by first finding out % and then putting in it, roof Letf(x)h  differentiableatx=d
x=a. Then Lim IE_"’_’Z;fEl exists, say, equal to /.
Notation: % is also denoted by y“or ¥ Lim p L@+ 1 -fla _ (Limk)l =0
. h=0 h B0
or  dyorf'(x)incasey=f(x). = Lim [ f(a+h)-f(@)]=0
Example 3.9: Find % and (%) fory =3 = Lim f(a+h)=/(a)
x=3 .
Solution: We have y = x> = B f(x)=/f(a)
Let 8x be the change in x and let th h can be positive or negative
€ corre : . | .
Then, y+8y=(x+8x)3 sponding change ny be dy. ‘ In other words f (x) is continuous atx =a.
= dy= G+ 8x)3 —y=(+ 8x)3 3 3. Converse of the statement in Note 2 is not true in general.
5 =35 (8) + 3x ()2 + (3} 3.4.1 Basic Laws of Derivatives
= ¥ _ .
& 3+ 3x (8x) + (8x)? The following are the basic laws of derivatives:
Consequently, % =Lim %2 =3 2 Algebra of Differeqtiable Functions
& &0 6x 1 We will now prove the following results for two differentiable functions f(x) and
Also, Yy -
d
—_ + = + X
Example 3.10: Show that for y=lx|, & d . () def(x) 5 =/ ()& &)
& dx 0CS ot exist at x = 0,
Solution: If 3. exists at x =, then ‘ @ L5 = W@+ EE
| o % exists | 3) i[f(ﬂ] _ 00 - WD
| So, Lim L@+H- (@) ' | dx| g(®) (g
\ ’ h—m* = Lim f(o“h)—f(()) 3
| Now, I | d i
: ’ FO+hy=|p), a @) L1y ] = of @) where €8 a constant
So, Lim SO+h) - £(0) :
ho0s g = Lj lhl -0 | d
” h h—l&T = }im h_ 1 : where, of course, by f' (x) mean :&f(x).
Also, Lim fO-M- 7 ok ‘
R T = L 20
0- ~p Proof: (1) -;—x-[f(x) +g()]
- Lim - x+ 8]~ /() + g(x)]
H f( h—lbl(l)l-'_h =-1 ; =Ln%[_f_(§j_£§—)—ig’('fax
h e A : f (0 -h - :
146 ﬁgl?;mﬁo"a’ - ’ ’ hL'l’I‘}l" % | fa+®) -1 *) gr+8)-50)
eria, = ; — L JWHT
. &1—% [ dx o Self-Instructional
Material 147
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_ g SO =T | gy, 00 - 2()
8x—0 dx 8x—0 ox

=f'(x)+g'(x)

Similarly, it can be shown that

d
-d—x[f(x) —gM] =f"(x)- g (x)
Thus, we have the following rule:

The derivative of the sum (or difference) of two functions is equal to the sum

(or difference) of their derivatives.

@) g;[f(x) ()]

= Lim f(x + Sx) g(x + SX) - f(x) g(x)

dx—0 ox
: d 8
= Lim 86+ 3/ G489 - f))+ F ) g(x + w) - g(x)]

Ox

it o J(x + 8x) -
tim s(rss >[——6—_fu} f()[E(—_Eal_g(_)}}
X

=[}h%g(x+axnéﬁ%[lliifﬁl:llﬂ}
Yo x> &x

+| Lim 1) [um B+ x) - g(x)
=20/ ) +1() ). Sh
Thus, we have the following rule for the d
The derivative of

* Second function) +

d[ 1t
o &lio]

erivative of 3 prod
uct o
product of two Junctions =

(First function x Derivatiy

ftwo functions:

(The deriyqy;
Ve of first functi
n
e of second function). Jimetio

Tx+8) 1)

= Lim 8&+3) g(x)
dx—0 Sx

= Lim L& +8%) g(x) - 7

8x-50 e Sx)X) 8(x + 8x)

g(x)
= Sl;iino 8IS (x + 8x) — S()]- F®Mg(x + &x)
8x-8(x+6x)g(x) = 8(x)]
= [SLim o

x>0 g(x + §x) E(__

1
) {ai‘i_‘l‘o ol 8- 7
X

LA THh ("’[g(“&c)-g(xn}
[g(x)]Z g(x)f (x)hf(x)g'(x)] Sx

= f(x

)g(x) - f(x)g" (x)
'[g(x)]z 5

The corresponding rule is stated as under:
The derivative of quotient of two functions=

(Derivative of Numerator x Denominator) — (Numerato

r x Derivative of Denominator)

. 2
(Denommator)

. x+8x) —¢f (x)
4) di (0] = Lim L

dx—0 dx

dx—0

The derivative of a constant function is equal to the constant multiplied

by the derivative of the function.
Differential Coefficients of Standard Functions

L %(x") = m"!

Proof: Let, y=x" 8
Then, (y+dy)=G+ ox)
— 5y=(x+8x)”'y:

SR

&), nn=1)
L x" 1+n[? T 21

n(n=1 2502 + .

- e T

B
&x
By . alt=l
= iy == A
5512108)(
& Z gt
Hence, & ="
dx

II. (i) .‘%x(ax) =t log, @

Gii) %(e") =&

Proof: Let, )
Then, y+5}’:ax+ AP

ox X = =
= gy=a i 4 (@

oy _ gi(_f’_af_:—ll
= g‘x"‘ &x
§Ji = g Lim
= -gyx-’ % al;l_TOSx @ a0
|:1+6x(10g a)+

= ¢ Lim l:.flf—axa—)-i(i)-} = cf '(x).
X

(x + 5x)" — x"

#-1 4 terms containing powers of 8x

@v'Qoga)” | )
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= a" Lim [log a + terms containing 8x]
&x—0

a loga=a" loga

proves the first part.

Since log, e =1, it follows from result (i) that & et = ¢,

d 1
III- -‘Elogex = ;

Proof: Let,

y=logx

7 y + 8y =log (x + §x)
= 0y = log (x + 8x) — log x = log(”&‘]
X
&x dx
=tk dx 1 /8
x5 1) e
By x/8x
= Limpee 21 )
B 08 xal;l_rglologe[n%]
= LA 1
X 08 e ;
. 1y
as L 152 6=
n—ll'n:o( +n] ¢and log ¢ = |
Hence, b _1
dc
Iv. -d—(sinx) i
dx = (cos x)
Proof: Now
k Y=gl
= nx::>y+8y—sm(x+8x)
8}): Sin X +
[ e 2008(“@{) sin X
2
= Sy 2cos[x+§£:|sin_a_x_ 2
e w - [ B sin§x—
Ox Cos x+__)_ 2
)| 7w
2
S 5
Liy S
ﬁxgnﬂax Ll_]}%{cos[x_i_ Sx]} Lim sm_azf
: %50 &y
5 2
. Ox
Sin —
(cos x) Lm%) __E_g_ -
g SXUI) = Cos x
= 5 .
dx i COSx

V. i(c:os x) = —sin x [The proof is similar to that of (IV).]
dx

Notes:

1. The technique employed in the proofs of (I) to (IV) above is known as ‘ab initio’
technique. We have utilized (apart from simple formulas of Algebra and Trigonometry)
the definition of differential coefficient only. We have nowhere used the algebra of
differentiable functions.

2. In (VI) to (XII) we shall utilize the algebra of differentiable functions.

VI i(c) = (0, where c is a constant.
dx

— 0
Proof: Let, y=c=cx".
0
d _ [ E | = c0x™) = 0.
Therl, -d'; c ax

VII. i(mn x) = sec’x
dx

sin x

Proof: Let, pEELEE e

1
q (sin x) cosx — S X - (cos x)

dx

&l

(cos x)2
(cos x)(cos x) —sin x(—sin x)

(cos x)2

iy
costxtsinx % I L o 2
w/iGORIREESID 2

- cos® x cos” x

VIIIL. i(sec x) = secx tan ¥
dx

1
cos X

Proof: Let, y=secx =

i(l) cosx — (1) f{; (cos x)

Then, %=W
cos X
sinx _ _5_“15__.1__ = tan x Sec Xx.

cOS° ¥ cosx COSX

X —-X
X % i . - _€e —e
€ —€ . andwriteitassinhx=
2

We define hyperbolic sine of x as

Ex_ie___x, and is denoted by cos 4 x.
Hyperbolic cosine of x 18 defined to be A

It can be easily verified thatcOS i A ;
Since (cos / @, sin / ) satisfies the equation x?> —y* =1 of a hyperbola, these

i i ions.
functions are called hyperbolic ﬁn:m;)s T DORUT R
In analogy with circular functions =

Cot h x, sec 4 x and cosec hx.

Differentiation

NOTES

Self-Instructional
Material 151



Differentiation

NOTES
Self-Instructional
152  Material

i N sin & 1
Thus, by definition, tan b x = =% ,cot hx = 5
coshx tan i x
1
sec hx = and cosec hx = — ;
cos h x sin h x

IX. i(sinhx) = cos hx
dx

Proof: Before proving this result, we say that
dp et =
E(e ) =—¢€*, because
e = ( e-1 )x
de™

deni oy L
% & (@) log () = eF 1y = _

Now, let A= sin hx = %(ex —e™)

- £, SR e
en, e —2*[&;(6)—2;(6 ")J

1

g e R |

sG] = 5(e"+e“)=cos hx.

X. —;—t(coshx) =sin hx

Proof is similar to that of (IX).
d
XI. -(tanhx) = ge¢ p2

Proof: Let, Y=tan hy = sin h x

COth

a;(sinh X) cos hx—sin i

x‘d—(oo h
T e e )

(cos i x)
_ (cos h x)(cos hx)—(s

) Cos hzx
= SOSh"x — gin 2,

&

1

cos 4 y

h x

d
M &k, o =Sec hx oy
Proof: Let,
JSSecipn. - ___1__
d Cos h x
D Ex_(l)mshx—-(l)éi

e
cos A2

= O)(cos 1,

ks

Cos j2

= _[sinpy 1
3 cos}”‘](c()s\}?_]:"-tanh
xample 3,11, Ify =2 sin * X sec h x.
X, fi

1

€m of the tYpe d

I 5
cos iy  S€C At x,

By applying the formula,
a{l’ _ d 2 - gi .
= = —d;(x )sinx + x p (sin x)
= 2y sinx + x* cos x.

dy
Example 3.12: If y = x* cosecx, find —-.

dx
Solution: We can write y as —
s x
Applying the formula,
o .'L'2
Y- sin x
do oa 2 d
L (xY)sinx=x g (sin x)
dy _ dx e
= & sin” x

2xsinx-— x? cos x
e ———— .

. 2
sin” X

3.4.2 Chain Rule of Differentiation . =
This is the most important and widely used rule for differentiation.

The rule states that : : .
Ifyis Z if;‘];ientiable function of Z, and z is a differentiable function of

: i.e.,
X. then y is q differentiable junction of x, 1
by BNE

= ——

dx dz a
Proof_: Let y = F(z) and z =/ (%) i clRaeaiiSis B & A B i

z z + 8z = f(x + &x).
Tespectively, then y + 8y = F(z + sz)and z + 8z =S

Th §y=Fz +8) — F (z) and 8z = f(x + &x) — f(x)
us, = ‘
s _ o &
Now, gi, =iestiss 6
Sv .. 0Z
gy TPt Titnt—
= E%TOE’; F 51;-121052 &r—*ﬂﬁx
dy _ EX}E"_
= ;{}' T lgzo00z ) dx
(Since §x — 0 implies that 52" Ly “0)
a &
=& &

uncti is a differentiable function
: : : ble function of X}, X; }s ad : .
0 Corollary: ity na dlff?r?;zf;gnction of x,, then y1s a differentiable function
a fx?." w5 X, is a differentia
X,

dy _ & oy

and 2‘; = dx dxy dxn

Proof: Apply induction on 7.

EXample 3.13: Find the differential coefficie

. thep, y = sinz
Sﬂlution: Put 7= log X. the‘ ) y : 1
cosz-— = —cos(log x).
% *

nt of sin log x with respect to x.

v dz
\ d _ Y% =
NOW, (ﬁ e dz d}'—'
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Example 3.14: Find the differential coefficient of (i) esin # (ii) log sin x> with
respect to x.

Solution: (i) Put x* = y, sinx? = z and
Then, u = &, z=siny and y = x2
By chain rule,

oD
= pSinx

d _ dude oy
d  dzdydx
' = €& cos 2x = pSiny _ ~o_ sinx? 2
(ii) Let, PL ) e cony Oy = 2xe0T cosX
The V=Sillx2=sinu
Ty . -
¥ =log sin x* = log sin 4 = log v
=0 W gy, B d
dx x’E;=COSuandd~_y=l
Then, 2 = 9?__@ du ’ Y
& dy gy dx
il
IREcosm - 2y
1
——COSu-y —
Note: After some practice vy sing 172X = 2x coty = oy cot x°.
S e c
substitutions, For example, an use the chain ryle

My =log(sin?), they & _ 1

Note that we have firs Sin 2 OS*° - 2x <5, cot x2
§
Slogn = L g Aerentisted 1o g, I
> Since, here vy il fiction according to the formY
s l Og (Sinx ), S0 the f atlon
o st term on different!

Now, cong; i
i ider sip 42 and differgps:
us, the Second tepy : L

; is Ceordin .
Finally, we diffegep, cos x2, & 10 the formyla 2 (sin u) = 05 ¥

Then, we multip dlated X% wi e u
Se 4 SO, the th .
343 e term ird term is 2x.
nghel‘ Order Derlvativ S 0 get the aﬁSWer 2x oot x2
es 3 ’

Y giv
& parametey)_ *N as fy
)) hen e ﬁrS Ilctl() S of ) led
b evalyat. d A single variable ¢ (cal
DD 7 ad &
dt dx g > 10 obtajy dar 0 then yse chain formul?
d;
b
d dy
The ®Quationg , _ dt

Example 3.17: (i) Differentiate

: : dy
Example 3.15: Let x = a (cos ¢ + log tan 5) and y = a sin¢, find s

dx ' 1 2 ! IJ
3 . _— = — -+ S€C ——
Solution: " a[ sin an 12 22
) 1
= a| st N 2 cos 112

1
= g|-sint+-—
sinf

i 2
a(l-sin 1) _ acost 4 &

- =a cost
- sin ¢ sin ¢
dy e
v acost _ _ Sl _ o
He Db =
nce, e dx (a C052 t/sin f) cost
dt

Example 3.16: Determine @ where x = a (1 + sin 8) and y = a(l — cos 0).
dx

0
Solution: & _4(1 +cosB) = 24 COSZ-Z_
Als cdfi inh = ’)asingcos—
0, % =a sin - 2 2
So. dy _% - fl’_‘._qz_ = fan—
’ & dx  cos®2 2
do

LOgarithmic Differentiation

Whene\;er we have a function which 15
differentiq] coefficients are known or a fun

ie t?]ke the help of logarithms. This makes th
u

product or quotient of functions whose
ction in which variables occur in powers,
e task of finding differential coefficients

ch easier than with the usual method: The technique is illustrated below with the
n

el

e 07 Examplos = 2+ 1)E + 3+ 1) with respect to x.

y =

(ll) If x’”y" - (x + y)m+n, prove that 5

LB ¥ +3xt+ 1)
G 1) +log@+3x+1)

z
x

= 10gy.—_-2logx+10‘.
N LE T Pl
1 3x? +3
= dy L AT
jx— =)y X x+1 ¥7 +3x+
2 1 30"+D
_xz(x+l)(x3+3x+l);+;—+_l_ x> +3x+1
; +n
(11) mn = (x + y)m
Xy = =(m+n)10g(X+J’)
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Differentiation
ferentiation m ndy [m_*_ ”J ( dy) Then,
= o= = 1+ =

x v dx x+y dx ! 2x [x—( 1+x2 =1)
1 241+ x
X\ _m+n+£]d_y _m+tn m [ . UL 2 NOTES
NOTES x+y y)dt  x+y x dx J1+x% -1
L+| ——=
4 {—my—ny+nx+ny:\ﬂ _ mx +nx —mx —my ¥
y(x+}’) dx x(:c+y) 9 xz_(1+x2__ 1+x2)
b St il e T e
T - 2
s [( my+nx)|dy _ nx-—my 2 o {pad al A2 1+ x2 x2\}1+x
yix+y) |dx x(x+y) * 2
-1
= day Y 1 _IE———
. e o) L AR R
; dx x = 2

2
| 2(1+x2_ 1+x ) 1+x

Differentiation of One Function with Respect to Another Function and m ke 1

the Substitution Method _ "—‘ZJ‘J”?—BT T+
Parametric differentiation is also applied in differentiating one function with respect 21+ (y1+*

to another function, x being treated as a parameter. Sometimes a proper substitution

d _ 1
makes the solution of such problems quite easy. and  1+x
Example 3.18: (i) Differentiate x with respect to x°. dy

ra 1
(ii) Differentiate tan™' 1 2x2 with respect to x. So, % = %x; =5
— Lk
: : dx
Solution: (i) Let y = x and z = x°

Aliter: 7 = tan~ ' x = x = tan?

} 1+tan22‘1
=% _,__.——-——'—"__'_'_F
tan

We have to evaluate ﬂ

So, y= tan z
Now, dy =1 and & _ 3x2 -
dx dx _q| secz— 1
dy =l =i
So, dy _dx _ 1
de' v oz 3x? _[1-cosz
dx = tan ;_—S_.l]—:;;_.]
(if) Let, o b g 2sin’22 | = tan”! (tan 2/2) = 2/2
i asmEs
Putting i~ — tan”" 7 sin z/2 €08 z/2
X =tan 0, we find that
dy. .l
e 2tan;3] So, ] a
X 1-tan’ @ Differentiation ‘ab initio’ °F PY First Principié functions starting from the
So, an” " (tan20) =20 =2 tan~ ! x ' * Jifferentiate sOme standard func Licaids
% =+ e L i 1 I;:;‘hc?r we discussed k}xlowet‘:n ;) ! examples 10 illustrate the techniques.
14 x2 2 Inition. Here, we hav t principle.
Example3 ; X 14 X E er . ) o JES;; Wlth respect tox by ﬁrs pr p
-19; leferentiate tan~! m il rample:3.20: leferegfla
| Withrespect to tan~' . Solution: Let y = ,Jcosx: g change 8y in y is given by

ondin
If 8x changes in x, then [

m;)

Solutiop;, Let, Y= tan-1 m
Sl

x 1 and z = tan~! x y + Sy = ,/cOS

— ,/cOoS X
SO, By = Jm J—"—
Self-Instructional
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lifferentiation

Differentiation
11 1dx
J; Lim (_..——-———‘i'.-.]
3y _ aJcos(x+ 8x) —+/cos x (e J;)S.\’-)U 2y 8y2
Or — —
3 &x Ox Iz
; Nl - le
1 cos (x + &x) — cos x _e Jx - ETx— NOTES
NOTES Sx[Jcos (x +8x) +,/cos x] &
e (:85 } e [x Lo j Successive Differentiation dg @) Th
G > 2 dy . in a function, say, g(x) of x. We can find de k2
dx[y/cos (x + 8x) + oos x ] Let y = f(x), then = is again a function, . ity 3
. - is denoted by —- or by y,.
dy —2sin o is called second deriative of y with respect tox and is dx”
Z = Lim< = 71: 2 sin x n %2 .
g+ d 05 aI;I‘I’nO & | Jeos x + Jeos x d* ﬁiJ_’ ___,_—d Y for any positive integer n.
In similar fashion we can define A
: sin & £ £ or y
— _ Sinx ? . . i Iso used in place o E;; e
2\cos x 8x—0| & Note: Sometimes ™ or D'()) are 3 .o more than once is called successive
a7 e tion
2 The f differentiating a func
process of di
. Ox differentiation. imes.
e sinty .| sin— iffe atio ‘ v oD 52 — Tx + 2 four times
as Lim|—2 | _ Example 3.22: Differentiate >
2Jcosx  &x—o0| ox . _ 8 g5t ontiy
= Solution: et V=
: then ¥ 3% -+ 10X ERT
Example 3.21: Differentiate ,Vx ab initig ’ :

Solution: Let y= eV
is the change in y,

T‘h'en: y + ay = em
it By = em b
= §£ = e&(em—\/;hl)
_——‘—‘_‘__'__——
&x ox

—p BT 2

Ox
r-‘l % = (\/\ax—- X
(J\ax J;)+H\'Ni

2 ..._1]
W [Mq;

% v

I

il Grve 5
1 X)

J;Ml ) 1}
1418 %G‘l]

2x+‘\~—__ dx

2
8x

LA

= LimY -

&1—%5,; (E\E\/;)a%imu
i

= 0
y2“6x+ld ; i
y3=6 an 4

Derivative
Some Standard Formulas for the nth

1—1
m-1,4 = ma(ax + b)”
e =@ o + bY"a
, y = ma (m = 1)(a‘x .
2 e
So, Y2 _ 1)dXm - 2)(ax + b) 3a
Thus, V3= m(m ko

i =2 (e 45)

d that \d
Proceeding in this mannet; We i (m—n+ Da'(ax + )

~—12) be obtained by the principle of Mathematical
SO

been proved true for

y, = m(m — 1)(m
Aliter; The above result cana

n=1.
Dduction, The result has already

SupPOSe it is true for n = k,
i.e_! yk=m(m — 1)(!?1 =4 2)

i m—k—1
Differentiating once more g (m—k+1) o (m — k)(ax + b) a
Viwy =m(m — D)(m ~ 2 i

+1 m—(k+1)
m—k+ D Im=(k+TDT 114" (axﬂ;) o
= m(m— 1)(m = ?)r--’-? _ i+ 1 also. Consequently, the formula holds
Hence’ the result is true 10

of n.
€ for a]] positive integral values

Corollary 1: If y=x" then

(n— k+ 1)@ + D"

th respect to X, W€ get

m-n

.(m_—n-i-l)x

Self-Instructional
Material
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Differentiation

NOTES
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Corollary 2: If y = x™ and m is a positive integer then
Yp=mm—1) ..(m-m + 1)x° = m!
and, Ymi1=0, ¥, =0 vn>m,
Corollary 3: If y = (ax + b)™! then
Ya=EDED) w1 - n 4 1) dax + byl
= ¥,=C1" nl a"(ax + by @D,
IL. y=sin (ax + b)
Here, Y1 =a cos (ax + b)

= asin[ax+b+§]

SinCB sm(e +—=CO0S§ E)
2)
y2 a cos[ax

= azsin(ax+b+—g—+%) = azsin(ax+b+2£)

V3= a’ cos[ax-&-b +-22ﬁ]

ol Jafils 2Zn g oy«
a sm[ax+b+—2—+_i_) = g3 Sm(ax+b+ 311:)
Proceeding in this manner, we get

L =a sin(ax+b+fzﬁ)_
Note: All the formulas d

iscussed aboye can
Induction. We have ii

ustrated the techniq

be : ol .
3 li);o:led by using the principle of Mathematical
Corollary: For y

ternative methoq of formula (1),

= Cos (ax + p)
y,= a" cos(ax +b+ EE)
> )
Proof: Y= cos(ax + b) = sin [ax+ b +EJ
2
So, yn=a"sin(ax+b+l‘.+f_’i o i nm
2 a cos| ax 4 b+22
II1. y=e* 2
Clearly, Y1 =ae®™
Y= aeax
V3 =aden . and g
e 0 0 o
Yp=d"e™ e e il
Iv. ¥ =log (ax + p
Here,

ylz'_'_a‘-- =
ax + b G(ax+b)—1

= dT
iy

= a(,_ 1 )nal
and 1))

(n - D)1gn-

1
(ax + byl = (ny

by Corollary 3

=(=)"(n - D! a"(ax + b)”

B (_l)n-l(,,_n!a"_
- (ax+b)"

V. y=e cos (bx + ¢)
it case y, =ae™ cos (bx + ¢) — be™ sin (bx + c) . .
. i in(bx + ¢
=e® [y cos ¢ cos (bx + ¢) —y sin @ sin (
a=ycos@and b =7y sin@
- + @)
So, =y e cos(bx +c ) Lot
Again a =y [ae®™ cos(bx + ¢+ @) — be™ ?ln (bx. bc +(Pc)] + @)
o " = 2™ cos ¢ cos (bx + ¢ + @) — sin @ sin (bx
=2 cos (bx + ¢ t 20)
Proceeding in this manner, we get
y. =y"e™ cos (bx + ¢ + n9)
n

2172
tan(P=§ and y = (a* + 1)

where,

where,
. b _tang and & + b* = ¥’l.
[Since 4 =7ycos¢, b=ysme =

: +
Corollary: For y = e™ sin(bx <) )
y, =y'e™ sin (bx + ¢+ 19
n

i Do b2 1/2
Where —@n'? and 7=(@ )
] (p p
Proof is left as an exercise.
-1 _{
VI- y= tan [a)
Lyer
Now, R
1+—5
a
T ex
a where i = \/?1
i e

" (x+ia)x—ia)
Il _——L—}
= —?;- —;-_—-._I; x+ia
VLT i)
= _l_[(x"’a) (x
2i
= yn=Dnd10}])

il _1—[(:1 -—l)!("l)ndl(x ~ia)
T

-1-(n-1)

oo

1 =D! iy = (x+ia) "]
G Dl e L 0
= =y sin 6
Put x=Ycosﬁanda~y

Differentiation

NOTES
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ifferentiation

NOTES

|

Check Your l’mgrg1

10.

11.

What is dependent
and independent
variable?
When is a function
said to be
differentiable at a
point?
Write the chain rule
of differentiation,
Write an
application of
parametric
differentiation,
Define second
derivative,

What is meant by
successive
differentiation?

a ] a
Then, tan 0 = - and y = 510
Vi o V| S 0)™ —y~"(cos 0 — i sin 0) "]
Thus, = T[Y ( Y (
n-1 .
=D @-H [cos n6 + i sin nO—(cos nO — i sin n0)]
2iy"
[By De Moivre’s Theorem (cos ® + i sin 8)" = cos 70 + i sin #0 for an
integer n.]
_ 0" -1)12isin no
2iy"
_ (D" (n=1)!sin n0
=arter AVERSIOIIAY
a"/sin " :
=D e 1)!sin #0 - sin” g
=2~ v JYnny-sin @
a?f
where,

=coth =tany

) a x
Note: Since tanf= — — 2%
X a

n
we get, 0=——y,

> ~¥»sotheabove formula cap also be put in the form

-n" _l(n - simn(E = y] sin” [E A }
yn = 2 2

ah‘
To prove De Moivre’s theorem for
Forn =1, (cos 0 + i sin 9)!
For n =2, (cos 0 + i sin )2

an integer we Proceed ags:
=Cos0O +iging =

=cos 10 + ; sin 19
=00829

— sin% @ + 2i sin § ¢og g
= €0s 20 + i sin 29

h We get (cos B + j sip )" =
8Cr, put y =
(cos 6 + i sin gy = 1

(cos @ +; sin@)™

_ oy COS 1O + j gin 1O
In case # is negative inte L

~M, m> ()
& 1
COsmB + j sip mo
= L2080 ~ i5in g
cos? mg sin? ;g COS MO — ; gip mo
=Cos (-
Note: By y (a) we shaly m

m)B = cos g 4+ i sin 10
Thus, for eXample, if

: y,,atx—:a_
y=SlI’13x

Y4 G) = (3“ sin [33: + EED

2

162
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3.5 PARTIAL DERIVATIVES

: be
Till now we have been talking about functions of one variable. But there may
functions of more than one variable. For example,
Y u=xt+y+7
xX+y
. i ther example
; bles respectively. Ano
i o variables and three varia ; ds, but also on
?sr edf;lrllll(;trllznrf’os 1;1?; good depends not only on the Pfllczgt:g?: dioo
th,e income of the individuals and on the pljlclflzsfiea?ld y. x and y can take any
. a .
- be function of two varl ariable, say x, and
valuiiggepé{gén};)of each other. If we allot) a ﬁx;;l ;/:;l;: ;gdo:: :function ofsiate
i i ed to vary, f (¥, C.a 2 i sual sense. We
Second variable y is allow fits derivative with respect to y, in the u
Variable y. So, we can talk of its &
P

z =

ote it by the symbol
call this partial derivative of z with respect to y, and den

Thus, we have
[y +&) = f (%))
oz _ limo"“—__gr__._
By — ivati
dy b . ative of z with respect to x, as the derivative
deriva

Similarly, we define partial lone. Thus, here y is kept constant and x is

of 2, regarded as a function of x @
allowed to vary.

flr+dny) - f(6))
SO ‘_32_ = lim _'___.—_éx—_—_——_
4 o 5x—0
NOI‘E.‘ gzx— is also denoted by Zx and
_g;_ ’ by Zy-

2 ;
200 2, pr Qz_g_ . Thus, a_j_is nothing
A ’

- define ~5> 222 ax” &7 o

In similar manner, we can aeé ax? oxdy

o0z o oz
s (%) e 2 - 2(2).
2 ooz _@i:g(g‘)andayz oy \ oy
e 5(1[—‘35) - R T 0 gher orders
’ 5 iche .
‘x ey artial derivatives of hi
In thig manner one can define p

i iation does not
2 f order of differentiatio
a2 hange ©

e : & * : ’s theorem and
N general x oy dy ox s theorems like You_ng s :
1 There are famo for two derivatives to be equal.

2 Ways yield the same answer. f ditions

nt con
Sch icie

ith in this unit are
: . ffi we deal with in
Warz theorem which give SU

: hat
functions t
as far as we are concemed, all the )
82z G52t
SUpposed tq satisfy the relation wy

ut

oz

——

& :
EXample 3.23: Evaluate . and y

Differentiation

NOTES
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—~—
Non Differentiation
2 _4xyz
L u Xyz 1
wiation x2 = v 0 =y 9.5 ( )
— S .= -
when, z )

x—y+1 ozox (x"+y +z
x2 o o%u :‘5_21 _ i[@:l
Now Solution: 2 g gain, wdy  ovox dylor NOTES
S —4xy
G- pen L2ty = - 2 @) = o
oz _ ¥ ox y+1) (x2+y2+zz)2 (bl 2]
ax 0 (x—y+1)?
2 ¢ 2) fu 4wz «42)
_ 2% =20y +2x - x%(1) = 2ty (R+yr )
(x—y+ 1)2 o
y Similarly, it can be shown that
_ X =2xp+2x _ x(x-2y+2) 5u 4xyz +d3)
=33
(x—y+1)2 (x—y+1)2 xavaz - (xz.}.yg-i-zz)—
% . ' ; i It.
Again, %zy_. = %(I X +1} Equanons (1), (2) and (3) give the requlred resu
=y
| SO A Sk e
= x? %[(x —y+)7] = xz{—(x —y+122 (—y)} 3.6 TOTAL DERIVATIVES
oy ivati full derivative
. : , a total derivative or
==wilr—y + 132y =X In the mathematical field Ofdl.ﬁ‘erentlal Calcihf etc., with respect to an exogenous
(x-y+1)? of a function f of several varlabl.es, Fﬁé,cl,na;gé i the function’s value to the change
argument, e.g., , is the limiting ratio © o taking into account
; o* . > €.8.5, 18 lv small changes), taking
Example 3.24: Show that &E[(x 0] = (x + y + e 11}1l the exogenous argument’s value (grcifgf‘i&{as its indirect effects via the other
the exogenous argument’s direct €11
s ) P :
Solution: — EEPRS— MU ey 1y ar : ; : z
oy SR dy fe"e’ (x + y)) gum;r}llts 6Hhe @ctl?n of a function 1 different ﬁ_'om its corresgondlllrcl)tg apsz;r]tllreli
=e'{dx +y) + & detivai Fltital oy S £ the total derivative off w1th‘ respect to ¢ does S
Ly } i Vvative (g ). Calculation 0 stant while { varies; mstead,_ it allows the 9 er
£ x+y+ 1) at the other arguments are coﬂ] derivative adds in these indirect dependenczes.to
(e )&y = 2 T %rguments to depend on 7. The tOtat For example, the total derivative of /(z,x,y) with
Ox Oy o @l +y + ) hd the overall dependency of fons:
= eJ‘_‘i x TeSpect to s
o € (x4 y 1)) df_afdz+§[_§x_+§f.%l’-
={ef(x + dr ordr exdt &
P+ 1) + g t otdt
;fo;(x it 1.+:1) Wwhich simplifies to
=(x+(x+y+2) dr af+afdx+_3f,_d_2’_,
+ 2) &ty — =t dt
Example 3.25: Tf , - % d dt o s
Ple 3.25: If u = og Gasia s 2 t o ox -+ ofthe equation by the differential dz.
x o'u &%y 2 )» prove that: (30nside:rnmltiplyingboth sides
R ERETo N s
vz 7 Pk L)y . 5 o af d
Solution; 2 37 = idt T 5; { i
u= log (x2 + y2 + ZZ) 61‘ ax ; hange dfina or total dlffel’entlal Of:, thc fun;tlor!]‘:
= M _ d The result is the differential fchaﬂge will be due to the partial derl‘_’arl;e - ]i[wuh
ox —d—(;f:;T“T Hog(x? s .2 . o 084 2, 2 Because fdepends on #, some oftha  will also be due to the partial derivatives
1 +2%) Y4z )]———_fgx_j_ﬂ TeSpect to 7. However, SOME of that cl(liaﬂgso the differential df is applied to the total
e N 2 of f With respect to the variables ¥ &7 2 and dy, which can then be used to find the
S Vg detivativae oo J differentials dx
= 3 X 4y2 L3 nV:fltIVgs of x and y to fin
Self-Inst / P 5‘(@“) = 2 Contribution to df.
elf-Instructiona 74 5
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f he mater 'al
i 1 . i on ort terl
Differentiation ‘Total derivative’ is sometimes also used as a synonym

. . : Differentiation
The chain rule for differentiating a function of several variables implies that
e chain
n 1 dp 6
Du : ; dM oM BMEEJ_ » _a_ + -—'-—-—J(M)

derivative, D fluid mechanics. . 4 ; e %: P greoy
NOTES Differentiation with Indirect Dependencies For example, the total derivative of fx(?), y(5)is

Suppose that fis a function of two variables, x and ». Normally these variables are

assumed to be independent. However, in some situations they may be dependent on
each other. For example y could be a function of x, constrainin gthe domain of ftoa

curve in R*. In this case the partial derivative of fwith respect to x does not give the
true rate of change of f with respect to changing

¥ _ S D
dr oxd ay df

independent
; - es not depend on the in
X because changing x necessarily Here there is no gf/dr term since fitself do i
changes y. The total derivative takes such dependencies into account. variable ¢ directly.
For example, suppose 8
foey)=xy. 3.7 INDETERMINATE FORM woes
=l ] ing sub expressions by
/ The rate of change of f with fespectto x is usually the partial derivative of fwith e s _ . tions are performed by replacing
{ respect to x; in this case yHhepartia Limits nvolving algebraic operatl
of

i titution does not give enough
their limits. But if the expression obtained after this subs
<=y,

o 4 an indeterminate form. The
information to determine the original limit e ls/hl%w::j and 0",
© — 00, 00/c0, 2
indeterminate forms include 0°, 0/0, 17, %
However, if y depends on %, vative does not give the true rate of
change of fas x changes because itholds y fixed,

Suppose we are constrained to the line

3.7.1 L’Hopital’s Rule

¢ '(x) approaches L as x
I£/02) and g(x) approach 0 as x approaches & * Ilji{\%)l/ fe(.,) ]
a
approaches a, then the ratio f{x) / g(x) appro
e Lim f(x)=0
then If x—a
: =0
b o Lim g(x)
st case the total derivaive Of fwith respect to x i o Sl
_(EJ: =X LinZ 2
dx .
‘ . . f®)_p
Instead of nnmedlately substifut; ‘ . o
using the chain ryle: tuting for Interms of x, this can be found equivalently Then x—a g(%)
1 Y .o &oy

ino three step process:
= In the foliowi Jes, we will use the following
dr ox gygy YH¥l=x4y ollowing examples,

0
_f_(fl s an indeterminate form of type 0°
Notice that thig 1810t equa] o the partjy) derivatiy Step 1. Check that the limit of 2(%) i
(. . v
& okl 1) o ‘fferentiate ——) using the quotient
“P 2. Differentiate fand g sep
While one cap often
the chain ryle

perf()l'm sul : s
Provides for X bstitutlons

to eliminate i 4; - Tule]
OTe efficien a Indirect dependencies:

Mtp, ..., P)isa function of time

; — oo, thenitis equal to

The : tand . Eenera] technj ose Ste . - if—(—{)- . Ifthis i A f'(x)

1, the total time derivative of 5, is " Vatiables Which themse]yeg c?élpee.ncsllcl)lrjllzime' B 3. Find the limit of g'() form of type % , then simplify L)

. inate
%_ j %MU’ P(®),. P, (1)), the limjt of I% . Ifthe limit is an mdeter::gam
algebraicallfr and apply L’Hospital’s i
; Self-Instructional
166  Material
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Differentiation sin x

Differentiation
: . 3x*+5%x-17
Example 3.26: Lim— Example 3.31: Lim

o0 2x% —3x+1
Selution: Applying L"Hopital’s rule to both numerator and denominator we get,

L L P HIET g GxRE 06 3 NOTES
NOTES J8inx. . cosx  cosd Solution: S 2y’ 34l iotwdx—3 w4 2
Lim =Lim = =1
x=0 X x=0 Xx 1
. 3x-1
Example 3.32: Lim 3
Example 3.27: Lino1 arctan x p sev g2 £
x—=> X
o R T
1/{1+x2 Solution: Lim 3> L Lim == SLme< ) ©
4 Loy arctani, o % h ) h xow 2 4] xo@ Qx 232X
Solution: Lglg ; = LLI% 1 =1 [Applymg L’Hopital’s rule to bot
- 3_4
numerator and denominator] Example 3.33: Lim 3x i
2 xo® 2y° 41
le 3.28: Lim SX—cosx
Example 3.28: ul4 x—(n/4) 5_4 ot || = =l Bl
4 s ' Solution: Lim >* % _ Lim 2= E’LIE Tdh
/,: Solution: By using I’Hopital’s rule, row Iy2 4] xoe 4x
SinX—cosx . sinx4 COS x Indetermi of the Type 0.0
e T T e rminate Form o
il /i) x—:m___l__h g sometimes be evaluated by rewriting the product
EI:;detenn-inate fom;ls of the ltyﬁleg Otiofiilspital’ s Rule for the indeterminate forms of type
AL aquotient and then apply
Example 3.29; Lim <% ~! AOkhtan PP
x—=0 xz 0 S
o or —
07 -
Solution: L"Hopital’s rule implies, 1 jp el Lim=Sinx _ Lim—Cosx 1
R Tt o xi;n(}_T = Example 3.34; [ im xlog x
x—=0"
Example 3.30: Show that Lin} =] y s : =0
x50 logx _ Lim X = 11‘1'_1l~ = g__,)llg}_(_x)_
Solution: We have : Solution; Lim xlogx = Lin}r—l"]“ ~ a0t o g ey
, x—=0t x—0 /x /X
p XM Bl
x[_,)u3+x _xI—_-;uB"'e %
by Indeterminate Form of the Type - _
and tnerefore [jm y* — 0 - ; o Hressions:
LT e Alimit problem that leads to any one oX Gy )+ (+90)
(+o0) ), (~0)= () (400) +(—e0), (- indeterminate because
& ) +OO—-—|-<30, —00) — » limits are mndetermin au
L’Hospital’s Rule for Form 2 is : ( : of ty;# 00— - ek : ushes it in the positive
o o led an indeterminate formﬂ e;'c < on the expression; onep limits problems that
s otine influence pog e T, 111
Suppose that £ ang g are differentiabl : di:etgo I i conﬂlcggii?n the negative direction. Howeve
: ﬁlnctlons On an opep interval containing ead ttz)on antclllthe other}_)ufls
X=a,except i - ; one the expressio —(+o0
€p pOSSIbly atx._a’ lef(x)zm . ' ) P (-—CXD) o (-—CO), (—OO) (+ ) Ap
=g and that and L]In g(x) =op If le_f__(_,% (+c0) + (+CD) , (+(_'D) = ('—‘CO) L) kt ether (the ﬁ_rSt two produce a hmlt Of
L x=a . . o'(x ork tog
has a finite limit, or jf thg limitis 4 o o g A€ not indeterminate, since the tW0 feﬂ;‘s ‘:O ). Indeterminate forms of thettgpe 0 l—t?o
) : ’  lymit o1 — oo J- i i e result to
0, then Llrnﬂ’_‘l = Lim—_'_’.c_) Moreover, +0 and the Jast two producea hmﬁr;bining the terms and manipulating
this statement g also t B, i, o) 30 Sometimes be evaluated by €0
e in the Case By g JC) 0 0
X =400 0r'a llmlt X—q o ftype = Op'T "=
Self-Instructiona] ¥4’ x 5 o or 85 Produce an indeterminate form of tyPe § @ oo
168  Material :
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Differentiation

=[] 1
Example 3.35: Lim [— = ]

x-»0"\ x sinx

A (sinx-x _ cosx—-1
x=0" | xsin x x=0" xcos x + sin x

s i fubye
Solution: S T

DR 0
*=0" —XSIN X+ COoSx + cos x 2

Example 3.36: 1;1_1}3 [ln(l ~ cos x) - ln(xz)]

Solution: I;g% [ln(l —COS x) — ln(x2 )]: Lim [m(l 3R X j -

=0 -—-—x-z—'__
ln[Lir% (1 ~ c;)s xﬂ 4 In[Lim (sin xﬂ % ln( 1 )
=2 x =0 | 2y TZh

Indeterminate Forms of Types (°, 00 and 1°

Limits of the form Lim [ (x)® {

or E,_]E}D [f(x)]g(x)} frequently give I’ise to

indeterminate forms of 0 -
the types 0, o and 1, These indetermipgg :1es
be evaluated as follows: ate forms can sometime

1 y= [f(x)]g(x’

@ Iny=n[s(x)p - () In[f(x)]
3) Lim [in y]= rjpy

rEha ¥>a {g(X)ln[f(x)]}

The limit on the ry

ghthang ¢
limit of the fype 6. and side of the

equation i
% Evaluate thig quation wil] ysya

: tusing the tecpyp;
Assume that Lim {g(x)h‘[f(x)]} af echni

lly be an indeterminate
que previously described-

4) Fi -
(4) Finally, Lim [in )< ; £ hll:Lim }
X q Y ZL: le Vv L
X gq 7 =e
Example 3.37. F; ] ~
4 Lim (e* %

Solution: Llinm (e" + 1)‘%

NOTES
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. —2In(e” +1)
Lim Iny= le——(-—

x—»+0 X—»+0 X

er
_2{ x ] % -2e*
R i ) e O ==2

=0 o

Lim

X=y+0 1 RS eI +1

-3/
Thus, Lim (¢ +1) 7~ = ¢
X—»+0

3.8 MAXIMA AND MINIMA FOR SINGLE AND TWO
VARIABLES

———

3.8.1 Maxima and Minima for Single Variable
Definition 1

int of y =f(x), i < f(c), and (i
The point (¢, £(¢)) is called a maximum point of y =1 (%), l‘fi(l)u{n (i ;:2 01{}8) .an (ii)
Jle-hy< f (c) for small h = 0. f(c) itselfis called a maxim

O . .
Fig. 3.1 Maxima ana Minima

Deﬁﬂition 2
; 1 of y = (x), if
The poin (4, f(d)) is called a minimum poitt 91Y I
@) f(d+n)> f(d),and |
) 7d—ny > £(d)
forall small 4> 0. oL
i 1 — ) 2 of £ 3 o)
# (d) 1tselfis called a minimuin value 17 pompet A e el

3 — M, :
Thus, We observe that points P [¢ ) 1, whereas the points

"1€art0 4, have ordinates less than that - Y
‘(d + Ml
Rld—p, £ (d - hy), and S[d + .S @77

. o greater than that of B.
Which are very close to B, have ordinates grea

, ) {nimum poin
We Will now prove thatata ma.xmlum Ol';lds. tangen
Withrespect to x must vanish (in oW -vident from Figure 3.1).
S Parallel to x-axis, which is, otherwise: ©

. : t
Let [e,f (c)] be a maximum point and le

SinQe _/(L —_ h) < f(C)

j > 0 be a small number.

Differentiation

NOTES

Check Your Progress

12. What is the
geometrical
assertion made by
Rolle’s theorem?

13. What is the relation
between Lagrange’s
mean value theorem
and Rolle’s
theorem?

14. Write a use of
Taylor’s series.

15. Does the change of
the order of
differentiation
always yield the
same answer?

16. Write some

indeterminate
forms.
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we have,

fle=h)-f()<0

fle=h) -/ ., ..(3.3)
= —h N
Again, flet) < f(e) = fe+h)~f(c)<0
f(C+h)—f(C)<0 (3.4)
= h B o
' k) -
Equation (3.3) implies that T;ng————f(ﬁ l /() >0, [Put k = ~h)
: . h) -
and Equation (3.4) gives that I;Ln&&cﬂk—fﬁ <0 [Put k = h]
Thiss OSIEEEJ’(H’?C—J"(C)SO
= (Ex‘] atx =cis equal to Zero,
ie., f'(e) =0
Again, let [d, f(d)] be aminimum pointandlet ;> () be a small number.
Since fd=hy> f(a)
we have, fAd-mn-f@ > o
fd=h) - ()
A Ry g s (3.5)
Again, fd+h)2 f(a
f@+h) - f(d)
=>
L S (3.6)
Equations (3.5) and (3.6) imply I;imlgi@_“_fﬁ_) _
Y =0 k
ie.
s f" (d) = 0
Before we proceed to find oyt the criter;
i : te .
minimum, we will discugs e mcreas;ognafl‘?; gziemumng whe_ther 4 pomt is maximum of
A function f{x) is said 1o be ; Jiog o ncticng of

[fx+e)< @<y L C)]ncreasin

Theorem 3.4: 1¢

Fx) >0 ¢
flx)is decreasing he

; n1(x) is; :
function o, (x) S increasing

function of x gpg iff'(x) < 0, then
Proof:

f'x)>0

T e
S 5)36 X) ~ f (x) -
In case dx > (), Putc = 8x, thep Equat

f(x + C) > f(X)

In case §x <, pute =

! .37
on (3'7) giveg

= fx-c)-f(x) <0
= fx)z flx—c)
Hence, fx+e)= fx)= f(x—c)

In other words, f(x) is increasing function of x.

Suppose that /' (x) <0

Then

2

Lim f(x-i—&r)- - f(x) <0
fx—0 o

In case §x > 0, putting ¢ = 8x in Equation (3.8), we see that
f(x+c)—f(c)50
ie, fa+e) </
If §x <0, putting ¢ = — x in Equation (3.8), we get,
flx—c) —f(*) .

= f(x—c)c—f(x) 20

= f@)<fe-o)

So, Flx+0) <f®) sf(x—.c)
This means that £(x) is a decreasing function of X.
Notes_-

i j easing) if
1. Afu flx) is said to be strictly increasing (st ictly decreasing)
. nction f{x) 1s sa

—¢)] forallc> 0.
fx+o)>f)>flx—c) [fx +¢) Sl e?)]p y, and f{x) is decreasing,
2 1t that {x) is increasing, if fix) > fy), whenev y
. 1S seen a

ifx>y= flx)<Ay)and conversely.

i is stri increasing or strictly
pove that a function f{x) 18 strictly
3. It can be proved as abo

decreasing accordingly, if

) > %) < 0. ) ! ion, tangent at any point
. S '(x) 0 or f'(x) eans that for an increasing ﬁm:;;l(;ent aﬁm ypoint makes
eaﬁmetncally, Theoiﬁn(;;(' ¢ hmereas for a decreasing function,
€s acute angle wi e

2 () md 12 B))

AN obtuse angle with x-axis (refer Flguresuive(y =flx)-

Let 4 be a maximum point (¢, fc)) °f2 Ch)] be two points in the vicinity of 4 (i.e., 2
+

LetP [c=h f(C_h)] and O [c + h,f(c

is very small),

Y
A

A

I 0
o) /424__——-")(

Fig. 3 2 (b) Obtuse Inclination

Fig. 3.2 (@) Acute Inclination

. (3.8)

Differentiation
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Differentiation
i tion Ify, and y, are inclinations of tangents at Pand Q respectively, it is quite obvious from

Step L. Putting ' _, calculate the stationary points.
- | : dx
the Figure 3.3 that y is acute and , is obtuse.

gt - . Sy
Analytically, it is apparent from the fact that function js increasing from P to 4 and Step II. Compute 7 Y atthese stationary points
NOTES decreasing from 4 to Q. So, tany decreases as we

2
pass through 4 (tany is +ve when y
is acute and it is —ve when  is obtuse).

NOTES

5 ;  tic 2 minimum point.
In case d_;) > (0, the stationary point1s a mi p
Y dx
y

-

dy

2

In case

<0, the stationary point is a maximum point.
dx

dy d y
If — = mpute —5-.
Y 0, then comp P

3 ry point is neith maximum nor a minmum at that point.
If dﬁf‘ # 0, the stationary point 1s neithera
dx

Fig. 3.3 Inclinationg W, and
2

e X i that point, then there is a
If by 0, find 4y If the fourth derivative is negative atthat p
afy : dx3 — M dx4 . . mlnimul‘n-
Thus - =tany is a decreasing function of x, I other words 4y <0 maximum and ifit is positive then there 152
Since tany is strictly decreasing functio T T bove till we get a
n of x, i . 4 s Lo nd proceed as above
&y i ' (Ax) is not a constant function), s0s Again in case d_i,’ -0, find the fifth derivative andp
a2 - Lonsequently, at a maximym point ¢ (o)) dx
’ definite answer ion
p _ - ‘ .+ um values of the express
A : ; MON Example 3.38: Find the maximum and minim
S@‘tlsa.ﬂﬁil“ Caflgﬁs casily seenthatif R [4_p, 14 M]and 5| AP St
points in the neighbourhood of aminim pe o A80AS[d+ g4 g are twO
through B increase. Here W, is obtuse :;Itlaﬁ:?tf%dﬂ?]’ slopes Oftafl(gents £ we pass Solution: Let y = x3 — 3x2 - 9x +27
Figure3.4). i 1~Vandy, §
guri ) \Vz 18 B.Cute, SO tan WZ >0 (refef % — 3x2 —b6x— 9
Therefore, for a minimum pos d*
2 point (d, < DAY A ey}
S, x>0 ie,f (d)>0, For maxima and minima, Bt 4 e
Y B
A = 352 —6x—9 =0
= (x—3)(x‘”)=0
- )
i
NOW, &'x‘;i =6x 6

: int of y.
2 3 amaXImumPOID
Atx:_:l’ d y =_12<0’ Soxs—-l glVES
dx_z

1. A point (g, B),

=3 givesa minimum point ofy.
inﬂexiOn.

; 2,
Agam, atx=3, 9’.%=+12> 0,x

2.9 (-1)+27]
a)to e, ‘ .__1 3,_._3(’—1)
2. Any point a¢ dy MM % 0 called a point of Hence, maximum value of}’31S [g4 )
0 a Whl(.‘.h =0 . =36+1—' = 7
is . ; 2-9(3)+
are Stationary DoiALs dx : Calleq , Staﬁonm-y Poin While minimum value of y i 33— 3(3)
(it could be g s - - Latio ary poj - Thus, Maxima and minim? ~54-27-27=0
valuye, e Oflnﬂe’iion). Val Mneed oy be a may: Two Variables
o Y offix) at o staﬁona’iimum Or' a minimum point 3.8.2 Maxima and Minima for TR R -,
: f?; nf(if the fOIlowing fule for i Pointis called ssationary Consi )d ofinedina domain Ofthi:é’ !;ffo r every point (x, ) in the
10n y = ¥t S 1 aluc, 3
Self-Instructional Y ‘f(x) etermmatlon ofrn . 3 1der the ﬁmctmnj(x,y e an extreme Vv
174  Material aXlIna :

0 that domain, Now, f{a, b) is said t0 ¢
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Differentiation

Self-Instructional

neighbourhood of (4, b), fix, y) —fla, b) keeps the same sign. This extreme value f{a, b)
is maximum according to f{x, ) - fla, b) is negative or positive.

Necessary and sufficient conditions for f{x, y) to have an extreme value at the point
(a, b) are as follows:

Ne(ces;;ry Conditions: The necessary conditions for fx,y) to have an extreme value
at (a, b) are,

o 4
a0 VS0 "é(a,b) -0

= i of d
Sufficient Conditions: Let, =— =07
3] (a,8) =0, & (@,) =0 and, let Ax, y) have continuous

partial derivatives up to the second order in the neighbourhood of ( b)
a, i

2
Let, e 2 R I
ox oxdy

(a’b)»

2

——

3 (@b), A=4c_ g2
1
2
3. IfA<0
4

function at (g, b).
Example 3.39: -

G
Gx"—4y+6x+3x2;

E=2,V+4x
For maxima or py;p:
Minima, & _
> 5 =0ang & _
3x +T6x+4
Y=
ie., y=-2y and 2y 4 4, 0
Put &
y=_ s
g 2ok 3x2+5x+4y__0
+ =
T ki 32 =g
x=0x___2 ’x(3x—2)__0
i h?"‘ndyr- 2x oF
2 POMLs where the e
(213,-4/3 funetjg, 3

At the point (0, 0),

AC - B? is negative.

At (0, 0), fdoes not have maximum Of minimum.

.. (2 4
At the point [3 g 3]

AC - B*ispositive and 4 is positive.
The function attains a minimum at (2/3,~4/3)-
15 83,02, B 4

Minimum value is f2/3,4/3)= 9 "9 "9 27 27

Example 3.40: Show that of all rectanguiar parallelopipeds of given volume, the cube

has the least surface area.

Solution: Lety,y, z be the dimensions of the rectangular
- olume of the cube.

parallelopiped.

Let S be the surface area and V be the v a
S=2(xy +yz+zx)and V=2~ k (Given)

k+_ﬁ£:l
5 = z[xy'!'x y

k
k E?éi =2|x —'—‘_]
é%g 2‘: _.__E;] all(i Eir [ .yZ

Il

o x
2
2 Ab 225 My S A
aS = .——3—; —-—by'—'_z, 6y2 y3
o’ x~ ax
sl D _p,

: v i “ —0and — <
For maximum or minimum, e 0 oy

Xy =kandxy? =k

X%y =k gives xy = Xyz - ¥~ ?

X2 =k gives xy? =xyz -V 7%
Hence, x=y=z=kfrom Bquation (1)

'S %
—[os - 1 [.d_aj =2
A = [_._axz ] = —'k = 4, B Bxa}; s
x=y=z

2
and C= [Q_g] = 4k =4
x=y=z

A=AC_pr=16—4=12>0and4>0

Differentiation

NOTES
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Hence, the surface area is minimum when x = y = z. Thus, the rectangular
parallelopiped is a cube.

3.9 POINT OF INFLEXION

)

Figure 3.5 shows the graph of Y=f(x) where f(x)isa continuous function defined on

the domain g < x < b. The points Q and § are called local maxima. The points P,R

and T'are called local minima, The points are designated local maxima or local minimato

S e The latter refer to the greatest

> um and global min
and least values attained by f(x) oyer thegdornainimmmn.

Thus, in the Figure 3.5 Misth . _
minimum is also the global minimm;_ghbal Maximum and R, in addition to being a loca!

All pointg at whj
Figure 3.6, S 6=
g elow there are Station are Calleq Stationg : in the
minima, Pointg Which gy, ry romts byt g5 shown locflI
dy €neither loca] maxima nor

O poing
K10Wn a5 2 poyg ofinflexion.

Self-Instructional
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. P
Fig, 3.6 e
(o)

int of Infexia”, »

Other examples of points of inflexion are the points 7, 7, , I, and /, in the Figure
3.5. These are the points at which the curve crosses the tangent to the curve as can be

seen in the

curve in the region of /, shown In Figure 3.7.

t I
Fig. 3.7 Tangent 1o the Curve
To the left of I, the gradient, /(x), decreases with increasing x and to the righi
2 )

increaseg with increasing x so that/, s a local minimu'm off ’(x)‘. Sim;l'arfllyl'l. 151;1 e:) lfjrg\l
Maximum of f(x), and so on for 1, and ,. Hence, finding the points of inflexio )

is equivalent to finding the local maxima and minima of/(x).

Local Maxima and Minima

1 words the
Asx increases from L to R the gradient of the curve degr;ase;l?ig zn agltlkclirb ity
3te of change of the gradient with respect e gon-l?osmvel be seen, in some cases
®rate of change of the gradient is strictly negative since, wall ;

Itis zerg at p

) e

y=f)

At P, f(x)=0
At L’ f’(X) >0
At R, f'(x)<0
2 re)=1"

' i ecttox is
But the rate of change of the gradient with resp

From this we can deduce the following:

Atalocal maximum

S'(x)=0 and f"(x)<0

Differentiation

NOTES
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Differentiation
Differentiation oD e + @ dyd :CfD_ ol sl (3 10)
ox ay 0z
. ding to (3.9), we get
J,‘ — f(x) Muitlplymg Equatlon (310) by the parametel'?\. and ad mng ( ) NOTES
= oD
RS (@+l@]df+[£’i+h%}q—)]c{v-p[g%-%gz—]dz:() wi(3:11)
L R ox ox oy ; £
P ) .
Equation (3.11) will be satisfied if,
At P, f'(x)=0 ou o u_ 00 o &2
—+A— =0 = J F) 0z
At L, f'(x)<0 ox oy Oy ¥ :
| o th tions and f{x, y,z) =0, we can determine the value of A and the value
At R, f'(x)>0 ng these equations XY Z) r minimum values of z.
ofx, y and z which decide the maximum o AN
. . B 1 . T e to be Introdu . &
In this case the gra.dlent 18 Increasing as x increases from L to R from which Note: If n constraints are involved, n multipliers hﬂ&} 2d°is that we cannot determine the nature
we can deduce the following: method is often very useful, the drawback Ofbthls r::z]e d from the physical considerations of the
: 3 €
Atalocal minimum of the stationary point. This can sometimes be
problem, : "
(x)= Z o 2 +172 + 22 subject to the condition
f(¥)=0and f"(x)> Example 3.41: Find the maximum and minimum of 2 +)
Thus, to identi ; =
oo ntify the loca] Maxima and minjmg of a given function we pmceed ax+ by +cz=p. : (1)
_ : Solution; Let = 2 btz 1)
Find all the stationary points j o solve 7 ax+by+cz—p=0 :
et ] ; f'(x)=0. - have from Equation (1),
cach stationary pojn¢ €valuate S(xx), the For maximum or minimum, we
¢ ’ > n =
® T /@ <0; Local Maximyn, du = 2xdx + 2ydy + 22dz 0 ! 1)
o ! . g =)
(i) it oy : or xdx + ydy + zdz (4
769> 0; Loca Minimym g dx + bely +cdz=0 4
iy i e and from Equation (2) 4 : & oot
L examin - dadding to Equation 3), we &
: © the behavioyr of 7'(%) Inthe neighbourhood of the point Multiplying Equation (4) by A an S
+ Ac)dz =
. X + Aa)dyx + (y + Ab)dy t (2
3.10 LAGRANGEaS MULT (x + La)dx + (0 i ¢ dk. dy and dz o zero, we get
IPLIERS Equating the coefficients of @ T
Someﬁmes itmaybe . g e g 2 R
= requﬂed o s = 0, . c
whlcharenot alli depend tofing estatmnaryv I ' . bles G+ la) =0; (y+ Ab) = 0;(zt rc) a b
try to convert the o *0tbutare ¢, alue of'a function of several varia ,
' ert the glven fllnctions t Nnected by some giy : ; I"IIYs wé ax+bytez _ 4 - [Usmg Equation (2)]
help Ofglven TEIati()nS Wh 0 the One havin Elven relahons' Ordlna ht ax by 14 f_{, — —-';—'—'E:_Ei_ T CTZ + bz +C
method proves very g+ Such A Proceg S 'Cast number of yariables with ’ Now, il i
i Onvenjent ure becomes impracticable Lagr ang® ¢ bp : . B -—c—p~—
d?ﬁtzﬂzﬂx’y’z)bethe i ’ ap i 2 24t T a+b+c
and let the varigh]eq x May; 5 = —— a
s yVa axlm sl . 2 b' +C 2
“ady 0 Scted byutrkr:eorr;?]f[]'nn Um value is to be det‘ﬂ'fﬂlﬂ'gd . lue of u as __g)__T
ation, the extreme va A +b+c
Forutobe MaXimyp ke S, y, 2)=q Using these in Equation (1) W€ get q
alue, it i 2 lue £-, at its value is
Ou 1t Necegg t 2 4+ 42 + z* has the va 2
= 0 gyf‘ =0, % _ 0 e At the point (% , 0, 0) the function X b4 g
Oz
Hence, ou di 4 o S “T—Qi—— . >’ _ jsminimum.
B ay dy+qé\d2 = 9 +b2+cl AR e
Di Sk z
Self-Instructional lﬁerentlatlng ® (JC = : (39)
Y:2)=()
180  Material
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L2 lan Py
U X y z

dU=0gives, E’dx-}-idy.;.gdz =0
X y z

ax+by+cz=p+q+rgives,
adx+bdy+cdz=

Multiplying Equation (2)by i and ad din '
dx, dy,dzto 0 separately, we get gtoEquation (I)and equating the coefficients of

m h
—tha =0, —+Mb . 2
X y 5

L e
Zihh .0
ax ik ez ==\
Now, ﬂ = _’.2_ - P Mm+pn4
3 = —_— = p m+
i 2 ax+b}’+cz z?:}lif‘
q+r
_m(p+q+r
X a(m+n+p)):y—'£(—p—i__q_i_r)_ P(p+ +
b(m+n+p), = q i")
Using these valyeg in c(m+ny p)

3.11 APPL
| ICATIONS o DIFFRRE
This section will discusg the applicas NTIATION
10

3.11.1 Su o

L] e | | .
Letpb Pply ang Demangq Curye Ntiation jp, commerce and economi¢™
et i ;

ke rfe ;:tthe PIICE and x 1y, uant;
- tusually slopes downwald demanded

‘ i\
Once again let p 1y the &
a supply Curve, Tt { e

InCrease Prices, s 4 suppl; el

cu

. Th.
€ Curye =f(p)iscalledac -fff’"d

€Cr
* the Qua t_eaSes en prices are increase"”
hat w A Slltly slllpplied. The curve x = g(?) is

called

Self-Instructional
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Fig. 3.8 Demand and Supply Curves

Let us plot the two curves on a graph paper.

If the two curves intersect, we say that an economic equilibrium is attained

(at the point of intersection).

Itis also possible that the two curves may not intersect, 7.¢.,
need not always be obtained. Py :

Revenue Curve: Ifx=/(p) is demanfl curve apd ifitis Iirosi:lbi; ;o f:glr:rsj ;p Vj:
a function of x say p = g(x) then function g 18 called inverse o 15 o “I,)e s
deal in this book, each demand functionf always possesses INVerse. {

x = (p) as well as p =8

i he total rev
The product R of x and p 18 calledt A g
Thus, R = xp where, X is demand and p is price. We can write R = pf (p)

=x g(x).
The total revenue fun

X-axis and R along y-axis, we can plot th
. rve.

This curve is called total revenie cu

Cost Function: The cost¢ s composed of two parts, nta;lmelﬁr, tlmf3 ix;i Z(;;to aurﬁ
variable CZSt.l;Iil:;:iogc;sts are those Wh.ii}nareﬁ?g athffeegtgggm :fihzrllaguildmg in which
ofproducts is a publishing i, OC
thsﬁﬁl?tlo-nl Su%p.os;;?g l:;)st (whether the number pf bool;s pzlzlézltlglv?;\r:}?:ls ﬂ(l);

eCI'eaSelgs) Slst-ua? 11 y t;ue galaries of people employed1s also fixe
. Similarly,

Production ig Zero).

On the other hand, cost Qf P
Publish the more paper is required, €tc-

=yC+FC : )
;I:;:;S Ci iowl;cost yC, variable cost and FC s fixed cos
re, C 1S , Ve,

Econom; tion of Derivative
ntie Interpret) rtain type of ball pens is governed by the rule
e

ball pens and y is the cost (in rupees) of x ball

economic equilibrium

enue.

iion is defined as R = x g(x) and if we measure x along
io
X e curve y =xg(x)-

rinting paper is variable cost, as the more books they

]

Suppos‘-‘», the cost of producing ac

Y= x4+ [x, where, xis the pumber of

Pens
| is 4++/4 =6
Thus, cost ofproducing4ball pen.sxs 4 .
g 9 ball pens 15 9++9 =12.

and cost of producin _ 4) more ball pens, the cost goes up by

Hence, for producing 59
~ 6= 6 rupees.

Self-Instructional
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ferentiation E + Fi : s ; - ¥ Differentiation

xample 3.42: Find the maxima or minima of x” y 2 subject to the condition
ax +bytcz=p+q+r.

Supply
Solution: U=x"y' 2 —___ curve

D d
NOTES log U=mlogx+nlogy+plogz poinn NOTES
Taking differentials, . —X
E Q
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6 —
So, each extra pen produced (from 4 to 9) costs 5 =Rs1.20.

This we call the average rate of change in cost. Again cost of producing 25 pens

will be 25 ++/25 =30 and thus ifthe production is increased form 4 to 25 the average
cost for each pen is given by

2=01024 bp o114
25—-4 21

In other wards, the avega

ge rate of change in cost is Rs 1.14 if production is
increased form 4 to 25.

Again, if production is increased from 9 to
_30-12 18

iy, Reli2,

25 pens, the average rate

We, thus, notice that the average rate of chan
we start and where we finish'. We have,
upon only the number of units produced.

ge (in cost) depends upon 'where
of course, assumed here that the cost depends

We generalise the above concept as follows:
Let the governing 1ule be B=E0)

Ifx is increased fo ¥ 10 x,, y changes from JSx)tof (x,).
The average rate o« \a -

nge is given by

I2 '—xl

Which we wr

5x 20d which clearly depends upon the value of x from

amount of increage (change) allotted to x.

sidea of average rate of change, a litt]e further.
Suppose, we fix the

starting value of although it m
a change in it say x to x + §x. ( “ Ry SR

which we start and on1,

SG+89 - fx) _

X+0x—x

Instantanegyg rate of change

= lim J(x+ dx) — f(x)
5):—;0-_‘_&—?\*% =

Consider ag ap cxample, the functig
Ifx changes from X tox,

average rate of change is

ny =f(x)=x-2,

= (X4 8r)? - 2

f(x+8x)—f(x)
____._‘h—_ e =6x+2x

Ox

and instantaneous rate of change at x will be
lim JEXO =T o gy Grsow) =2x.
e . oy i he instantaneous rate of change of
It is clear that we can deteirnéne the
Y =f(x) at any value of x, e.g., for y =x".

At x=2 itis2x2=4
at x=2 itis2x3=6
at x=4 itis2x4=_8etc.
(It is being given by 2x).

Example 3.43: Find the average rate of change for the function y =2x + 1, when x
changes from 2 to 6.
Solution. Here, 5x=6-2=4.
To calculate 8y, we notice,
f(6)=}2+1=13
f(2)=4+1=5

> 5y=f(6)-/@=13-5=58

. ic 2 when x changes from 2 to 6.
Thus, average rate of change 1ny'15 2 when x chang

Notes: ;e we notice, that -Zj’—, the derivative of y with
; s f derivafive, ) v
(a) Recalling the definition 0

int x.
e Of}' at a po s ¢
'eSpect to x is the instantaneous rate of chang {514 al (say over a certain time period) or
hange is over a certain interv i
(b) The average rate of ¢ ang..ﬂe other number of units, W
: 1 [0)8
Certain number of units to s

Change is at 4 particular instance.

Supply
3.11.2 Elasticities of Demand AR ORRL

sand law. The average price_ elas.ticity of
; i‘ , demanded to the change in price. If 6p
t t},l quantity demanded x, then we define,

fl’Om a

de
Elasticity of Demand. Letx =/() boefiluaﬂ
fiernand is the proportionate response ]l change
'S small change in price p and 5x18 SIA

§£ ox

op

= |

of demand = _5;
rZ
... defined to be the limiting value of average

average price elasticity

' d
. The price elasticity of demat!
Price elasticily_ Hence,

a'x
€4~ —; dp ‘
— will be—ve and, thus,

dx
e x=/f(p) slopes downwards, P
Since, the demand curve?

a- dx the value nfelasticity as [)OSitiVE, i.e.,
ve ~— soas tngei I
Slgll iS ﬂ.dded to the value a{r)

We write,

I\

= =
5| &

Differentiation
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Differentiation
If e, is elasticity of demand for x, :
10 o 1
: i i h sign. (The addition of thei . = _pag _ T (-1)= 7 |
B g f demand is also sometimes written without the —ve sign. en, , o o
fosul o
: 5 :25:;;2 fjivelithfeta RN ) I Again ife, is elasticity of demand for x,. f
i . X G .
N ice with respect to demand is defined to be the quantity — 7 L—fl ie, it g 2 I 4
i i rlc . . ) — _ s P
2. Elasticity ?f p of demand and is also sometimes called flexibility of price. fhis £,= 6 x 7=
NOTES is reciprocal of elas:mlty i
also expr ‘
3. We can g N n " =—3_.
dp _ marginal function el P 2
MT T average function . ' .
» in But at the point of intersection o
. .. : Lo fige B u
Elasticity of supply €_ is the elasticity of quantity supplied in response to chang p,= 10, x, i R defined by xp" = ¢ where,
ice and is given by L es. A constant elas
Py ; d Constant Elasticity Curv
=F£ &
% x dp

i is
n and are 1s qua ‘ty demanded. For such curve e
constants P 18 pI'iCC and x 1S qué nt1

c s

Example 3.44: Find the price elasticity of demand for the demand lawx = 20 —3p

_-p&
Now, eg=— &
atp=2 B ) ”=Cﬁ]0gx+nlogp=0
Solution. We have, x =20 — 3p ut, xp
o Lk B
== % 3 &'
Alsoat p=2, x=20-6=14. de _mx
= & P
us, d 14 7 pdx _ n, a constant.
Example 3.45: Show that for the demand curve x = f(), = €4~ xdp Jasticities of demand for the demand laws
-2 price elasicl
g, = |4ogx) ‘ EXample 3.47: If ¢, and &, are pr*
d(log p)

Solution. We have y = f(p)

i = 1 SR o
X=e™Pandx=<—, show that & :
P
Solutj
d on. We have,
Now, — (log x) :.i(logx)ﬁx_ =_1_£ p
dp dx dp xdp P& where, X
d 1 81 H X dp
50 SRelogip) = L o
7 § bl Sgvlieipt 2
1@ — Sk o b
Hence, &,= ££‘£4 =X dp p where, X = ‘_p_
xdp| |17, Again €25 "y o
d -P(p+1)
—— (logx) P f__ﬂ_(fii—-]
= L = | d(log x) Thus, A R I
— (lo d(log p) |-
dp( gp) ol (p+1)
Example 3.46: The demand functj = : d =g f_?_—
ctionx, atp = 10, The elasg; SROH %y, 50 Py ntersects another linear dema? eif
e i €1ty of demand for I siX times Jarger than that of 1 +1 & LEl
at that point, Find the demand function for x s & =D
: 2
Solution. We have, x 1=50-p, : Hence the resullt.
Self-Instructional
= ixl_ _—___1.
dp,
SeM[nsrrucﬁomz! Also at P= loa X
i86 Material
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3.11.3 Equilibrium of Consumer and Firm

Let X'and Y'be two goods that a consumer wishes to buy. He has a choice in resp;;tei
these goods and distributes his expenditure on these accordmg to his preferenf:es. -
are different combinations according to which he (Ean make his purchases. For exa- gf,\,’
he can buy x, (quantity) of goods X'and y, (quantity) of goods Y. Or he can buy x,

and y, of Y and so on.

Let us plot the quantity x of X purchased alon
along y-axis. Then anyone set of purchases can

Let us now start with anyone

A(x, o) then all other purchases ca

(?) Those purchases which he
(xos J’o)-

(i) Those which he would prefer less in com

(@if) Those purchases to which he
such that he does not care w
derives the same satisfaction

gx-axis and quantity y of ¥ purchased
be represented by a point (x, y).

given set of purchases represented by a point
n be divided into three categories.

(consumer) would prefer more in comparison to

parison to (0> Yo)-

is indifferent i.e., any such purchase, say, (x;,1)

hether it is (xo, Yp) or (x4, ;). In other words, he
in making the purchase (xXgs yp) or (x,, 3y)-

with (g Vo)
Similarly, if we start with any purchase (x', ') not included in the above indifference
curve, we get another indifference curve

atthe level of preference of (x',»"). Note that
such purchase [of the type (x',")] can be picked up from (7) or (ii).

e(x'

et various indifference curves by considering different sets of
purchases. We therefore, geta System of indifference curves, each consisting of points
atone level of indifference. Th

1s system is said to constitute ap indiff; Alsos
e : erence map.
clearly the indifference curve can be put in ap ascending order of preference of the
consumer,

Let the indifference map be representeq by the equation
d(x, y) = constant,
Then, u = ¢(x, ) takes a con

. stant valye On an
1ncreases as we move from lowe

iohon s 1: ) o0€ Of the indifference curves and
10 higher Indifference curves,

called utility function ifj

: trepresents ¢
(quantity) of X ang y(q

L In short, we ca
vantity) of y,

: n sa x,y) 18

©Consumer when he buys*

The above can be i
generalised for ;, ; \
n ltemS -}-1, xz’ voudiX

If 0oy x5 0 X,) = Constant :
1s their indifference map, thep

i =0 xy, )
1s utility finction, ;

. O s called marginal utility.

v iliti i two commodities x; and x,
: Fi inal utilities with respect to i d
Eﬁam/l&]’ ¢ 3i48.(;: )1:'1 d—t 26111:11;?(:?&16 two commodities are consumed and if the utility
when =1 an =
] 5 &
function X, and X, is given by

u E(x1+3) (“2_'_5)

0
Eachof 24, 9%
ox; 0x,

Solution. We have,
U= (.‘Cl + 3) (x?.+ 5)
_é‘i

=x,+5
= axl 2
and ou _ x, + 3.
ax:)_
So atx, = land x, =2
au = 7 _a.l—l— =4
é—’-'_l : 8x2
Which are the required marginal utilities.
Sy =y el o b
312 SUMMARY

] as x — a f for any given small positive
t

i limi
® A function f(x) is said tohave a ber & such that

number g, there exists a positive o
lf(x)rl|<8for0<[{c_ tx=aif f(x)=/f(a)or
A function f .) is said to be continuous at:
® nction f (x

f@-0) =f(a)=f(a+0)

is a point in (a, )
interval [a, b] and ¢ 1s a poin
i in the closed I ‘o di tiable atx=c.
° Iff(x)isa func.:tmrfI' dftf;lg(:ﬁen we say that f (x) 18 differen
and if f'(c) exists fimtely,

' 2 Els :ts_is called the differential coefficient of y with
% Limd (x+d)— (%) ifitexists, i

G0 §x aﬁl

.. written as _
respect to x and is written &> g functions of a single variable 7 (called a
as fun

iven
® If x and y are separately 8 o ¢ ay and then use chain formula
te o 3¢ gy
first evaluat® " 7,
Parameter), then we

dy

dy _dt

dy _dy dx to obtain dx £
dt dx dt’ dt

erts that if fla) = f(b) and the curve

»g theorem ass e definite tangent at each point

® Geometrically, Rolle x=atox=

: m
¥ =f{x) is continuous fro

Differentiation

NOTES

Check Your Progress

17. What is the
minimum value of a
function?

18. Write the sufficient
conditions for a
function of two
variables to have an
extreme value.

19. Where is Lagrange’s

multiplier method
used?
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= - 1 i tween x
b then there is at least one point be :
iati of the curve between x =agand x . een
o = ; d x = b where the tangent to the curve y = f{x) is parallel to the x-axis
aan ¥

If fis continuous on [a, b] and derivable on (g, b), then there exists a point ¢ €
e !
(a, b) such that, /(b) —fla) = (b —a) f'(c).

The Taylor’s series can be used to represent a function as an infinite sum of
{ terms calculated from the values of its derivatives at a point.

o We define partial derivative of 2= (x, y) with respect to x, as the derivative of z,
regarded as a function of x alone.

NOTES

o Limits involving algebraic operations are performed by replacing sub expressi(?ﬂs
by their limits. Butif the expression obtained after this substitution does not give
enough information to determine the original limit then it is known as an
indeterminate form.

e Afunction flx) is increasing,
x>y = fix) <f).

° Ifflx,y)is defined in a domain of the

then fla, b) is said to be an extre

neighborhood of (g, b), fix,y)

iffix) > fly), whenever x > y, and is decreasing, if

xy plane and (a, b) is a point in that dqmahl’
me value if for every point (x, y) in the
—fa, b) is negative or positive,

e Lagrange’s multiplier method is used to find the stati

several variables which are notall i
relations,

3.13 KEY TERMS PR DO L T

el mininl il U

° Discontinuity: A function which s not continuous at g point is said to have 2
discontinuity at that point

° Independent variable: If Yisa function of x, thep y is an independent variable
and y the dependent variable

° Differentiable function: A
derivative exists at that point

e Stationary point: Any point at which the derjvar: _
: Tivatiy ion i 15
called a stationary point ¢ ofthe function is zero

14 ANSWERS TO ‘CHECK youR PROGRESS’
1. Ifa Vﬁriable_

increases without Jimjt (it is greate”
x tends to infinity and we write it 85

. Uming negative values o
(=x is more than any positive large nlunb:g’
and we write it aSX — — oo,

increases Mumerically without lin?it
We say that x tends to minus infinity

Self-Instructional
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10,

11.

12,

13.

14,

15,

- Let y be a function of x.
. A function £ (x) is said to be der1v

i andz1i
. If y is a differentiable function ofz,

. Parametric differentiation 1S ap

i c=qaif Li =f(a),i.e.,
A function f (x) is said to be right continuous atx=a if }J{,‘l fx)=f(a)
fla+0)=7(a)

- I y it1 i iﬂuous
. i ( ’ ) t

throughout the interval.

for all values ofx.

it ivative of / (x)
) ‘s limit is called the derivative o
. fle+h)—f(€) oists, then this limi
(a, b). If E:_l%l ——T_‘

dy . = cand the function f (x) is said to be
'(¢) or atx=ca
at x = ¢ and is denoted by /(¢ i

. . i . t
Iff'(c) exists finitely, then we say that / (x) is differentiable a
derivable atx=c. c

¥ =, {1 x an independent variable and y dependent
We call x

variable. able or differentiable atx =a ifits derivative

exists at x = a. s a differentiable function of x, then y

. . _ q X, i.e-,
is a differentiable function of

Y _B.e&

: i i i ctto
dc  dz dx lied in differentiating one function with respe
P

eter.
; d as a param
another function, x being treate

dg (x) Thi

can find —=~— . This

& - oaina function, say, gx) of . We dx

Lety=F(x), then — 1528 i

¥ i dby 22 orbyy,
; ect to x and is denoted by 3 5

iative of y With TeSP
; g .
1s called second derl camction more than once is called successive

i jatin
The process of differentiat

ey =flx)is
differentiation. et it fa)= f(b) and the curve y

- m ! t at each point of the

Geometrically, Rolle stthexoisb e
=ato

continuous fromx =4 doci

curve between x =4 andtﬁ the curve y

X = b where the tangent "l

Lagrange’s Mean value Theo

t mean va
theorem. For fla) =Ab) the firs

to represe it
: pe used O : afives aba point.
The Taylor’s series ¢! fits derivativ

=gand
there is at least one point betwefan x=aa
= f{x) is parallel to the x-axis.

first mean value
'« also known as the ,
T)lLllsciheorem yields Rolle’s theorem.

nt a function as an infinite sum of

0
the values
terms calculated from _ it not always
& hange of order of differentiation does y
622 ____E-— i-e‘i c 2 d
L8 ? . s theorem an
In general %0 oy Ox theorems like Young

here are famous

ivatives to be equal.
:++ons for two derivatives
:ant conditions
ufficien

h
yield the same anSWFY- ;
Schwarz theorem which g1V¢

Differentiation

NOTES
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0
16. The indeterminate forms include 0, 0/0, 1%, c0 — a0, c0/o0, 0 X 00, and oo

17. The point (¢, £(c)) is called a maximum point of y = £ (x), if (i) f(c + /) < f(¢),

d (ii) f(c—h) < f(c) for small 22 0. f(c) itselfis called a maximum value of
and (i —hn)<

1. |
of o

: ial derivatives
—-(a.b) =0, —~(a,b) =0and, letf{x, y) have continuous partial deriva
18. Let, -(@,0) =0, =~

up to the second order in the neighbourhood of (a, b).

aur it
Let, A= 23 (a,b), B= oy (a,b),
C= %(a,b)’ A:AC_.BZ

e The functionflx, y) attains a maximum a (a,b)ifB>0and 4 <0.
° The function attains a minimum at (a,b)ifB<( and 4 >0,

o IfA<0, then the function attains neither a maximypm nor a minimum at (a, b)-
° IfA>0, then further investigationg areneeded to decide the nature of the
function at (a, b).

19. Sometimes it may be required to find the gtat:

variables which are not al] independent by

tare connected some given relations-
Ordinarily, we try to convert the given functj i 4
variable:s with the help of gjyen relations. Whep such a procedure becomes
tmpracticable, Lagrange’s methoq Proves very convenient

3.15 QUESTIONS AND EXERCISES

Short-Answer Questiong

. Define limit of function
- Whenis a functjop continuoyg?
. Define left hand anq ri

: ghthang derivatives.
. What is the derivative

of sin x9
. Write the formula for the g;

SOE CORT) S ORI LAgE g (BRSO =

e of logan'thrnic di
. Whatig remainder ip T: \

aylor’g Series?
- Define partja derivatj
. State L’Hopita)’

fferentiation‘?

f—
—_— O

Ve ofa functigy >

,_.
B2

=%,3) with Tespect to .

—
(75

And minimyp, Pointg?

How many multipliers have to

there are 5 Constraintg?

Cinfrodyee ; :
ieedin Lagy ange’s multiplier method if

onsto the one having east number of

Long-Answer Questions

1. Evaluate the following limits:

' L piy [ 202 b#0.
Hn ez, 28 [sin be where
n — n -—I
2. Show that Lim 2 —% =na"".
-0 x-—a
3. Show that the function defined by:
0 forx<0
1
~]2~ -x for0<x< 3
l 2l
b (x) = 3 forx= 3
1
- f0r5<x‘<1
1 . forx>1

1 1
is not continuous at x =0, 2 and I.

d£(0)="01is continuous for all values of x.
4. Show that £ (x) =x sin ;1; ,x#0an ¥

’ t lf X 2 g ’ X

a = - A" e[l I 3 XxX=da.

. ' T
x 1) forx#0, f(0)= 0 is both continuous and derivable
Prove that 7 (x)=x*cos [ )

x
atx =,

The function f(x)is defined by

1+xforx>0
f®= {1—x foris
: 'M=1
ShOW thatf'(O) does not CXISt, bw;{b(
y
Show that the function (x) define +|x—2|
f(x)=1x|+|xe1| ;
; frt 0’ X — 1’ X=de:
is continuous but not derivable at xf llowing functions,
% Differentiate with respect 0% ;1;?5/20
@ 3x2—6x+1, (27 +5%
. by | axz +het &
(11) x+1’hx2+bx+f

oz functions:
10, Compute ? st > for the
X

O z=(x+ y)?
() z=log(x + )

Differentiation

NOTES
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' - UNIT 4 INTEGRATION

Structure NOTES

4.0 Introduction
4.1 Unit Objectives _
4.2 Elementary Methods and Properties of Integration
42.1 Some Properties of Integration
422 Methods of Integration :
4.3 Definite Integral and Its Properties
43.1 Properties of Definite Integrals
4.4 Concept of Indefinite Integral
441 How to Evaluate the Integrals
442 Some More Methods
4.5 Integral as Antiderivative
4.6 Beta and Gamma Functions
4.7 Improper Integral
4.8 Applications of Integral Calculus
4.9 Multiple Integrals
::g:; gzﬁﬁ?:r:eolfné?ﬁz Integrals in Cartesielm and Polar Coordinates
493 Evaluation of Area Using Double Integra’s
4.10 Applications of Integration in Ecgnomlc:
4.10.1 Marginal Revenue and Marginal Cos
4.102 Consumer and Producer Surplus
4103 Economic Lot Size Formula
4.11 Summary
412 Key Terms ;
413 Answers to ‘Check Your Progress
4.14 Questions and Exercises
415 Further Reading
AR e

\\h—
4.0 INTRODUCTION

(Length, Area, Volume)

) : lus. Integration is the
In thig uyn: ; t the basic rules Ofm.wgr al calgu iy
e e oo s Wi e OIS R
e it reforred to as indefinite ntegreh VI VT vl"f’ e ciomonlyofislimityand
Itis referred to as definite integral A definite ntegra = £a definite integral are changed
0t of the Vari(;‘g?e :rhi chmaybe changed. Iftl“lellumts:3 1(; i o, i

€nthe sign of the integral also changes. YU Wl%l earnd indefinite integral. You will also
inteF:',rati definite integral and its properties, o | and irrational functions can be
leam 5 feworrxll,et]iocril:;;nWhich integration of1ERIIE B

e Onn . . .
T: . aboutthe applications of integral calculus in economics
. thisunit will also discuss &'
Multiple integrals, and Fourier Serie*

0
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4.1 UNIT OBJECTIVES

NOTES

After going through this unit, you will be able to:

6) Icosxdx =sinx

) Iseczxdx =tanx

d ..
because = (sinx) =cos x

d
because —- (tan x) = sec® x

198
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e Understand elementary methods and properties of integration
¢ Define the term definite integrals

* Explain properties of definite integrals
* Discuss the concept of indefinite integrals
* Apply integral calculus to find the length, area and volume
¢ Describe the significance of multiple integrals
¢ Explain the applications of integrationin €economics

42 ELEMENTARY METHQ ———
INTEGRATION DS AND PROPERTIES OF

\

After learning differentiati —
integration. Ti give aprtel:it;::’h:l;z ]t?tz eome to the ‘reverse” process of it, namely
is a fanction of x such thy " € definition of integration, we observe: Ifg *)

d
& 8W)=f(x)

then we define integyal of £ (x) with Te

. S| . i
the notational form as, PECtto x, to be the function g (x). This1s puti?

The function f (®)is called ¢ If W =g ®

. NS e us
that integration ig being dope with :::;gz:xtf. Presence of dx is there just to remind
For example, since d *

—

demxzc()s)c

We get many such re I.cosx & =sip 4

and can treat thep, as

p adire
formul ’ . ct °0Dse u jo:
M f1a = — S Aligt Ofsmhc;taennce ofthe definition of integrat®"”
lde =x Tesults are given:

bec d
@ Ix" & - ﬂ 4 ause E(X)'al
n+1 ('”ﬁ"l)
. becauSe i xntl
€)) I%dx =logx dx(n\-bl) =xn#-1

beca d
@ [Faap e S (ogxy= 1

™

' becau d
, , se 4
®) jsmx,b: =~ cos 5 & (@) =g

becange 4.
dx P08 x) =gin

2

d -
®) J'cosec" xdx =—cotx because = (—cot x) = cosec’x

d
) dx “ = X
©) I secxtanxdr =SEC X because — (sec x) = sec x tan

' d
- x)=cosec x cot x
(10) Icosec xcotxdx =—COSecXx because i (—cosec x)

1

l1-x

a1 I because -‘% (sin” x)=

2

L dx=sinx
\/l - x?

1 P |
1) [ de=tanlx

d 1y —
because —(tan x) e

because —‘-i-(s"vc_1 ) = —=
dx ' x\/xz -1

(13) j\_l dx = sec"l X
xyx? -1

d l:log(ax-l‘b):l= 1

(14) j‘ 1 = log (ax + b) because Ex' a a+b
a

a+b

n+l
A5) [(ar+ by e =LaLnf;?%, 2 @D

d (m + b)'H‘l

e =(a+b),nz-1

d x_
A6) fox g = because @ =7 108
log a

: . -
One might wonder at this stage that sIn¢

i (Sinx+4)—’=cosx .
dx  ismoh (sinx+ 4)?In fact, it could very well have been
x <

Then’ by definition, why jcos in the definition.

; tion
MY constant. This suggests perhaps 2 small altera
©now define integration as:

r 4 .-

&0 =®
Then, j f(x)de =g(x)t+¢ ¢ of integration. Obviously, c could have
®Te ¢ is some constant, called the consS :1‘:)’: unique! But, we could say one thing here,

v i ctioni ¢ o
at ::“e and jchus, integral of a ﬁl,:eﬁmc rion differ by a constant. Sm.ce c cou d S0
> fwo integrals of the 52 alues of j f(x)dx . By convention, We will not

ay . Vi
® the value zero, g(x) is one of the  hore, andthus, j F(x)dx =g(x), and our

ition stands,

Integration
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The above is also referred to as Indefinite Integral (indefinite, because we are not

really giving a definite value to the integral by not writing the constant of inte gration)
We will give the definition of a definite integral later,

4.2.1 Some Properties of Integration

The following are the some properties of integration:

() Differentiation and integration cancel eqch other
The result s clear by the definition of integration

Let £ ¢() = /()

Then, j f(x) dx=g(x) [By definition]

d
= ZU@al =L oy o

Which proves the result.
() For any constant a, I

af(x)de = ﬂ_[f(x)dr

; d
Since s, (ajf(x)dx)= a 5; If(x) dx

=af(x)

a f(x)dx =g [ ax
(i) For any two Junctiong f(x)ang g(x)
X),

[f(x i
J U0 g g [7Go ae 4 [g(x) dx

d
As —| [10) v Je@ar]< 2 d

& [0 des % Je@ ax
It follows by definition that,zf(x) =)

By definition, j

[f(x)+ o
This{esultx zoufd(;)]dx g j‘f(x)dxi .[g(x)dx
eextendedto :
j[fi (x)ifz (x) A aﬁmtenurnbe )
B Col o roffunctions, i.e., in generah
Example 4.1, Find J‘(Zx_3)2 Ifl (x) d + J oy & .. & J, £ dx
SOllltion: We haVe dx.
I(zx_3)2 dx = j’
(4x2 +9
~12x) g
=1lla2
j4x dx+-[9dx“-‘[12xdx
I: dx+9‘[dx__12 I ;
S Xdx
= 4? + 0y lgici
w4 2
3 XS 6x2 4 gx

Example 4.2: Find I(Zx + M3 dx.

Solution: We have,
) 13+
Jx+1)!? dx = &YT—D-—X;
—+1 .
3
=@+ 1)¥

3
Example 4.3: Solve ji{ dx.

Solution: By division, we note

x3

=(x2-x+1)-
x+1 L )

x+1

x+1

: [ = fo2-eD di-

L e
x+1

_ [ [t [ ik

7
¥ %

El

Example 4.4; Find [+ cos2x &
Solution: We observe,

x+1

2

I 1+ cos2x dx = 11/26052 X fix-'=\/§jcosxdr

s ﬁsinx
4.2.2 Methods of Integration

The following are the methods of integratior:

(x) i ivative of fx)
To evaluate J’%-E)) dx where f(x) is the derivatiy B
X

Put £ (x) = t, then f"(x)dx = dt

Thus J‘f'(x) dx= J‘ﬁﬁ =Jog t=logf (%)
) 1

To evalyate j[f(x)]" Fds,

Put f(x) = ¢, then f* (x)d¢ = d:

rm'-~ v Lf_(.fl:.lfil—
Ths, firGy e o =531 n+l
TO eValuate If!(ax - b)(i\f
P L. =
Utax + p =, then, adx =d! 7ty _ flax+b)

I @+ yas = Ir (r)%’-% [ro# ==

Integration
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2 Integration
; g as cos 2@ —sin " 0=1
Example 4.5: Evaluate (i) Jtan xdx (i) Isec xdx .
sec x tan x - Jdﬂ =9 =Sinh_!(;)
i * (3 = —-—_dx =
e T Jtaﬂ 4 I seex og secx Aliter: Put x = a tan 0, then dx = a sec” 0d0 NOTES
NOTES

(i) J'sec o J-sec X (sec x + tan x)

Thus
dx =log (sec x + tan x) ’
sec x +tan x

2
asec’0dd J‘M: Isecﬁde

1 =
— & 0
Example 4.6: Find qu/xz +1dx J./al &2 Im 58
Solution: We have, =]log (sec 0 + tan 0)
1 _
[xyx® +1ax = %j(lr) (* +1)2 dx . Ji¥ +d’ +-_‘}
= = -
1 !
L2 +1)2"
- —— B 2 2
- ¢ x~+a
2 _1,..*_ 1 =lOg ﬁ__.\/—___’————'}
2 a
| L
= 5 (x2 + 1)3/2 ) 1 i
(i) To evaluate I——Z——z’
Example 4.7: Evaluate j'_z.x_ﬂ_ di \/ia’ ey
X" +2x+3 Putx:acoshesthendxzaslnh :
Solution: We haye, [ *+1 L 2x+42 Thus
L] ——— dx: —_— ? .
jx2+2x+3 2.[xz+2x+3 i asinh@dd jﬁ_ﬂﬁfl@de:jde
| J di= [ re-a  Jasnhd
=21 xz x2 —a2 a® cos
5 10g (x"+2x + 3) o
Six Important Integra]s =0 =cos h a
We will now evaluate the following six integrals: — g sec 0 tan 6.d6.

I 1 Aliter: Put x = a sec 0, then dv =
(D dx (ii) 1 ”

‘_‘—-—-_dx . va 1 I h :
T J a® + 32 (iif) I_Té"dx asecOtanddd _ J‘secede

- 1 = [ ——
(iV)I a® —x2 dx v L2 i "‘ x? - g2 e '[ a’ secc9—a”
W) [ 422 gy

(vi) J xt~g? dx

; + tan 0)

(1) To evaluate J__L__ e = Jog (sec © )
02 o JC2 [ \’W

Putx =g NP

1 ] .
Iﬁdx=j—?\[—ﬁz\m=jﬂgde x+\ﬁ‘7 2

a” —a“sing acos@ = log /;—

RS 1 (iv) To evaluatej P
2 s =Sin (-——) OSedB'
“ Put x = gsin @, then dx =4 ¢

dx

"5, — [a? cos? 0 dB
N — 0. a cos 00 = fa’ cos
Putx=asinp g e j P wx? dp= [Jat=a" B
Thus, > Hel dv = a cosh § 49

(ii) To evaluate joels
2

_ 2 Liff’i%@-]de
j‘ 1 a ho J 2 Self-Instructional
= Cos ) ) i
Se{f-brs!rzrcrim;al "_\/r\_‘z— dr = J‘--—-____‘a_"L — facosh Material 203
2 e e @ +a sy Jacosip %




Integration
T - azl x+m}
X 3 - SRRy T
& Wig? e+sin29] =g WA O gl 4
22 NOTES
o Yr S (vi) Toevaluate [yx* —a* dr " -
=9 @9+ s
NOTES 2(9 Al Ak Putx=gcosh 0, thendx=asinh 0
Thus
2 g :
=%(B+sin8\f1-—sin29) J-\/;—-—azdx= m asin h 6 do
el a2 - fon s 00
2 a a\ g 2 JMQQ
=a"
and hence, 2
2 .
s X a5 -1 X == SmhzeﬂeJ
Ia—x dx=~2—a—x Tie = S5 2 2 2
a
(v) To evaluate I a* +x* dy = % (sin 76 cos h 0-96)
Putx=asinh 0, then dx =g co5 1, g —0
Thus, ¢ =%2"[\/m-°°5”9 ]
I m
j a” +x° dx @ +a sinp* g -acos h g 2 {2 I:E_-cosh—l"/a}
= J@ cos 2 0 49 "2 |V
A (cos 129
- feiay SETREH I .
2 (As, 2 cos 420 = 1 + cos a cos h ! x/a.
=£(M+B) sz__az dx='§m_—ﬁ_ QiR
o a
22 : Aliter: Put x = g sec 6, then dx = @S¢
=E—[Sinh9c0she+e] 0) | Ths 0 tan 6 d0
; FinA20=2sin Y os] W= o= [JFsedto=d" a5
= oo 2 o
? h 8+9} = Iaz sec . tan” 0
a2l 2 : 29-1)dd
=?[;\j;+\%+sinh‘l _’i] =a IsecG (sec’6-1)
a a Bde
and hence _ 2 _[56039 oL & Isec
2
e dx:%‘ﬁm+‘isinh~l x 2 9+10g(5309+tan9)] ' ]
Aliter; Pyt X=gtap L., B [secetarl 0) [As in the previous case
us, 6, thendx=asec29;e 2 __aglog(sece+tall )L
2
et e e e ; 2 og (sec 0+ n©)
n-g 0
2 @ sec’d g = 2 sec0tan 077 -
3 2
Ia sec” § gp e x, _‘Ez_—l
2 at x fi-l—-‘?logg a’
%0+ tan gy, =
a2 2 " x+X
Bt 2 e dojog| S g . ! jonal
2 D% ¢ Anihan lo x2 LN J’T__’C;Z— _— Self-Instructiona
9 G HeOR 1+2_ . x =iy ¥ 2 )
Self-lnsrrucﬁonal QZ a
204 Material
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Thus, we get following six results to remember:

() [-—— dx = sin1%

Jat - x a
1

i) | dx =sin 41X
()J- E¥g = si ;
-log[x“Lm]
o _‘_‘_‘_‘_!—

a

i 1
(m),_‘-m dx=c(;sh-l§

\ 2 2 e G 2
()Ia+x d““;mw

— sinp1 X
2 a

=47 2
a
Sk
i el

— ¢ -1 X
5, Cos Tt =

a
=0T, 2
e *% log [ﬂ}
Example 4.8: Solve I 1 a

el

Solution: We have,

I= I 1
_—‘2_\/\_‘ dx = 1
X + X+ 1 dx
2
(x + l 3 3 2
Put " 2 A
X R
I= j dt o |
= S8ln 4~ i
IZ + [:/j_ Jz -\/_;rz‘
2
(By th ¢)
= qi 11X €s . v
The ab e 25 ccond Integra] eyaluated 2b°
above regy]y Wy = Sin 41 2x 41
could
o ) 0fc0ur ———
Substitution y 4 1 _ 5, be o V3
2 ~hby takmg Xagyed 1 Irectly Withg 17

Methods of Substitution

: : : i
In this method, we express the given integral I f(x)dx in terms of another integral in

i itabl
which the independent variable x is changed to another variable 7 through some suitable
relation x = ¢ (£).

Let I=[f()d
2 -1
Thus, 1= [f0%. di= [1Ole O

& _
et from the relation — =o' (#) by

Note that we replace dx by ¢'(?) dt, whichwe g 7

assuming that dx and dt can be separa!:ed.
In fact, this is done only for co:;venlence-
Example 4.9: Integrate x(x*+1)"-

deie
Solution: Putx2+1=1 = 2= =1

i s xdv=df
hus, I o Lo
WRILID e
Ix(x2+1)3dx= J%p dt:ijt At LR
2
Example 4.10: Find Ieme sec? 0 db. )
= dt

Solution: Pyt tan 6 =, then sec? 0 do

= t:!?mne
Thus, J‘etane secZo do = J',g’ dt =€

— ————— D ITS PROPERTIES

D
4.3 DEFINITE W
e

Supposef () is a function such that
[ 7@y dx=g(x)

b is defined by
The definite integral L /) e

o(b)—8(@)

nd are called respectively, the lower and the
rs, &

b =

{700 de= {8} =

Where, ¢ and b are two real numbe
“Pper limits of the integral.

EXample 4.11: Evaluate '[ (;i cos x dx

=sinXx
S(’l“tiOn: We know that jCOS xd

Integraiion
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n x
Thus, IOZ cos x dx = {sin x}g =sin 12E-~— sin 0

=1-0=1

1 -1 32
Example 4.12: Find [{22 %)
0 l+x

Solution: Put tan™! x = t,then —1

5 dx =dt
I+x
Also, x=tant
Thus, when x =0, tantr=0 = =0
Whenx=1, tant=1 = t=n/4
Hence,
1 -1 32 n/4
tan /4
(__ch*)“dx— (fEa=.r _ 1=y w
0 1+x 0 3 i 3 _'4— U= —
0

]lmlts
its b ubstitution, we also change the
values 0 and 1 of x Altemitisl?g the values of the new Variable which COfo’SpOnd ot
€1y, e coulq attempt the Problem in the following Way
We first consider the integra] I—(—M
dx
. 14 52
1.€., we do not take |jmn:
© Hmits. Then, o before, by e sa ituti
J.(tan~1 x)Z > P e substitution
Uy s Bir %B\“xl‘
and thus, :
N [ sl
tan™" ;3 '
1 1+x2 dx = \"3"““)“ < (tan™] 1)3 (tan™! ()3 /4)3
: 0 \\‘?—\_ d -—-—-—._.__l__ = '(—7'-["——"" -0
by ’ ’
192

It might be Iemarkeq ere

method wil] Prove very helpfy

that ajthg,
i 3 gh b()th f rst
4.3.1 Properties of Def; N cageg, ethods are correct,

Itis assumeq that the function

| fkf(x)dx=kj*f(x)
2. Iffl(x),fz(x) are inte

Dite Integrals

X)is inte
€o .

i Nthe closeq interval (a, b),

SBDlon (3 b)

(x) + it ()]

<[
Ntegra) can be L Ji(x) gy - J‘b

Ja(x)dx
Sa »
Sum of definie integrals (add1t1w’6

E £ (*)ax,

A<ew}

imits are
Note: When one or both of the limits

ff(x)dx = Ef(x)dx+ff(x)dx+ff(x)dx, i aieid &b

i der the
b) is the sum of the areas un
a under the curve between (g, , : By S
iturxl'lvtaea;)]:til:;:mll(zaf:? (¢, d)and (d, b). This property 1s useful in finding
isconti functions also. (U .
Som: d‘j";‘:;;‘i: Sintegral is a function only of its limits a and b and not of the vari

which may be changed,
[ feyds= [ 1)y = [ 72

. : ion are identical,
5. A definite integral equals zero when the limits of integration
] efini

[ f(9dx = Lf(@)]=f@-f@=0

o because the width dx of the rectangle, is zero.
is zer

The area on a single point onis givenby,

3 inteerati
6. The directed length of the interval of integra

i ite integral changes,
7. Ifthe limits are interchanged, the sign of the defini

[ reod ==, 1@

rdyE "fodx

For example, ,E leitsclf, the definite integral becomes equal to the
el ?

8. Ifone ofthe limits is the Val-Iatll?on
indefinite integral of the function,

.[:f (xdc = 1) -f9) =fmC

. t. ! : als. The concept
Where C=—f{a) is constan infinite we have improper integr

d the value of the definite integral.

fin
Dflirnits is to be used in such ases 7 n L } 1
_.I le === =y
2 = 2
oo . n—-—- = le [—-_] pr=¥od [ 8 2
For eXample, L % R I;‘,lff 2) ol et L I
ite Integrals
Other Useful Properties oD

. [ foods = |, f@a= D
jaf(x)dx+foaf(2“ =x)d

I

10. [ f(x)dx

Il

2]” Fdnif f (x) = f(2a—%)

0

=0, if f@= (2a —X)
b ¢b

1, [ e

= f(a+X)
2. [ fxde = oif fla-9=1C
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i Integration
=x2e -2 [xex = J-f—”‘ dx ] (Integrating by parts again)
Integration
For example, /= f log (1+cosB) db = Elog (I-cos0) b = 2 — 2[xe" —€*]
=] = . ld Ot
= 0 ; ¥ a5 the first function and x” as the second function, we would n NOTES
(Property 9. Note that cos (m—0)=~cos 0) Note: 1f we had taken &* as
have got the answer.
. .o | n#* —1
o 2h3 .E log (1~cos”6) b =2f10g snb 4 Example 4.14: Evaluate (i) [log x dx, (i) Tt
. 2
(Byadding, log (1 + cos 0)+log (1 - cos 0)=log (1 - cos“0)) Solution: (1) We have, J.log xde= jl. log x dx
1
: b e sty
= 2[2‘6é log sing @}:4[.__725 log 2] = (logx). x J:c p
= =X IOg X=X ¥ . s
I==n log2 : d 1 =x°as second function since it 1s
. Here, we have taken log x as first function an
4.4 CONCEPT OF INDEFINITE INTEGR \ L algebralc. x"“ J'xn+1 Xl I
"3 e n =(logx) 1" Ju+1"x
We will now learn a formula whigh, v : (i) We have [x" log xdx =( 7t
functions thelpusin inding theintegra ofa product of tW© j e — [
Wi k.ﬂ t 4 _.x____ 10 X — X
€ know hatlfuandvaremomnctlonsofx - jn+1 g n+l
d n+l
Then, —(w) = du n+l 1" e
e e T =f_._llogx‘;__;_1'n+l
= S n+
. &; T ;T‘; (uv) o "alli xrr-l-l ,__1__-
Integfatlng both sideg With re =——|logx— |
SPECtO x, e o nes ion since it is
& dx= (4 and 1 =x"as second function since
— = (4 e
dx jdx (uv) dx — IV_‘_i_lf_ o Here’ we have taken log x as first functio
or : .[” dv s Agebraje,
dx dr =y _ y 3 doe x dx
Check Your Progress Put s, - ) dv dx EXample 4.15: Evaluate 1—;—(-:—(-);-;
1. What is constant of e 80, fheny J 8(x)dy S‘:ﬂllti
integration? The above reduces to Ot We have, L sec? >
2. Prove that el J J-______J_C____,_ dx= EJ'X 2
fiiﬁmqtiation and If (%) 8(x) dy = f (x) -[1 iy dx ) coSz X
integration cancel h ; Ig(x) e : + 2
each other. W/ ere 17 (x) denoteg the del‘iVati j s (x) j‘g (x) dx] X _ [2tan x dx}
3. Whatarelowerand || 10tegralofthe Product of twg fun V.e of f X). This j i ds el [ZX L= J2 2
upper liqmits of an = First function x i Ctiong 8 the fequired formula. In wor¢> 2
integral? tegra] S
4. Whatis the value of :he §300nd fes Iﬂtegral ¢ — ¢ tan % - jtall 5
the definite integral Itis clear i o X €ntig of < Tnt 0 . ) 3
E’;‘:f‘l:he‘; ::ﬂi’ he || €Valuate) integra] of tleastzﬁu athat jt ;o help ®eral of the second func;tlofl1 S 5. (_2 log 08
RS be followed by rememberine Of the tWo o Only When we know (or can casily = 2 !
5. Whatis the directed || L-Means logarethmic = orq ¢ lctions, Here one thumb rule may X +2logcos 5
length of th eXponentia] . Meang g ¢ ILATE: C 2 —xtan =t 2 ! :
ifltegrt\}rla?of ; PR Blloyin SXampleg v -+ I, Tmeape ;.. N€aNS inverse functio™ Wl .ven two functions, one is
integration? Example 4.13; pjpq [x2erg, Swill Mugirage otvlvstmgonofnﬂric and E-mear® He ATE’ is applied- In_thilflsbeen taken as first function
6. How s the value of || Solutigp; Toking 2 . Oapply thig rule, al re al.so, the thumb rule of ! A]gebfaic function
the definite integral functi : . o* asthe first . ge Taic and ther is tri onometric-
affected if one of ction since it i €Xponentjy) Lo itj And trj s function-
the limits is the 2% al- We Note at 8 algebraic func; nd 80nometric as second
variable itself? €dy = ng’f g (2x) Sk 10n anq as the secO
Eddy
=2 e~
Self-Instructional =2 X
210  Material "lx € dx
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[niegration 4.4.1 How to Evaluate the Integrals
Consider the following examples to evaluate the integrals.
@ [ [f &) +f () dx
NOTES

212

@) I, = jem sin (bx + ¢) dx

(iii) I, = je‘“ cos (bx + ¢) dx

The followings are the solutions for the above problems:
(i) Consider Ie" () dx

Integration by parts yields

Jo @ d =1 e - [ 1) e g

= [e* f() dx + fe F@ de=f

ie, [ [F()+£'0)] de = fix) o
(ii) Using integration by parts, we find

I = je‘”‘ sin (bx + ¢) gy
=jem sin (5
—_— m eax
a (X+C)—j";-.cos(bx+c)_bdx

ax

e,
—j:h Slll(bx+c)__§_1

Similarly, a2
L= [ a
2= [e 08 (bx + ) gy
h;h COS (bx+c)._‘ I__eax .
_Iemﬁ a S (bx +c) bax
and thus, a bty b,
al’
e
——cos(p b
= [1+-If_ 1_e""‘ I (x+c)+;Il]
2 1S — g
a 3 Sm(bx"'c)___t_’_

ax
= |4+ ' g °08 (bx + ¢)
-——az_._.ll-_-.eax[asln(bx-;-c)‘_bc
= e .
.[ sm(bx‘*‘c)dx:eax[asi

a* + b?

Self-Instructional
Material

|

The above two integrals could be put into another form by the substitution
a=rcosB,b=rsinb

g | reosB.sin(bx+c) -1 sin0 cos(bx + ¢)
]l ¢ a® +b*

zearrsin(bx-%c—a)
a’ +b*

_ E
sin (bx +c — tan” b/a) (As, ¥ = a* + b* and tan

ax — HIX
:>Ie sin (bx + ¢) dx=e W

-
6="2)
Similarly,

e c08 (b + o~ tan” b/)
cos (bx+c—tan b/a)

(1) je‘”‘ cos (bx +c)dr=¢ m
Example 4.16: Find Ie" [sinx + cosx] dvx.
Solution: Since % (sinx) = cos X

je“ (sin x + cos x) dx =¢" sinx

Example 4.17: Find [~ dv

(x+1)°
X 1 ______]___ dl'
Solution; We have J' (xx:1)2dx: (e (x+1)2
! ALl S
= B8 &G ey
EXample 4.18: Evaluate _[ 2 sin"lx dx .
Solution: have, on integration by P"‘rts’3 1
x X 2 _idx
O P
Ixz sin”! xdx = (s10 X) 3 3 \[1_7
3
. o X wallb)
2 ol [ dt.
_—.-—5-511'1 X 3 l_xz
3 2 =
To evaluateJ’ i dx,pUt\/r:;_ i
o
1-x?="F
= _x de=2tdt
= xde=—tdt
2
3 (=) = fRtydr=5 <1
& o e 3
T, (2 o [T
l1—-x

Integration
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1= x2)3/2

Hence, the required value is, [From Equation (1)]
3
| = Bl (1-x2)32 :
Ix sin” xdx 3 S x -3_[_._3.__ 1 —g?

Integration of Algebraic Rational Functions

S

rational function. We will now learn a few methods b
functions is done. We will be making an extensive use of
Let us first establish the integrals

1 x
2 = — tan! =
) jx2+a a tan a
@ SR dx——log — &y
1 a+x
4 = ka1
@ '[a Loyt 2a Oga—x (a>x)
Assumed that (a # 0).

Integrals (1) and (2) follow easily from th ol
To evaluate integral (3), we no . e definition,

L 1 s B
P -a®  (GE-afeta). e +
= 1_.A(x+a)+B(x a)

Putting, x =— g and x= g, we get

X+a

1
A= o and B=_L
a 2a
Thus,

b CT L
e e x——a_;:';]

And hence,
Ixziazdx_ijmd“ﬁj}"?
—ylog(x~a)~~—10g(x+a)
= 51; logj—;i—:;-

Self-Instructional
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A function of the type =~ 2(x)’ » Where £ (x) and g (x) are polynomials in x, is called a

y which integration of such
partial fractions here.

1

Example 4.19: Integrate (i) —————
grate (1) 4x* +4x +10

. 1
i () =gmr——
x“+x+1
Solution: (i) We have j
4x* +4x+10
_1 1
5 dx
x Xk
. !
= 4[ d

V3 V3
B
Example 4.20: Evaluate | T'——dx
+8x+12
Solution: We have,
3 52x +96
p
—_—=x—- 8t 5T S s
x2 +8x+12 x2 +8x+12 (BYdIVlsmn)
Agsin 496 526496
Z+8x+12 (x+2)(x+6)
If 52x+96 _ A % B
(x+2)(x+6) x+2 x+6

then, 52x+96=4 (x+6)+B(x+2)

Putting x =— 6 and x =— 2, we get
A=-2,B=54

Hence,

3 54x 2
I_z__.__—dx ,[[x +x+6 x+2)
x° +8x+12

f__ —8x+54log(x+6)—2log(x+2

2

)
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4.4.2 Some More Methods

Ifthe integrand consists of even powers of x only, then the substitution x* = is helpful
while resolving into partial fractions.

Note: The substitution is not to be made in the integral.

x> dx

Example 4.21: Evaluate -[(_—T)-(Ss—l)
x“ +1)(3x" +

x2

(x* +1)Bx% +1)

Solution: Putx?>=¢in

t £ "8
-1, Sy ei s e
= tEA(3t+l)+B(t+l)

Putting t=—1 and - %,weget

DG+ 2e+1)  206+0)
Thus,

x2 o 1 1

DB+ 26741 20x2 4

2

X
— | [ o W - A
j(x2+1)(3x2+1) 2 Ix2+1 2 32 +1
= Lg% 1 dx
ztan x~.gjx2+l
3
= 1 e 1
tan™ x - = = <
2 —— tan S
6" I3 U3

Example 4.22: Solve Ix sl

x* +1
oL 2
Solution: We have, I= _i?ildxz 141/ 52
+1 X 41/ 52
Put X — -1— =t
P

_ d _ 1 -1 ¢ .1 =11 1
So, I=|——=—tan — =—tan" | —=|x-—
J 2eg <2 V2 V2 [«/5 (x x H
Substitution before Resolving into Partial Fractions

The integration process is sometimes greatly simplified by a substitution as is seen in the
following examples:

Example 4.23: Solve

x(x" =1)

Solution: Put x* =1, then 4x° dx = dit

1 dt
“m,f Ix&_n‘zjmq)

1 1 1
Now, = i
-1 -1 1

and hence, the given integral
= 1jf.te 1 ol ~1)-log?
4{[ J dt = L[log(—1)-log]

t—1
log(I_IJ
4
_1 % =1
_Zlog( 3 ]

n/4

Example 4.24: Solve J' Jtan x dx

Solution: Put ./tan x =¢, thentanx = 7
and sectxdx=2tdt
2t 2t dt

hi; DIV Nl ol il
1+tan” x 1444

Also, whenx=0, = ,/tan0 =0

T T
X= — t= tan — :1
when 2’ \} 4

Hence, the given integral becomes

j-r.tht =2j—tizd‘

Integration

NOTES

oL+ 1t g1+¢
By integrating,
1/5 \/—f+l l\/_ _ll
_ | ¥2 +4 42 tan
=2 Tl 2+\/—r+1 4 t«/_
(2 2_'\/-2_+\/Emn"10 \5]0 V2 e
_ |32 = ~{ = log1- Y2 g
_2{81°gz'+«/§ 4 g e Ty
G, 247 J2m]
= Tal
8 g2+\5 42]
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i .l 2-+2 1
ton =_\/_5‘-10g2 ﬁ_*._\/_i;n:.l_log—\/—..a‘._n
4 2442 4 22 T 2+42 22
Integrals of the Type j ax s b+ #0
NOTES a+bcosx+csinx
The substitution tan = = £, converts every rational function of sin x and cos x into a
rational function of 7 and we can then evaluate the integral by using the previous methods.
w2 s T
Example4.25: Evaluate i) | ——  (ii) |——
P ® [j}.4~1—5cosx2 ()5[5*'300515
. . X 1 7
Solution: (i) Put tan e t, then 3 SECH dx=dt
L by e 2 a;t _ 2at
1+tan® x/2 1417
AR _ o2
Also, as cosx = ; tanz /2 _1 ’2
14+ tan“ x/2  1+¢
/ The given integral reduces to,
f N =
/. 1 2 dt ote, when x=0
5—512 t=tan0=0
0(1+z2)[4+ 1+t2} When x=m/2
t=tanm/4 =1
1 ¢t
e e P8
04+4r +5—5¢2 09-1%

1
0g3+t
3t

va X
(i1) Put tan 5 L then % sec? % dx = dt

2
1+tanx/2

2dt
1442

= dx=

1-tan? x/2
1+ tan? x/2
The given integral reduces to,

I 2dt
M T

°(l+t2)[5+39_:‘i)]

1+ 12

Also as cos x = _ 1=

1442

Note, when X=0,t=tan 0 =0

Whenxzﬂ:,t____tanlt_:co
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T dt T T_dt
!,'5+5:1+3—3r2 -o[zr%s £12+4
- " |
={%tan_l %} =%tanlw—§tan 0 NOTES
0
T _o=X
=5_0_2

acos x+bsin x
bl

@+ +d)=0
ccos x+dsinx

Integration of

We determine two constants A and p such that,
a cosx+bsinx=A(-csinx+dcosx)+ u (¢ cos x + d sin x)

d -
where — ¢ sinx +dcosx = E(CCOS-"+d3m")

Comparing coefficients of cos x and sin x, we get

a=Ad+uc

b=—Ac+pud

werad—~bo . a=bd
= d*+c2 d? +c*
Hence,

_csinx +dcosx
—esinx+dCOSX ),
¢ cosx +dsinx

J-acosx+bsinx le.dx

ccosx+dsinx
=2 log(ccosx+dsinx)+px

p acos x+bhsinx+tc
_—-_-————_—
Integration o dcosvresinxt f

In this case, we determine three constants A, 1, v, such that
acosx+bsinx+ c=A(dcosx+esinx + )+ u (=dsinx + e cos x) + v and proceed
as in the earlier case.

] 4sinx+2cosx+3
Example 4.26: Find j—m dx

Solution: We determine A, i, v such that.
Asinx+2cosx+3=A(2sinx+cosx+3)+p(2cosx—sinx)+v

Comparing coefficients of sinx, cos » and the constant terms, we get

4=2M-p,
2=A+2p
3=3A+V
= 7\,52:}"':0’ y=-3
Thus,

4sinx+2cosx+3=2(2Sinﬂ'costrﬁJrO(zcosx_1)_3
1

2sinx+cosx+3

5, iy dpm st dx:zj‘l-dx'#
2sinx+cosx+3

ald & 3
+cosx+3

=2- 5j

2sinx
Self-Instructional
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1

Now, solve j.?.sinx+cosx+3
%X 2 dt .
We put tan = =1, then, dx = 5 and the integral,
2 141
=j 2dt
22t 1-7
142 + +3
( )[12 +1 1+1 ]

=I 2dt
A1 -2 93437

as j dt
2 +2t+2
= j“dt—
(t+1)% +1
=tan"! (t+1)= tan~! (1 + tan—;-)
Hence, the required result is,
2x —3 tan”! (1+ ta.n%]

Integration of Irrational Functions

1

N
ax+a dx
Consider th : el belcand) e
onsider the types I[blx—kbz] j(a+bx)"

ax+a,
bx+b, andu=(a+ bx).

For example, let us Integrate, I\/ ax’ +bx+c dx (a<0,b* -4gc> 0)

=.I(\/;)\/b2 —42ac —(x«l- ¢ ]zdx
4a

2a

These may be found by the substitution "=

2
b”—4ac .
"‘8—ai‘—81n

+

x+%a

(b* - 4acy
4q*
Similarly j(ax2+bx+c)_y2dx— o “7
=—==sin 2a
Fa a7

4q*

+C

If, in this case, the numerator is a linear function ofx. i
)

tean be brokey, into two parts

Integration
dx
Example 4.27: Integrate Ix " m
2
u- -2
Solution: Put, # = Vx> +x+2+x or x= T NOTES
20’ +u+2) 2 u? +u+2
e — +2=—
dx = (+2u) and Vx~ +x R
w+u+2)du
[ s =2 )2
P x+2 u(1+2u)
W +u+2 =£+-—£’—+——'—C—"T
Now, Jaw2u? u 1+2u (1+2u)
=  Ptu+2=A(1+2up+Bu(l+2u)+cu
w1 1. =k
Putting z =0, — > We get4=2,C=—
Again, comparing coefficients of x* on both sides,
=7
we get, | =44 +2B=>B= o
Hence,
i .1 L B ML __7__2_}1“
Wil R TR
7 +C
= 4logu—log (+2)% 31, 20
where, 3 =+/x*+x+2+x
4.5 INTEGRALAS ANTIDERIVATIVE
e gl PR 1 or indefinite int 1 of Check Your Progress
alculus, an antiderivative, primitive integral or indefinite integral of a o
Enzﬁon fisa differentiable function " whose derivative is equal to the original function 1. % Xh;;‘;;‘sgﬁegal
This can be stated symbolically as F'= f- The process of solving for antiderivatives P
is called antidifferentiation (or indefinite integration) and its opposite operation is | |8 Which thumb rule is
i tiation, which is the process of finding a derivative. followed for finding
called differentiation, o e fhcintegcat ofifie
Antiderivatives are related to definite integrals through he amental theorem product of two
of calculus: the definite integral of a function over an interval is equal to the difference ' functions?
b :v?i er ﬁli [ues of an antiderivative evaluated at the endpoints of the interval. The ||9. Whatisa rational
et £ the notion of antiderivative is antidifference. function?
discrete equlvalent otth 10. Which substitution

Uses and Properties b dt te defiiiad 1
sa s : t because they can be used to compute definite integrals,
ﬁi::g:ﬂ: ;Jtll‘l]gzggnlt?lpt?lﬁem of calculus: if is an antiderivative of the integrable

the | then:
function fand fis continuous over the interval [a, b],

is done if the
integrand consists
of even powers of x
only?
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[ f()dx=F(b)-F(a).

Because of this, each of the infinitely many antiderivatives of a given function fis
sometimes called the “general integral” or “indefinite integral” of fand is written using
the integral symbol with no bounds:

j £(x)dx.

If F is an antiderivative of f, and the function fis defined on some interval, then every
other antiderivative G of f differs from F by a constant: there exists a number C such
that G(x) = F(x) + C for all x. C is called the arbitrary constant of integration. If the

domain of F is a disjoint union of two or more intervals, then a different constant of
integration may be chosen for each of the intervals. For instance

—1+C1 x<0
F(x)=
—+C, x>0
%

is the most general antiderivative of fx)=1/x* onits natural domain (

Every continuous function fhas an antiderivative, and one
the definite integral of f'with variable upper boundary:

—0,0) U (0,0).

antiderivative F is given by

F(x)= onf(t)dt.

Varying the lower boundary produces other antide

antiderivatives). This is another formulation of the fundamental theore

There are many functions whose antiderivatives, even thoy
be expressed in terms of elementary functions (like
functions, logarithms, trigonometric functi
combinations). Examples of these are

rivatives (but not necessarily all possible

m of calculus.
ghthey exist, cannot

. ke polynomials, €Xponential
Ons, mverse trigonometric functions ang their

e : sin x 1
j.e dx, |sinxdx, I—x—-dx, Il—n-x—dx, jxxdx.

From left toright, the first four are the error function, th
: » the Fresne] funct; . ;
integral, and the logarithmic integral function. snelfunction, the trigonomeric

4.6 BETAAND GAMMA FUNCTIONS ———————

ey

In mathematics, the beta function, also called the Euler integra] of the first kind, i
st kind, is

a special function defined by
B(x,y) = th“ (I-£y-'ds

for Re(x),Re(y) > 0,

The beta function wag studi
ed
by Jacques Binet; its Symbol B {s by Euler and Le

aGre

- gendre and wag piyen ;
ek capital B rather than the similar ]Zga‘tfiznc:;;irltzfl;

_

Properties

The beta function is symmetric, meaning that

B(x, y) =B(y, x). .
When x and y are positive integers, it follows from the definition of the gamma
function I that:

E—-LiCe=1)!
B =TG5y -
It has many other forms, including:
LEO)I'(y)
BN =Ty

2x-1 e
B(x,y)=2["(sinf) (cos6)”"d6, Re(x)>0,Re(3)>0

2x-1 g )
B(x,y) =2 L“”(sin 9) (cosf)”"d, Re(x)>0,Re(3)>0

tx-l
1+

B(x,y) = f dt, Re(x)>0,Re(y)>0

Biry) =3 )

B(xy) =3

o X1

-1
_x_'tlﬁ i J
B(x,y)= o n=l( n(x+y+n)

The Beta function satisfies several interesting identities, including

B(x,y)=B(x,y+1D+ B(x+1,y)

X
B(x+1y)=B®») "~

b2
B(s,y+) =B 715

B(x,y)- (¢ > )= £yx(—>7) x21,y21

T
B(x,)-B(x+2:1-) = Ty

Integration

NOTES

Self-Instructional
Material 223

A B T




egration

224

NOTES

Self-Instructional
Material

where ¢ —¢* is a truncated power function and the star denotes convolution.

. . ! 1 . -
The lowermost identity above shows in particular I" 5 = \/; . Some of these identities,

e.g. the trigonometric formula, can be applied to deriving the volume of an n-ball
in Cartesian coordinates.

Euler’s integral for the beta function may be converted into an integral over
the Pochhammer contour C as

(1 . eZm'zz )(1 B eZm‘ﬁ)B(a,ﬁ) oo Lta—l (1 A t)ﬁ—l de.

This Pochhammer contour integral converges for all values of « and f and so
gives the analytic continuation of the beta function.

Justas Fhe gamma function for integers describes factorials, the beta function
can define a binomial coefficient after adjusting indices:

W
k) (n+1)Bn—k+1k+1)

‘ Moreover, for integer », B can be factored to
function for continuous values of i

2| (e sin(rk)
S SR
[k) frH;(k_i)

The beta function was the first kno . ¢
: : Wwn scattering amplitude in st
conjectured by Gabriele Veneziano. It also occurs o ° In String theory, first

in the :
attachment process, atype of stochastic urn process. theory of the preferential

Gamma Function

give a closed form, an interpolation

In mathematics, the gamma function (represented by the cap

extension of the factorial function, with i °apital Greek letter ) s an
; ) 1ts argument sh
complex numbers, Thatis,ifnisa positive integsr- shifted down by 1, to real and
T(n)=(n-1).,
The gamma function is defined fo
¥ rall complex number
integers. For complex numbers with a positive rea] part, it is sexcept tl.]e non-positive
improper integral: ’ efined via 5 convergent
L= [ xear

This integral function is extend :
edby analytic continuati
-~ iti - 0]
sﬁc;:ept the non. ‘posmve.z Integers (where the function has rsl'to all complex numbers
meromorphic function we call the gamma functi Imple poleg), vielding
corresponds to the Mellin transfo toton. In

i N 1act the ;
m of the negative €Xponentia] ﬁmcﬁi?:.nma i

and as such it is applicable i
combinatorics,

| s ————

The notation I'(7) is due to Legendre. If the real part of the complex number 7 is
positive (Re(7) > 0), then the integral
T(f) = f x e dx.

converges absolutely, and is known as the Euler integral of the sgcond kind (the
Euler integral of the first kind defines the Beta function). Using integration by parts, we
see that the gamma function satisfies the functional equation:

T(t+1)=T(Q).
Combining this with T(1)= 1, we get:
F(n)=1-2-3--(n-1)=@-1!

for all positive integers 7.

The identity ['(f) = T(t+1)/t can be used (or, yielding the same result, analyti_c
continuation can be used) to extend the inte gral formulation for I'(#) to a meromorphic
function defined for all complex numbers 7, except ¢ ="n fo. .ntegers n e” 0, where the
function has simple poles with residue (“1)¥nl. -

It is this extended version that i commonly referred to as the gamma function.

Relationship between Gamma Function and Beta Function

To derive the integral representation of the beta function, write the product of two
factorials as

L@y = fe"‘u“’du fe_”u”"du

= f f ey v dudo.

Changing variables by %= Az, )=zt and v=g(z,1)=z(1- t) shows thatthis is

reoro) = [ [,e" @ ed-n"e )| drdz
— [ [ @™ -0y zdudz

= £O e—zzx+y-—ldz -[zotx—l (1 o t)y_ldt,
where |J(2 t)| is the absolute value of the Jacobian determinant of
u= f(zt)and? =g(zt).
Hence

L)) = I'(x+ y)B(st’)-
The stated identity may be seen as a particular case of the identity for the integral
of a convolution. Taking

f(u)= ¢"u'lg, and & (u)= e"'u’" Iy, ,one has:

rr() = [ /o) 8= L *@0 =BEI )
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4.7 IMPROPER INTEGRAL

In calculus, an improper integral is the limit ofa .deﬁnite integral as an endpoint of t}'le
NOTES interval(s) of integration approaches either a specified real nu.mber or OC or —0C or, in
some cases, as both endpoints approach limits. Such an integral is often v_vrlFten
symbolically just like a standard definite integral, perhaps with infinity as a limit of
integration.
Specifically, an improper integral is a limit of the form

=l - = {7

or of the form

L pex.

in which one takes a limit in one or the other (or sometimes b
1967, §10.23). When a function is undefined at finitely many int

the improper integral over the interval is defined as the sum
over the intervals between these points.

oth) endpoints (Apostol
erior points of an interval,
ofthe improper integrals

By abuse of notation, improp
standard definite integrals, perhap
the definite integral exists (in th
advanced Lebesgue integral), this
[ integral will coincide in value,

Often one is able to compute values for improper integrals, even whep the function

is not integrable in the conventional sense (asa Riemann integral, for instance) because
of a singularity in the function, or poor behavior at infinity. Such integrals are often
termed “properly improper”, as they cannot be computed as a prope

I integral,
Types of Integrals

er integrals are often written symbolically just like
s with infinity among the limits of integration. When
¢ sense of either the Riemann integral or the more
ambiguity is resolved as both the proper and improper

There is more than one theory of integration. From the
the Riemann integral theory is usually assumed as th

point of view of calculus,
integrals, it can matter which integration theory isin

e default theory. I using improper
play.
* For the Riemann integral (or the Darboux integral, Wwhich is e

; ;i e uiva i
improper integration is necessary both for unbo quivalent to it),

unded interyag S
divide the interval into finitely many subintervals of finjte length) a(ndm f(‘:; zﬁgﬁg

functions with finite integral (since supposing it is unboyng
; IR : ed
upper integral will be infinite, but the lower inte above, then the

_ gral will be finite
° The Lebesgue integral deals differe

ntly with unbounded domaing and
; ‘ _ unb.
functions, so that often an Integral which only exists as an iImproper Rjzl;ngsg

integral will exist i —
gra stasa (proper) Lebesgue ntegral, such as _r 2 dx. On the other

hand, there are also integrals tha have an improper Riemann integral byt do not

.

have a (proper) Lebesgue int ] in-i
(prop gue integral, such as f " dx. The Lebesgue theory
does not see this

as a deﬁmency: from the point of view of measure
Self-Instructiongl
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sinx . oo fined satisfactorily. In some situations,
o f__x_dx =00 — 0. and cannot be define

i i is the
however, it may be convenient to employ improper Lebesgue integrals asi

F e s
i i hy principal value. The Lebesgue i oral
instance, when defining the Cau_c :

?asniﬁar or less essential in the theoretical treatment of the Fourier transform,

is

with pervasive use of integrals over the whole real line.

il i er integration is not necessary, and
the H ck—Kurzweil integral, improp :
) Pl‘sr " Tzi strength of the theory: it encompasses all Lebesgue integrable
this 1s see

and improper Riemann integrable functions.

lof Je dx
Improper Integra 1'[

c] e—xzd.r
Study the convergence of :

i i - does not have an antiderivative.
We cannot evaluate the integral directly, ¢

‘We note that

x>l x 2x
£ty
2 -
et <e”
Now,

t
0
= li T
fedx=im, fedr
1 1
: ~1
_ lim (e—'l —e )

B

-1
=cC

o

e~ erges by the comparison
and therefore converges. It follows that I[ converges by

theorem.

4.8 APPLICATIONS OF INTEGRAL CALCULUS
" (LENGTH, AREA, VOLUME)

: fer Figure 4.1). To find the
; function shown as a curve (re. . ;

Lety=/(x)bea conngu?l‘:: interval (g, b) take a small strip of width x, - x, = Ax,, its
area under this curvehlﬂarea of this strip is fix,), Ax,. If we similarly take n strips of
height bemg]‘? g The n)andn being the corresponding heights f{x) (i=1,2,.....,n)
width Ax, (i=1,2, oo

we have n thin rectangles, each ofarea, _ _

Sl By i=1, 2,0
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n The total of all these area is given by, B H Do Fil WHESHE 8 b asms .
) n
> f(¥)Ax, Let, t, = a+rhfit)=fla+rh)= e =ee’
i=l 5
NOTES
NOTES This is not exactly the area under the curve, but it can be, if the widths of the rectangles r Z”: f)A, = Z”:(ea &M h=eh Z e’
are taken sufficiently small, i.e., if n is very large or as n tends to infinity. The rectangles Sy = = AR =, "t
will become thinner (almost lines) and we can write the area between (a, b) under the
curve y = f{x) as the limit, = &%} [e"' R T L ]
A=Li )Ax, " :
n}giéf(X,)Ax, o h h(eh_l)= he ( b-a 1) ('.‘b—a=nh)
= (-1 é&'-1
¥
b a
| = (e e )e 'e}, _1
y=r(x)
A B h :
0 a h gl
/ \_/ 5 ::w Sn _ (eb_e )(e )(eh-—l]_ée e i
}
fx) I
/ . : ! - i Eo ] i
f- : Since,  Lime" =1, Lim—— |
J < : =
/ a o X Example 4.29: Find the area bounded by the x-axis and the curve y = x between
Fig. 4.1 Continuous Function y =fx) s
The area under a curve is thus expressed as a discrete sum. o
In the limit we can write the area in the continuous form, 1
8
4= [ f(x)s |
6 £l |
The similarities between th i ' b
€ expressions I;’EB 2f (x,)Ax, and L 19 dx may be noted. 4
The discrete quantitites fx,) and Ax,, have their continuous counterparts f{x) and SBenid 3 X
. e L an
the discrete summation sign X is replaced by the continuoyg SUmmatiop s f;; 0 2 4
. si )
.:n'ea llllljdel' the curve y = f{x) between the limits g, 5 can thus be Written 5 gndf ] 'te
Integra S a definite
[# H O
Lo Solution: | *&=|7| T3 g "3
Area ab84 = J:f(x)dx = F(b)—F(a) olution 3] 3 8
fxample 4.28: Evaluate a definite integral as the limit ofa sum by proving Example 4.30: Find the area under the curve,
<4
Eexﬁz[ex]ixeb‘eg y=‘\/; ].Sx_.
: 4 3 2 14
Solution: The procedure from the first principle ; i 2 } 2[ Aopr|=2x7=3
. 1€ Tirst principle i i 41, Solution: =| x| =—|4
sum. Let the interval (g, b) be divided into p, Eubigt:g?;ll: i;(?hg(‘:} ;}ilzeehhmlt of the ,r Vxds 3 4 3 3 3
at points
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Sign Convention

If the function y = f{x) is positive in the interval (@, b) and the curve is above the x-axis

then _E f(x)dx is positive.

If y=fx) is negative in the interval (@, b) and the curve is below x-axis then, f f(x)dx
isnegative.

If y = flx) changes sign in the interval and the curve crosses the x-axis, the area is
the algebraic sum of a positive area and a negative area.

2 2
For example, to find the area of the ellipse x_2 + g—z =1, consider the ellipse divided into

a
4 equal parts (refer Figure 4.2). The area of part Oab s,
¥

[

b

Q I >
=

a

Fig. 4.2 Part Oab of Ellipse

Bl ndp
a 4
Area of the ellipse = 1t gp.

We can also prove that the area betwee
of two areas (refer Figure 4.3).

n0and 2 of the curvye W=x+x2is the sum

Y
4y=x+x-2
2
1
e b's

Fig. 4.3 Curve dy=x2+x_»

1 g o 5 13 9
[1r@1de+[17G)1ds =5+ 15 =5

Here the algebraic sum of a positive area and a negative area is taken.

Limits of Integration Infinity

o0 . b .
If x) is continuous over a < x < b, we define L f(x)dx = I;_lgl_"a S (x)dx provided

the limit exists.
Similarly, [ f(x)d = Lim [ £
and, [ fGods = Lim [ () dr+Lim [ f(x) de

If f{x) has one or more points of discontinuity over a<x<b, oratleast one of the limits
of integration isco as in the above cases, we have an improper integral.

o0
=X

For example, fe—x sinxdx = {—;

(sinx+ cosx)}
0

This may be evaluated by writing,

-x 1 1
. —€ . b (0=-1)=—
Lim— —[sinx+c0s ]y ,0-D=5

: 0 —
Note: e = 0, sin oo or cos o lie between 1 and ¢’ = 1.

4.9 MULTIPLE INTEGRALS

Let us now study about multiple integrals.
4.9.1 The Double Integrals

Let f (x, ) be a function of the two real variables defined at every point (x, ) in the
region R of the (x, ) plane, bounded by a closed curve C. Let the region R be subdivided
in any manner, into 7 subregions (denoted as) A4, Ad,, AA,, ..., A4 .Let(x,y ) be any
point in the subregion AA . Let S denote the sum,

e, =Y (5,904,

If the limit of the sum S exists, as n — o and as each sub region A4 -0, and the limit
is independent of the manner in which the region R is subdlv'lded and the points (x , )
chosen in the region 4 , then that ]imit is called the double integral of f{x, y) over the

region R. It is denoted as j R jf (x,y,)d4
Thus, “f(x,,y,)dA = T 5 éf(x,,y,)AA,
-l

The double integral I j f(x,,y,)dA is often denoted as j.!f (x, y)dxdy .

R

Integration

NOTES
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Integration Tt can be shown that, iff{x, y) is a continuous function of x and y in the region R, then the

Integration
YA
limit of S exists independent of the mode of subdivision of R and points chosen in the o p
sub-regions. 6 =n/2 J NOTES
The following are some properties of the double integral.
NOTES
) (|7 +e(dd = [[1Gy)aa+ [[g(x, ) . >
) ] F (0) 0=0 x
(ii) | \kf(x,»)dA = k| |f(x,y)d4 for any constant k. i z
u '[1! Hence, » varies from 0 to oo and 0 varies from 0 to -
(iii) ij(xay)dA = j.“f(xa y)dA + I jf(x,y)dA I= EQ fe_("2“°529+r251n20)rdrd9
R R’ Ry
Ifthe region R is composed of the two disjoint regions R and R, g E-ﬂ fe_-ﬁ A dé
4.9.2 Evaluation of Double Integrals in Cartesian and Polar
Coordinates A L-n 46 f o E"z do f d(%J
The evaluation of certain double inte grals becomes easier by effecting a chan gein the
variables. Sometimes when the change is effected from Cartesian coordinates to polar e 1
coordinates, the integral reduces to a simpler form. For example, when the integral is 2 = [e]m2 [“le## } - E[O A (_—H g g
function of x* +)?. the transformation x = cosb, y =r sinf makes jt function of 7% AL r T "
oy xdxdy 1 dinat
ing to polar coordinates.
B 2 Example 4.32: Evaluate ff Zty SREEnEDY
o
5 xdxdy
r Al dr IC Solution: Let/= f-‘:m
Fig. 4.4 Segment ACDBA
: y
To transform to polar coordinates we putx=rcos0, y=rsin@
: X B
Regarding the elements of area dA, considering the area ACDBA
Figurc4.4), T e (et !
P
dA=arc AB. AC w4
_ >X
=rd0.dr=rdrd % .
Herice. I .[( VY e .[ J‘ £(rc0s0, rsin0)rdr do The region of integration is the triangle OAB (vefer Figure).
R R This region is covered by turning the radius vector OP from OA to OB.
Where R is the region of integration, At O.r=0,and at P,r=asec 0
Note: The boundaries of the region R will to be expres di | | -
the fixing of limits of integration. Prmel i polar soordinates to facilitate Since P lies on the line x = a, i.e., 7 cos 8=a, O varies from O to 4
Example 4.31: Evaluate f fe_(f”z)dxdy. Let] = f J: eﬁ(hyi) v perrcostrdr
toooand : drxdy, x varies from 0 P by dois T
0 0 and y also varies from 0 to oo, Hence, the region of integratio
quadrant of the (x, y) plane. Sreionis the area in the first o ks 3 Lo
. | _ rt [" cosﬂd?‘d9=j: cosB[r]u do
Solution: Putx=rc039,y=rsin9,dx dy=rdrdo v
To cover the region, draw a radius vect i ' :
: : or OP as shown in the Fj : “do =al0])" ==
radius vector from x-axis to y-axi ' y : BUre. By turning this - ahi
OM.x-axis to y-axis, the region of Integration can be COVeri:d A ’ j: . A
Self-Instructional
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1 2. These interpretations are helpful in detlermining th(;:_litmits lwhecrllaaisioizbfllz ;Iil,:;ggsl Integration
: ing Double Integrals is to be written as an equivalent repeated integral, an (
Integration 4.9.3 Evaluation of Area Using g Sgreei :gnl s;es §§V:1uanon e dtbe It et the Form Py sested intearl
Double integrals are evaluated as repeated integrals. 3. When the region of integration R is the rectangle bounded by x = x,, x = x, sk
i‘ y=y,y=y,the double integral ﬂ f(x,y)dAis evaluated as the repeated integral
S z R
NOTE il F ) _ imits
r; e r; £(x,y)dy oras Lz & L " f(x,y)dx (repeated integrals with constant limits).
X g4 1 !
P i d dx 4 > T 3 1
Example 4.33: Evaluate E j = i S and indicate the region of integration.
(6] x=a x=b i -
e o Solution: Let/ denote the given integral. Then, /= .E ax [, ¥ + ¢ Writtenas repeated
Let L and Mbe the points on Chaving minimum and maximum ordinates (sayc,d)and integral showing the order of integrati.on—— ﬁrst with respect to J(; f(t)llowes (r.gth t}rlZSpsg ;(Si
let P and O be the points on C having the minimum and maximum abscissae (saya,b) x). This shows that limits for integration with respect to y are determined by the curve
in Fi = ioht line respectively. The subsequent integration is
G »=3,aparabolaandy =x,2 e 1. Thus the region of integration is the area of
. = =1. Thus
Letx=¢, (v) andx =, (y) be the equations of curves LPMand LOM (portions of C). VAR reper 1o 8 De e 3 a?adﬂfe parabola y = x%, the straight line y = x and the
Lety =g, (x) andy = g (x) be the equations of curves PLQ and PMQ (again portions the (x, y) plane included betwee
of O). ordinates x=0and x = 1.
/ It can be shown that, if f{x, ) is a continuous function of x and yintheregion R, then the I
value of the double integral is,
[[rGwda or [[f(x.y)dxay .
R R (4 1) Sl
This is equal to the value of the repeated integral. 0 )/
= (1,1
2(x)
[[a IECRYY: (42) 1
x= n,
And also the value of the repeated integral, 0 :
2 (x)
RIS 43
y=x
These results enable us to evaluate double integrals as repeated inte - L ian' 2 dx
. : : grals. For this reason, I = [x|—tan™ =
i.e., equality of Equations (4.1), (4.2) and (4.3) can be interpreted as double integrals; in Now, .E x Y lyes
fact, they are also referred to as double integrals. Note that Equation 4.2) afg (4, 3)
have the same value under the conditions on fx,y) specified : ' - -1 O i
in the region R), Y)sp above (continuity of f{x, ) - -[:[tan '(1) - tan x]dx = E gt dx
Notes: 1
1 . .
. , 2 (x) ™ [ ctan x— [x - dx)] (Integrating by parts) s
1. Referring to the Figure 4.5 [L 5 Iix, y)dy]dx can be interpreteq 8o s e, OF [ A [ .[ 1+ x L
the sum G , obtai g : !
2./ (%,,%,)A4,, obtained by subdividing the strip 45 (of width ) into . R SYUPREN I T 1 log2 = log/3
- £2(x) = |—-—xtan x+2'°g( )0 I )
sub regions A 4, and the integra] de J;] " S, )dy can be interpreted as the limit 4 . e
of sum of limits like L, obtai . - : . . \n is indicated in the Figure by shading.
covering the region R. eHined by considering all the Strips paralle] to 4B and The region of integration is
L 2(x)
Similarly, fdy_':(x) J(x,y)dx can also be interpreted, the strips considered being

Self-Instructional
parallel to CD (i.e,, X-axis).
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" ation Area of a Region of Double Integration

Solution: The two parabolas are shown in the Figure. Integration

To find the points at which the parabola intersect, we solve the equation y* =4ax and x*
The integral de dy gives the area of the region R. This is evident from the fact that

2
R

X . . § s .
=4qay. From the second, y = e which, on substitution into the first gives, ——
de dy or HdA is the limit of the sum Z A4, as n— oo and this sum is the sum of the
R R 1

area into which R is subdivided.

NOTES

4
_i_=4ax orx' —64a’x=0

16a°
: . 2 oz 2 ie., x(x* =16a’) =0
- Example 4.34: Evaluate by double integration the area enclosed by the curve x> + y3 =a’.
i 2 2y =
Solution: Required area=4 x Area enclosed in the first quadrant Le., x(x —4a) (x* +4ax +16a )=0

an 4IIdXdy=4deEam-xM)mdy S x=0,x=4a,
4

¥? 4 dax +16a* = 0 does not give any real value forx.
Note that the order of integration is first with respect to y and limits for y are evaluated - Points ofintersection are (0, 0), (4a, 4a) (refer Figure)
2 2 2

Required area = j,, Idx dy = J:“dxjjiaﬁv

" Note that the order of integration is first with respect to y followed by integration with
f’ .

by solving for y the boundary curves y=0and x3 + y3 = 43 interms of x siiidthe Tt

for x are the least and greatest values of x so that the ordinate i
at x sweeps a1n
the first quadrant. A

—

4
¥ . X
respect to x. Limits for y are the coordinates of O and P (refer Figure), i.e., o and

Jaax . Limits for x are the minimum and maximum values of x so that the strip PQ
sweeps the area 4. These values are 0 and 4a.

a -JT;\:
. Required area 7 f [7]50%
" \[— X dx—i\/;x”z—i“a
=£[2“‘Z£ BE 124,
3 64a’ | 16
! 2 L2\ 4% EJEAJ.\/‘T— i|=----a2
Required area = 4 f(a‘ == ] dx, which on putting x =g sjn3 g becorme 3 [3 a ;
8,
: INTEGRATION IN
— 4E3a2 Sin2 ecos4edezlzaz._];3_.—]_"£_- 3 . 4.10 APPLICATIONS OF
. 6422 3@ ECONOMICS
t xample 4.35: By double integration, evalya
- s t . g
¥’ =4ax and x? = 4qy © the area enclosed by the parabola This section will discuss the applications of integration in economics.
¥ ; i st
A | Pis (x, %) 4.10.1 Marginal Revenue and Marginal Co
Qis (x, x4a) Tn this section, we take up various examples to illustrate how integration proves helpful
in different problems relating to Commerce anc Eeanoiiios. )
Example 4.36: Suppose the marginal cost of a product is given by 25 +30x—9x% and
A fixed cl:)s " is. kn.own to be 55. Find the total cost and average cost functions.
of e Solution. We know that
\ MC = %(TC) .
Self-Instructional Self-Instructional
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Jration Thus, TC= j MC dx + k Determine the profit maximizing output and the total profit at the optimal output. Integration
" L S ) -Solution. Profit n is maximum if MR = MC
= |(25+30x—9x
= 1c= | ; . fe,if  20x—2x2 =81 —16x+x?
= aas + K.
NOTES = G=2aeh L Sk or, 3x2—36x+81=0 NOTES
Since, fixed costis 55 and TC—‘Fthenx—O, or 2—12x+27=0
(total costis the fixed cost or initial cost when number of units produced is zero), o, (x—3)(x-9)=0
we find that 55 = k. x=3.9.
Thus, TC =25x +15x* —3x> +55 it
/e 55 For max. profit, we should have, =T <0
ACby definitionis — = 25+15x - 3+ =
x X d*R d*C
w " i . -l —
Example 4.37: If 'the m'argmal revenue is given by 15-2x—x2, find the total revenue bbss d?  di®
and demand function. Find also the maximum revenue. d (MR) < 4 (MC)
Solution. We know that, = dx dx
| d ™ 20— 4x<—16+2x
/ dx or, 6x—36>
f’ = IR = fﬁdex+k or, x=6. _
i 2 L Thus, we take x =9 (out of the two values of x) for maximum profit.
= iy - 2
5 2 I(IS el = loxsis gk, Now, profitt=R—-C
9
At x=0,TR=0, and thus k= "d L, J‘(d_R_E)
5. So, atx=9, profit " J"&; (R-C)dx = T ax
3 0 0
Hence, TR=15x—x* - X 9
3
Y i — MC)dx
If p is the demand function, then 6[ Q5 )
TR = px (definiti
p;( ol A - j’(z{)x _x? —81+16x — x*)dx
= =2 =5ty 2 . 0
- 9
Again, for maximum revenue R J’ (~3x* +36x +81)dx
2 Ry =0 : 5
o =0 = 15-2x-x2=9 _—_[_x3+18x2—81x]0
. = g BT =729 +1458-729=0.
Since, x=—5isnot possible, we take x =3, Thus, profit maximizing value is 9 and the total profit is zero.
Now. d*(TR) Bifeaesn Note: We have used the definite integral idea above. We could also proceed as:
3 "_'2 = =
o n=TR-TC= [mr- [mc
dZ
[F(Tk)l-; =-2-6=-8<( = I(ZOx—2x2)dx— j(81—16x+x2)dx
= there is a max. atx =3 = [(-327 +36x+ 8Dk
L.e.,revenue is max. when x = % - Profit=— x>+ 18x* - 81x
timal output 9, is
Also th ' and thus profit at the op
€0, maximum revenue = 15x 3 — 9 __2_32 e _93+18.9%— 18.9=—729+ 1458 -729=0.
Example 4.38: ABC Co L A . . . P . g :
. ' td. has appro Ex . The marginal cost function of manufacturing x pairs of shoes is
of its prod g Proximated the marg; ‘ ample 4.39: The marg ; : ‘ .
| e =1; ucts by MR = 20x — 2 . Tha marginal ¢ ginal r'eve¥me function for one 6+ 10x— 6x2. The total cost of producing a pair of shoes is Rs 12. Find the total average
Self-Instructional 1-16x+ x2 ost ﬁlﬂCthn 18 approxi ¢ .
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ation Solution. We have,

Integration

%

MC =6+ 10x — 6x2 where, of course, we know the integral _[f (x)dx represents the area enclosed
0

= = -axi i NK (x=x,) i.e, the area STOKNS in

= res I (6.+10x - 6:")dx + k by the curve p =f (x), the x-axis and the ordinate 0
e the NOTES
the fi g fact. total revenue that would have been generated because of
NOTES —6x+ 52— 23+ & e figure. This is, in fact,

willingness of some consumers to pay more.

For one pair of shoes  TC=12 Again p, * x, is the area of the rectangle T OKN and represents the actual
0

i.e., for x=1, TC=12 revenue achieved. The difference is thus the surplus.
Thus, 2=6+5-2+k=Fk=3, Similarly, sometimes there are producers who are W"illlling to c%l]rge l?ss t;[‘l;ll ﬂtle
i i ich the consumer actually pays. The gain of this to

Hence, TC=6x+5x* -2+ market price (to increase sales) whic . OLH

; ' o the pro;)ucer is called Producer Surplus (PS). It 13 shown by the shaded portion in the
Again AC= K - 6+5x—2x2 + 2 Figure 5 and is given by the formula.

X x
which gives the average cost function. g

PS= (pox %)~ [80)dx

4.10.2 Consumer and Producer Surplus 0

S e theviiceth where, p = g(x) is the supply curve-.
Uppose, p 1s the price that a consumer is willing to pay for a quant; i
. nt fa certain 3
commodlty, then pand x are related to each other through the de(rlnandliiynfc?ioi an we
express this by saying that p = f ({c). The graph of this is generally sloping downwards as
flen}and decreases when price is increased (with increase in price, th is y
inclined to buy less). » (Ll CROMHGES Nxq, P0)
Again, suppose now that p is the pri S
, . price that a producer w;

ililmg a quantity x of a particular commodity. Then, p and x are rgz}:tzsdttz Cha;g(fﬁf?; e ‘

hougﬂh; whz_tt is called the supply curve p = g(x). This is generally slopin o ds as
when the price ncreases, the producer is inclined to supply more, e Itis the difference of the total revenue actually achieved and the revenue that
; I_fthe two curves (su_pply and demand) intersect, we SAY economs ey would have been generated by the willingness of some producers to charge less.
is attained. The_pomt of intersection is then called the equilibri;f e etthbf oo
course, not essential that the two curves intersect (i.e.,economic e e

. i x
Example 4.40: Given the demand functionp = 45 - G find consumer surplus when

Py = 3255 23.
Solution. We have,

: quilibrium is achieved).

25
CS = 1[45 - %)dx —~ (32.5)x 25

0

| 2 25
<] EUPTENN. |
4 0

Ifthe point of intersection N h :
2 as coordinates (x, _ 25x25
the 0 P) then . o d = 45x 25— 812.5
- It);;ce 1xiviutclh both the consumer and the producerare eadg ke Py (the marjet price) 15 4
quantity x, of the commodity. The tota) revenue in thaﬂ Yandaccept respectively =156.25
Sometimes, it ha . Caseis p, x - = 4— % and th i
commodity but gets it f; Ppenn it a consumer is ready to pay, sa 0 Yo Example 4.41: Given the demagd function p, = .4 x” and thie supply function
to the consumefls tem? rdsayﬂfl{s 40in the market and thus earn; (Sz’ R§ e p.=x+ 2. Find CS and PS (assuming pure competition).
i i €d as the consy 2 VEs) Rs 10. This oai s PR . A
Figure 4 and is given by the formula erapl. iy shown by the Shadeg p’lc;]:rlgognaiﬂ Solution. Formarket equilibriu. s &
% = x+2=4- 2
CS= If(x)d):'—(poxxo) -y x:—-2,1
0 Since. —ve value of x is not possible, we have, x= L.
Self-Instructional Since, forx= l,p = 3; we have, %o - 1,P0 =1
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Hence,

1 3 1
CS= [4-x)dx-3 = {4x—x—} _3=2,
; 3 3

0

1 2 1
PS= 3—j(x+2)dx - 3_{"7”}(} =
0 0

B | —

which give the required values.

Example 4.42: Under a monopoly, the quantity sold and market price are determine by
the demand function. If the demand function

p=274—x* and MC=4+3x, find CS,
Solution. We are given that p =274 —x2,
= TR=p xx =274x — x>

for a profit maximizing monopolist is

= MR~ %(:m) =274 352

Now, the monopolist maximizes profit at
MR = MC.

ie,274-3x* =4+3x

= 3(2+x-90)=0

= x=9,-10

Since,x=—101isnot possible, we have,

X, =09, also thenp0 =193,
Hence,

9
CS= [(274-x)dx~193x 9 = 48,
0

Example 4.43: Find the consumer surplus at equilibrium price, if the demand function is
29 p o
D= ST and supply functionisp =5+ p,

Solution. We have, p=5+D

= 5+[§._£)

4 8
= p=10
andthus D=5,

So the equilibrium pricep=10,and D= 5.
5

Hence, CS = I(SO —8D)dD —10 5 [D = 25 LGB
0

2 5
={50D—%-_} -50

0
=250-150-50=100

which is the required value,

R s e e

Integration
4.10.3 Economic Lot Size Formula
i ing that amount of

i i tory control problems assuming ‘ ‘

lier chapter we discussed inven . :
¥n o ‘:31‘ remaipns same throughout the production run. But in actual pl:&Cth(;?; smt;:le e
mvi'ln 01-ybeing sold all through, the amount of inventory goes on decreasing and so the NO

oods are A . . g

fost of keeping it also decreases, We discuss now this type of situati

upplying goods at a uniform rate R per unit

. Supp ose. co;m:t(i::::lrr??; ;liczzinoifss o?lt)ilﬂs i/iere tis supposed to be fixed f(_)r

of time. His one 11;? usume that production time is negligible and so there isno delayin
cach pr SR, egs lone as a new run is started whenever inventory 1s zero. T_he
AL ing T e atin al for the start of next production run. The cost of holding

i in fact, is a sign _ . oy B .
zero nzveﬂ'fof;’.op ortional to the amount of inventory and the time for which it is kept
inventory is

isand -axis.
Suppose time is measured along x-axis and inventory along y-ax

Y
B
hliR
Rt
l;b_x
—b— dx 4
-—

In the beginning, the inventory is Rt and at the end of a production run it is zero.
the be s
Let B be the point (0, Rf) and 4 be (¢, 0). '
i i Sy.
se at any instant.x, inventory1 i : .

- fel yassume that for small change in time, say, dx, itremains same.

We can safe yld' units of inventory for dx units of time will bc? equ?tl toc,y
dx hThe co?t t(:)hfeh gxelgit})}st of holding one unit of inventory for one unit of time.

,where, ¢, 18 :
The cost of holding inventory throughout a production

t
A ]’Cl yde = ¢ j ydx (c, being fixed is constant)
0

0

: % =
Equationofline4Bis ~ —+

or, y =Rt-xR
Thus, cost of holding inventory R?

t

s i J'(Rz - xR)dx
0

14

2
X
= {R!x 2 R]o

a th .

| =

) 5 r production run, then total cost
the cost of step-up pe
Suppose, now that ¢, 18

1 2
= +C
€ 5 “ ke . Self-Instructional
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Integration

NOTES

Check Your Progress

11. Write the sign
conventions
followed in finding
the area under the
curve.

12. How can you find
the area of a region
of double
integration?

13. Define integrals of
functions of three
variables,

14, What is the Fourier
series in the
expansion of f{x) in
(C, c+ 21")?

1
Hence, average cost AC= 2 Rt +—=,

For AC to be max. or min.

ad _
@ 0.

2C2

t= ’—

% CIR
202

. . d*4
Since, for this value of z, 7 = t—3 >0,

The value gives a min.

Hence, t= ’% gives minimum cost.
Lt

The quantity produced g, in one production run is Ry,
Hence, q =Rt

’202
= q= TIR

for minimum cost.
: . . 2c .
This quantity produced, i.e., JCTZ R is called optimum run size and the equation.
202
9=y ¥

is called Economic Lot Size Formula,
The minimal average cost

2C1R JCIR""Cz ’z_ ’zclczR

411 SUMMARY
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e Integration is the reverse
cancel each other.

" - 0, We express the o} i :
integral in which the inde B css e given integral in termg o aother

pendent variable x ;
through some suitable rolation x - 4 x 18 changed to another variable ¢

1709 s a function such that I S (®)d(x)=g(x) then the definte integral

b b
Jrede is detnedby [1(aye =gy =&(5)~£() Where, g gg p are
a a , .

two real numbers, and are called respectively, the lower and the upper limits of
the integral.

o Partial fractions are used to find the integrals of rational functions while substitution

is used to find the integrals of irrational functions. o

o If the integrand consists of even pO\.VCl'S of. x only, then the substitution
x2 =1is helpful while resolving into partial ﬁactlo?s.. .

e The area under the curve y = f{x) between the limits g, b can be written as a

b
definite integral, [/(x)dx = F()~F(a).

n .
o If the limit of the sum § = f(%,,,)A 4, exists, as n — co and as each sub
. r=1 |
imit is 1 f the manner in which the region R
i 0, and the limitis mdependeflt of then ther
irse glx(l’)[éi%ﬁire?angltlhe points (¥, y) chosen in the region A, then that limit is called

the double integral of f{x, ) over the region R.

i i ier by effecting a change
i rtain double integrals becomes easier .
) ;ht;:‘ira:g:gﬁ; olgzible integrals are evaluated as repeated integrals.

bdf . ' .
o I”g (x,y,z)dxdydz denotes the result of integrating g(x, y, z) with respect to
(i i i 1t with respect

i eters) from e to f; integrating the resu
fo(:?:rtelzg:zl gsz : ;zﬁter) b)etween c and d and integrating that result to z

between a and b.

e Ifthe function f{x) is defined in the interval (¢, ¢ + 2/) then this function canbe |

: i isonometric series of the form
infinite trigo
expanded as an

S inZ"x | i i ’ ditions are satisfied.
% Z(“ﬂ cos-’i;—’:-x + b, sin 7 x) if the Drichlet’s con
n=1
iti is si iodic with period 2/ and finite in
. a1 tions are- /() is single valued, periodic w . :

) zng Tgtl)sjcg;?; c?)ntinuous or piecewise continuous with finite number of ﬁmte

di;contim,lities in (c, ¢ +2I); fix) can have finite number of maxima and minima in
the given range.

4.12 KEY TERMS

Integrand: If f{x) is the differential with respect to x of a function g(x) then f{x)
e In egl" .

i integrand .
1IS (:lali‘::j:‘:nteg?;' When we are not giving a definite value to the integral, then
¢ Inde :

the integral is referred toas indefinite integral

i lower and upper limits to the integral which
ite integral: When we give the Tt
. ?r?i?g ::;fﬁrumbers, then it is referred to as definite integral

Sl .
: here f(x) and g (x) are
* Rational function: A function of the type g(x)’ where /(x) and g (x)

polynomials in x, is called a rational function
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4.13 ANSWERS TO ‘CHECK YOUR PROGRESS’

d =
1. If ;g(X) =f()
Then, J‘ f®dx =gx)+c
Where ¢ is some constant, called the constant of integration,
) ] .
2. Let — g() =/ ()
Then, [/(x) dx=g(x) [Bydefinition]
d d
= el =< gm)=re
Which proves the result, '

3. Suppose f'(x) is a function such that
Jr®dc=gm)

The definite integral j: /(%) dxis defined by

[ 7 dr={elt = g5y - 2(a)

where, g and b are two real numbers, and are call
.. t d .
the upper limits of the integral. edrespectively,

4. A deﬁnit¢ integral equals zero when the limits of integration are identical
entical,

e @i f0)- 0 2

the lower and

width dx of the rectan
e, 0
5. The directed length of the Interval of integration s given by, gle, is zer
Lo -5
6. Ifone ofthe limits is the variable itself, th
A ed
indefinite integral of the function, efinite integry) becomeg equal to the

[rax = gy _ f@) = fx) + ¢
Where C= —fa)isa constant,
7. Integral of the product of two functiong
=First function x Integra] of the
Integral of the second function), oond-Tntegal Of(Diﬂemnﬁal of first x

8. One thumb fule may be follg
inverse function, I-means lo
and E-means €Xxponentia],

9. A function of the type &)-, where f(x) and g(x) are polynomials in x, is called a

g(x)
rational function.
10. Ifthe integrand consists of even powers of x only, then the substitution x2=¢is
helpful while resolving into partial fractions.
11. Ifthe function y=£{x) is positive in the interval (a, b) and the curve is above the

x-axis then f JS(x)dx is positive.

If y = f(x) is negative in the interval (, b) and the curve is below x-axis then,

| f S (x)dx isnegative.

Ify =f{x) changes sign in the interval and the curve crosses the x-axis, the area
is the algebraic sum of a positive area and a negative area.

12. The integral [[@dy gives the area of the region R. This is evident from the fact
R

that Idxabf or ﬂdd is the limit of the sum Z":AA, as n—» oo and this sum is the
1
R R
sum of the area into which R is subdivided.

13. f f f g(x, , z)dxdydx denotes the result of integrating g(x, y, z) with respect to

x (treating y and z as parameters) from e to £, integrating the result with respect
to y (treating z as a parameter) between c and d and integrating that result to z
between a and b. Note that dx dy dz by its left to right order indicates the order
of integration. The corresponding limits are taken in the reverse order, i.e., ¢, ffor
x;c, dforyanda, b forz.

14. Fourier series expansion of f{x) in(c, ¢ +2m) is

fx)= -‘;l+i(a,, cosnx +b, sinnx) |

c+2n

where a =1 J'f(x)cosnxdxforn=0,.:l,2,3,...and
n T p4

c+2n

b .-_-l J'f(x)sinnxdxforn=l,2, 3,...
n n :

4.14 QUESTIONS AND EXERCISES

Short-Answers Questions
1. What s the relation between integration and differentiation?
2. Define constant of integration.
3. Define definite integrals.
4. What are indefinite integrals?
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ation 5. What is the method of substitution?
2 6. How is {he integration of rational and irrational functions done? | 9. Evaluate the following by changing to polar coordinates. Integration
1 1 1 1 . xzdxdy .o a*-x*
7. Write some ap};.)hcatlons of integrals. Q) f J:_.——(xz )" (ii) f E s
NOTES 8. Define double mtegral dl'dy \ 2 mf2rs? xdxdy
9. Whatare Driphlet’s conditions? (iii) f f (x* +y* +a’)’ (i) L x?+ ) NOTES
Long-Answers Questions ) .[: I;Jn:“r' (2 + Y )dydx
1. Integrate the following functions with : 2 2y
gra ) g lthrespect to x: 10, Evaluate J' J' (x+ y)*dxdy over the area bounded by the ellipse % + yT =1,
L 1 2 1
@) («/— = ﬁ] (1) NN 11. Find, by double integration, the area between the parabola y* =4ax and the line y
=X
2. Evaluate the following integrals: _ 12. Prove that ”(f + y*)dxdy , evaluated over the region R formed by the lines
r/2 w/4
. : : 1
6)) jsmxdx (i) _[51n2xdx y=0,x=1,y=xis§.
0
(i) J 5 e @) I (et 1)2 : | 13. Evaluate ”_[ m for all positive values ofx, y, z for which the inte-
21 : 2 gral is real.
W Iz @ o) [ # d
0 a 4.15 FURTHER READING
1
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i UNIT 5 LINEAR PROGRAMMING

Structure
NOTES -

5.0 Introduction
5.1 Unit Objectives
5.2 Introduction to Linear Programming Problem
52.1 Meaning of Linear Programming
522 Fields Where Linear Programming can be Used
5.3 Components of Linear Programming Problem
53.1 Basic Concepts and Notations
532 General Form ofthe Linear Programming Model
5.4 Formulation of Linear Programming Problem

54.1 Graphic Solution
542 General Formulation of Linear Programming Problem

543 Matrix Form of Linear Programming Problem
5.5 Applications and Limitations of Linear Programming Problem
5.6 Solution of Linear Programming Problem

56.1 Graphical Solution

562 Some Important Definitions
563 Canonical or Standard Forms of LPP

564 Simplex Method
5.7 Summary v
5.8 Key Terms
5.9 Answers to ‘Check Your Progress’
5.10 Questions and Exercises
5.11 Further Reading

5.0 INTRODUCTION

In this unit, you will learn about the use of linear programming in decision-making. For a
manufacturing process, a production manager has to take decisions as to what quantities
and which process or processes are to be used so that the cost is minimum and profit is
maximum. Currently, this method is used in solving a wide range of practical business
problems. The word ‘linear’ means that the relationships are represented by straight
lines. The word ‘pro gramming’ means following a method for taking decisions

systematically. |

You will understand the extensive use of Linear Programming (LP) in solving
resource allocation problems, production planning and scheduling, transportation, sales
and advertising, financial planning, portfolio analysis, corporate planning, etc. Linear
Programming has been successfully applied in agricultural and industrial applications.

You will learn a few basic terms like linearity, process and its level, criterion
ﬁ-mction, constraints, feasible solutions, optimum solution, etc. The term linearity implies
Straight line or proportional relationships among the relevant variables. Process means

the combination of one or more inputs t0 produce a particular output. Criterion function
her maximized or minimized. Constraints are

S an objective function whichis to b either ma ized. C
imitations under which one has to plan and decide. There are restrictions imposed upon
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decision variables. Feasible solutions are all those possible solutions conside.ring given
e(:sssr(;ints An optimum solution is considered the best among feasible solutions.
co .

You will also learn to formulate linear progratpming problems and Put these~n.1 z:
matrix form. The objective function, the set Ofconsp*amfs and the? non-negative constrai
together form a linear programming problem. In this unit, you will also le@ the m.ethods
of solving a Linear Programming Problem (LPP) with two decision variables l.Jsmg the

graphical method. All linear programming problems may not have unique solutions. You

may find some linear programming problems that have an infinite number of optimal
solutions, unbounded solutions or even no solution.

Finally, you will learn about the canonical or standard form of LPP. In the standard
form, irrespective of the objective function, namely maximize or minimize, all the
constraints are expressed as equations. Moreover, the Right Hand Side (RHS) of each
constraint and all variables are non-negative. The simplex method and M method are the
methods of solution by iterative procedure in a finite number of steps using matrix.

e

3.1 UNIT OBJECTIVES

After going through this unit, you will be able to: .

- @ Understand the significance of linear programming
¢ Know the terms associated with a linear programming problem
® Learn how to formulate a linear programming problem
e Form a matrix of a linear programming problem
* Explain the applications and limitations of linear Programming problems
* Solve a linear programming problem with two variables using the graphical method
® Describe linear programming problems in canonical form
® Solve linear programming problems using the simplex method
* Solve linear programming problems using the Mmethod

52 INTRODUCTION TO LINEAR PROGR AMMING
" PROBLEM | NG

Decision-making has always been very
particularly with regard to the problems

w
Important in the busipegg and industrial world:

. ar concerning production of co iti ich
commodlt).r/comm.odmes to produce, in what quantities and by which pﬁ;:: :)nes;,::nses»
are the main questions before a production manager. English econg i
pointed out that the businessman a}

_ mist Alfred Marshall

_ ways studies his production fiynes is input
prices and substitutes one input for : ction and bis inp”
All this sort of substitution, in the

another till his costs become the minimum possiblé-

, s sort opinion of Marshall, is being done by pys: an’s
:?l;ed mlstmct ratl}er than with formal calculations, But now there do:; eﬁ;f:ﬁfmo

fonnrul;xa ((i:ablculatlox.ls often termed as Linear Programming, T method was first

ated by a Russian mathematician L.V, Kantorovich, byt o boter

twas developed later I

wide range of practical business problems. The advent of elec?ro.nic compu?ers has
further increased its applications to solve many other problems in industry. It is being
considered as one of the most versatile management tools.

5.2.1 Meaning of Linear Programming

i grammin, is a major innovation since World War Il in the i‘ie!d oflzusmess
Ic;::?:;ot(:]laldng, pil%glarly under conditiqns ot: ce@mw. The wqrd tll.near en:);aﬂr::
that the relationships are represented by st.ral,ght lines, ie, the rgle.mons fs ar o
form y = a + bx and the word ‘Programming’ means takmg.de(:lswns systema t;hy;
Thus, LP is a decision-making technique under given c.onstramts on the assumption ;1
the r(-;lationships amongst the variables representing .cl1ﬁ“er<?nt phenomena haI.)p.eP tobe
linear. In fact, Dantzig originally called it ‘grogtammmg of @tefdepepdent ar(;iilwtles :ln 12
linear structure’ but later shortened it to ‘.Llpea{ Progmxpn_nqg . LP is gsetne‘ lly .use_on)
solving maximization (sales orpmﬁtmaxmlzfltlofl) or mmlmlzahtzi .(co m1mmxzauPr ;

blems subject to certain assumptions. Puting in gformal way, ‘Linear Programming
B e maximi i minimization) of a linear function of variables subject to a constraint
o th‘e max'lmmuo'n'(or’ Hence, LP is a mathematical technique designed to assist the
o hn?arél;;q;il;z;uy alloc;ﬁng its available resources under conditions of certainty
organiza

in problems of scheduling, product-miX, andsoon.
5.2.2 Fields Where Linear Programming can be Used

The problem for which LP providesa solution may be stated to maximize or minimize for

me dependent variable which is a function of several independent variables when the
SO

i i oot to various restrictions. The dependent variable is usually
independent v:_mag!&s ,ﬁ?:iﬁ:s) profits, production, costs, work weeks, tonnage to be
Some econom? Jecroﬁt; are generally preferred to less profits and lovs.rer.cos.ts are
shipped, etc. More (I: osts. Hence, itis appropriate to represent either max1m%zatmn or
P rfefferr.ed t? hlgh‘:; de .endent variable as one of the firm’s objective. LP is usually
minimization ﬂ‘:f c; ob? ectives under given constraints with linearity assumptiong.. In
conce l:ned melﬁjlt: take in its stride a wide range of business applications. The apphcauf)ns
Lo ous and are increasing every day. LP is extensively used in solving
b areaﬁzcm;‘eiron problems. Production planning and scheduling, transportation, sales
;ng :rd:zzrﬁsing financial planning, portfolio analysis, corporate planning, etc., are some

of its most fertile application areas. More specifically, LP has been successfully applied \

in the following fields: N
;cultural Applications: LP can be applied in farm management problems as
@) Ag':ctes to the allocation of resources, such as acreage, labour, water supply or
lt f)il?ing capital in sucha way that is maximizes net revenue.
w

(ii) Contract Awards: Evaluation of tenders by recourse to LP guarantees that the
iiy Con :
i t way.
ds are made in the cheapes . . .
awards jal Applications: Applications of LPin busmes§ apd 'md}xstry are of most
(i) Ip.zdustmf r[]-’mnsportation problems conceming cost minimization can be solved
glvgetlﬂnli‘ﬁque The technique can also be adopted in solving the problems of
s tec . .
plj',oduction (product-mix) and inventory control.

Thus, LP is th ostwidelyusedteChnique of decision-making in business and industry
us, LP is the m

ve.
in modern times in various fields as stated abo
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53 COMPONENTS OF LINEAR PROGRAMMING

PROBLEM

The following are the components of linear programming problem:
5.3.1 Basic Concepts and Notations

There are certain basic concepts and notations to be first understood for easy adoption
of the LP technique. Abrief mention of such concepts is as follows:

(i) Linearity: The term linearity ig]plieg straight line or proportional relationships
among the relevant variables. Linearity in economic theory is known as constant
returns which means that if the amount of input doubles, the corresponding output
and profitare also doubled. Linearity assumption, thus, implies that if two machines
and two workers can produce twice as much as one machine and one worker;

four machines and four workers twice as much as two machineg and two workers
’
and so on.

(i) Process and Ifs Level: Process means the combination of particular inputs to
prqduce a particular output. In a process, factors of production are used in fixed
ratios, of course, depending upon technology and as

with a process. There may be many processes o
commodity and one process can be substituted for another. There is, th 0
interference of one process with another when two or more proces K rld
simultaneously. If a product can be produced in two different wa Setshare L}llse

are two different processes (or activities or decision variables) for tis’ on e
alinear program. e purpose of

Pen o a firm for producing a

(iii) Criterion Function: Criterion function is also kno i
i ' Wn as objective funct i
states the determinants of the quantity either to be maximized or to bncmtlionni mw'hjch
For example, revenue or profitis such a fun sto be nf imi 1zed.
aximized or

‘ ‘ ction when it
costis such a function when the problem s to minimize it An objective funct;
' ction

»---» 1. The revenue or cost coeffici
by C, Thus, 2X , implies that X units of ac

Let b denote the quantity b of resource i available for use in various productionl
procésses. The coefficient attached to resource i is the quantity of resource
required for the production of one unit of product.

(v) Feasible Solutions: Feasible solutions are all those_: possible s:o.lutions which can
be worked upon under given constraints. The region comprising of all feasible

solutions is referred as Feasible Region. | .
(vi) Optimum Solution: Optimum solution is the best of the feasible solutions.

5.3.2 General Form of the Linear Programming Model

Linear Programming problem mathematically can be stated as under:

Choose the quantities,
X2>0 (=1, n) ci(Du1)
This is also known as the non-negativity condition and in simple terms means that

no X can be negative.

To maximize,
Z=>.CX; (52)
j=1
Subject to the constraints,
Y.a;X; <b (i=1..m (5.3)

i i del in the simplest possible

i ture of a linear programming modelir ;
The aboYe is thelusuatl)ztir;zrpreted as a profit maximization situation wh.ere n proc‘fuc!:lon
txmlusmoysiea which have to be decided upon, subject to a limited
{able. Each unit of the jth activity yields a return C z%nd
Z denotes the optimal value of the objective

activities are pursued at l'evel X

amount of m resources being aval
ith resource.

uses an arnoun?: a; of the i

function for a given system.

Assumptions or the Conditions to be Fulfilled Underlying the LP Model
LP model is based on the assumptions of proportionality, additivity, certainty, continuity

and finite choices. : o E
ionality is assumed in the obj ective function and the constraint mf:qua'hUes.

ot this means that there are constant returns to scale, i.e., if one

¥ 5 toward profit, then 2 units will contribute %10, 4 units

Prop _
In economic terminology
unit of a product contributes

20, and so on. means the prior knowledge of all the coefficients in the

; tion :
o 'Ceigfgnt?; 283111:::1;6 fficients of the constraints and the resource values. LP model
objective function,

itions of certainty.
operat:i ;;;Yv‘:“‘z;:f:;z means that the total of all the activitig:s is% gi_vetr;1 by ﬂ}e sum
total of eaclhtac?i}vity conducted separately. For exal;gleéi;?’;a t‘rlls ;(;c::hli:ts ::;;:gg;
function is equal to the sum of the profit contribute _y. . : .
Continuity assumption means tha.t the d§c131on Varle}bless :1:% clz)lg;\éi?;lii
Accordingly the combinations of output with fractional values, in case of p

Problems, are possible and obtained frequently.
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Check Your Progress

1.

2

What is linear
programming?
What is meant by
criterion function in
linear programming?
Mention two areas
where linear
programming finds
application.

‘What are
constraints in linear
programming?
What is a solution
in linear
programming
problem?

What is a ‘basic
solution’ of an
LPP?

What is basic and
non-basic variables?
What do you
understand by basic
feasible solution?
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Finite choices assumption implies that finite number of choices are available toa
decision-maker and the decision variables do not assume negative values.

5.4 FORMULATION OF LINEAR PROGRAMMING
PROBLEM

This section will discuss the process of formulation of linear programming problem:

5.4.1 Graphic Solution

The procedure for mathematical formulation of an LPP consists of the following steps:
Step 1: The decision variables of the problem are noted,

Step 2: The objective function to be optimized (maximized or minimized) as a linear
function of the decision variables is formulated.

Step 3: The other conditions ofthe problem, such as resource limitation market constraints,
interrelations between variables, etc., are formulated as linear ine ’
in terms of the decision variables.

Step 4: The non-negativity constraint from the considerationg j
values of the decision variables do not have any valid physic

quations or equations

s added so that the negative

) _ alinterpretation.
The objective function, the set of constraints and the non

together form a linear programming problem, -negative constraint

5.4.2 General Formulation of Linear Programming Problem

The general formulation of the LPP can be stated as follows:

In order to find the values of # decision varia

R ; bles ..
minimize the objective function. X K X, to maximize 0f

Z=CX, +CX,+...+C,X,

.. (54)
a X +a,X, +--+ a,X,(, =, 2)b, )
Ay X +a,X, +-+ a,,X, (<, =, 2)b,
ay X, +a,X, +--+ a,X, (s, =, 2)b,
; (5.5)
X, +a,, X, + 4 a, X (<= )b,

Here, the constraints can be i i
A Inequality < or > :
and finally satisfy the non-negative resmcﬁct)yns. =Orevenin the fopy, an equation (%)

X,20,X,20...X,>0
..(5.6)

The LPP canbe expressed in the matrix form as fo]]
0

Maximize or minimjze Z=Cx b

= Objective functi
: Ction
Bubjo ectto AX (<, = > By Constant €quation
>
X220 Non-negativity restrictiong

Where, X= (X, X,,"--,X,)
C= (q: Cza“'scn)
B a4, "'aln_ )
B=|b i ay 0y, -Gy
b,
amlarrﬂ ”'am"

Example 5.1: A manufacturer produces two types of models M, and M,. Each model
of the type M, requires 4 hours of grinding and 2 hours of polishing; whereas each model
of the type M, requires 2 hours of grinding and 5 hours of polishing. The manufacturers
have 2 grinders and 3 polishers. Each grinder works 40 hours a week and each polisher
works for 60 hours a week. The profit on M, model is ¥ 3.00 and on model A, is ¥ 4.00.
Whatever is produced in a week is sold in the market. How should the manufacturer
allocate his production capacity to the two types of models so that he may make the
maximum profitin a week?

Solution:
Decision variables: Let X, and X, be the number of units of M, and A,
Objective function: Since the profit on both the models are given, we have to
maximize the profit, viz.,
Max Z = 3X, +4X,
Constraints: There are two constraints: one for grinding and the other for polishing.
The number of hours available on each grinder for one week is 40 hours. There

are 2 grinders. Hence, the manufacturer does not have more than 2 x 40 =80 hours for
grinding. M, requires 4 hours of grinding and M, requires 2 hours of grinding.
e

The grinding constraint is given by,

4X,+2X,<80 e

Since there are 3 polishers, the available time for polis!:mg in a week is given by
3 x 60 = 180. M requires 2 hours of polishing and M, requires 5 hours of polishing.
Hence, we havelZXl +5X,<180

Thus, we have,

Max Z=3X, +4X,

Subjectto 4.X, +2X, <80

2X, +5X, = 180

T d . These prod

tures two products 4 and B. These products are

5;22523 lsn Eﬁ;ﬁ?&ﬁﬁ?ﬁ?{:}fw 10 minutes t'o process onefunit of prpduct Aand
Minutes for each unit of product B and the machine ope;ates or ta rgz;xunum‘oﬂ >
ours in a week. Product 4 requires 1 kgand B 0.5 kg ey Ifila ?;a- };;r TRE, e
SUpply of which is 600 kg per week. The market C?nsﬂ@t o;ldprf ;1% PIS d Rap e
00 units every week. Product 4 costs X 5perunitandis :% g aD i e tECt 3 c?;ts
6 Per unit and can be sold in the marketata unit price o . Determine the number

funits of 4 and B that should be manufactured per week to maximize the prqﬁt.
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Solution:

Decision variables: Let X, and X, be the number of products of 4 and B.
Objective function: Cost of product 4 per unitis Z 5 and is sold at Z 10 per unit.
. Profit on one unit of product4=10-5=5

. X, units of product 4, contributes a profit of ¥ 5X, from one unit of product.
Similarly, profit on one unit of B=8 — =2

;. X, units of product B, contribute a profit of ¥ 2X..

.. The objective function is given by,

Max Z =5X,+2X,

Constraints: Time requirement constraint is given by,

10X, +2X, < (35x60)
10X, +2.X, <2100

Raw material constraint is given by,

X, +0.5X, <600

Market demand on product B is 800 units every week
- X, 2800

The complete LPP is,
Max Z =5X, +2X,

Subjectto, 10.X, +2.X, <2100
X, +0.5X, <600
X, =800
XX, 20

) units of 4, B, ¢ ;
sells for X 3 per jar and the dry product sells for ¥ 211’)Zfrcal't0n. Ifthe liquid product

numper of jar that needs to be purchased, in order to bring ‘c’lirton, What shoyld be the
requirements? Wi the cost ang meet the

Solution;

the cost.
MinZ= 3}'(1 + 2)(2

Constraints: As there are

three chemical
: S
have three constraints for theset i

their reqy;
; ui ;
hree chemicals, QUirements gy given, W€

5X,+X,210
2X, +2X, 212
X, +4X, 212

Hence, the complete LPP is,
Min Z=3X, +2X,
Subject to,

5%, +X,210
2X,+2X,212
X, +4X,212
X, X,20

1 ‘ fpaper X and Y. Because of raw
5.4: A paper mill produces two grades o
ﬁ’;?elgfilfesuicﬁoﬂsit cannot produce more than 400 tonne. of grade X' and 300 tonnes
of grade Yin a week. There are 160 production hours in a week. It reqmrgs 0.2and 0.4
hogs to produce a tonne of products X and Yrespectively with corresponding profits of
¥ 200 and T 500 per tonne. Formulate this as a LPP to maximize profit and find the
optimum productmix.
Solution: .
Decision variables: Let X, and X, be the number of units of the two grades of
paper, Xand Y.
Objective function: Since the profit for the two grades of paper X and Y are
given, the objective functionis to maximize the profit.

Max Z=200X, + 500X,

i ith reference to raw material, and
ints: two constraints one wit x
Constraints: There are

the other with reference to production hours.
Max Z=200X, + 500X,
Subject to,

X, <400
X, £300
0.2X, +0.4X, <160

. ‘ctionX ) X,z 0 z
Non-negative restri u;'actzures two products 4 and B. Each unit of B takes

Ex'ample 5.5: A company minunit of 4 and if the company were to produce OHI)./A _it
t‘:;lﬁ?da}sl lon%. to pé'odt;gz 32:;000 units per day. The availability of the raw material is
ave time to p

ther. Product B requiring a

: day of both 4 and B toge

:nou'gh to proc‘luce 1500 él(r)](l)tiﬁil’:i ofyit can be made per day. If 4 fetc?hes a proﬁ‘t of

?p;;al 1ngrem(ie;;, onlyﬁt £% 4 per unit, find the optimum product mix by graphical
€r unit and B a pro

Metho,

Solution; | ¥ and X, bo the number ofunits of the products 4 and B, respectively.
lon: Let X and X,

Linear Programming
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The profit after selling these two products is given by the objective function,
Max Z=2X, +4X,

Since the company can produce at the most 2000 units of the product in a day and
product B requires twice as much time as that of product 4, production restriction is
given by,

X, +2X, <2000

Since the raw material is sufficient to produce 1500 units per day of both 4 and B,
we have X, +X, <1500.

There are special ingredients for the product B we have X,<600.

Also, since the company cannot produce negative quantities JX, > 0 and
X >0.

2
Hence, the problem can be finally put in the form:

Find X, and X such that the profits, Z= 2X +4 X, is maximum,

Subject to, X, +2X, <2000
X, + X, <1500
X, <600

X, X 20

Example 5.6: A firm manufacturers three products 4, B and CNTHe profits are T3

X 2 andX 4 respectively. The firm has two machines
& S aalen and the following i :
processing time in minutes for each machine on each product. Owing is the required

Product
A B C
Machines C | 4 3 5
D \ 3 2 4

must manufacture 100 units of 4, 200 units of B and 50 yn;
. ] Um tS
units of 4. Set up an LP problem to maximize the profit. Tl

Solution: Let X,, X, X, be the number of units of the

Since the profits are ¥ 3,32 and T 4 respectiv
firm after selling these three products is given by,

Z=3X+2X, +4.X,

The total number of minutes required i
Cis given by 4XI + 3X2+ 5X,and atm

3X, +2X2+4X3.

product 4, B ¢ respectively.

4X,+3X,+5X, <2000
3X,+2X, +4X, <2500

Self-Instructional
Material
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pectively, The firm
tnot more than 150

ely, the tota] pProfit gained by the

Also, since the firm manufactures 100 units of 4, 200 units of B and 50 units of C,
but not more than 150 units of 4, the further restriction becomes,
100 < X, <150
200 X,20
50<X,20

Hence, the allocation problem of the firm can be finally put in the following form:
Find the value of X, X,, X soas to maximize,

Z=3X +2X,+4X,

Subject to the constraints,

4X, +3X,+5X, <2000
3X, +2.X, +4X, <2500

100 < X, 150,200 < X, 20,50 < X; >0

Example 5.7: A peasant has a 100 acres farm. He can sell all potatoes, cabbage or
brinjals and can increase the cost to get Re 1.00 per kg for potatoes, Re 0.75 a head for
cabbage and ¥ 2.00 per kg for brinjals. The average yield per acre is 2000 kg of potatoes,
3000 heads of cabbage and 1000 kg of brinjals. Fertilizers can be bought at Re 0.50 per
kg and the amount needed per acre is 100 kg each for potatoes and cabbage and 50 kg
for brinjals. Manpower required for sowing, cultivating and harvesting per acre is 5
man-days for potatoes and brinj als and 6 man-days for cabbage. A total of 400 man-
days of labour is available at ¥ 20 per man-day. Solve this example as a linear
programming model to increase the peasant’s profit. .

Solution: Let X, X,, X be the area of his farm to grow potatoes, cabbage and brinjals
respectively. The peasant produces 2000, kg of potatoes, 3000.X, heads of cabbage
and 1000.X, kg of brinjals.

~. The total sales of the peasant will be,

=¥ (2000X, + 0.75 % 3000, +2 X 1000.X,)

. Fertilizer expenditure will be,

=320 (5X, + 6X, + 5X))

:. Peasant’s profit will be,

Z=Sale (inT) — Total expenditure (in3)

= (2000X +0.75 x 3000X, +2 1000,) - 0.5 x [100(X, +X,) +50X)]
=20 x (5X, + 6X,+5X)

Z=1850X, +2080X, + 18754,

Since the total area of the farm is restricted to 100 acres,

X, + X, +X,<100

Also, the total man-days manpower is restricted to 400 man-days.

5X, +6X, +5X, <400
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Hence, the peasant’s allocation problem can be finally put in the following form:
Find the value of X, X, and X, so as to maximize,

Z=1850X +2080X,+1875X,

Subject to,

X, +X,+X, <100
5X, +6X, +5X, <400
Xy Koy Xy 20

Example 5.8: ABC company produces two products: juicers and washing machines.
Production happens in two different departments, T and I1. Juicers are made in department
I and washing machines in department II. These two items are sold weekly. The weekly
production should not cross 25 juicers and 35 washing machines. The organi:;ation always

employs a total of 60 employees in two departments. A juicer requires two man-weeks
labour, while a washing machine needs one man-week labour,

X 60 and a washing machine contributes a profit of ¥ 40, How

washing machines should the organization make to achieve the
this as an LPP.

Solution: Let X, and X be the number of units of
produced.

Ajuicer makes a profit of
many units of juicers and
maximum profit? Formulate

Juicers and washing machines to b€

Each juicer and washing machine contributes a

the objective function is to maximize Z = 60X +40X ProfitofR 60 and¥ 40. Hence,
1

There are two constraints which are imposed: weekly production and labour

Since the weekly production cannot exceed 25
therefore

X, 225
X =35

Juicers and 35 washing machines»

A juicer needs two man-weeks of hard work

S an : :
one man-week of hard work and the total number 0 s Washing machine needs

fworkers is 6
2X, +X,<60 o
Non-negativity restrictions: Since the ny i
: mbe i
produced cannot be negative, we have X 120 and)(l'- C;fg)ulcers Anc Washing machines
Hence, the production of juicers and e
: ) washin i
putin the form ofa LP model as given below: g e problem can be finally
Find the value of X and X, soasto maximize,
Z=60X +40X,
Subject to,
X, <25
AL <35
2X,+X, <60
and, X, X,>0

Problems as well as transportation and di

5.5 APPLICATIONS AND LIMITATIONS OF LINEAR
PROGRAMMING PROBLEM

The applications of linear programming problems are based on linear programming matrix
coefficients and data transmission prior to solving the simplex algorithm. The problem
can be formulated from the problem statement using linear programming techniques.
The following are the objectives of linear programming:

o Identify the objective of the linear programming problem, i.e., which quantity is to
be optimized. For example, maximize the profit.

o Identify the decision variables and constraints used in linear programming, for
example, production quantities and production limitations are taken as decision
variables and constraints.

o Identify the objective functions and constraints in terms of decision variables
using information from the problem statement to determine the proper coefficients.

o Add implicit constraints, such as non-negative restrictions.

o Arrange the system of equations in a consistent form and place all the variables
on the left side of the equations.

Applications of Linear Programming

Linear programming problems are associated with the efficient use of allocation of
limited resources to meet desired objectives. A solution required to solve the linear
programming problem is termed as optimal solution. The _]jnear pro grarmning pl.’Oblems
contain a very special subclass and depend on matl.lemat'mal m(_)del or dE‘.Scrlpnqn_ Itis
evaluated using relationships and are termed as straight-line or linear. The following are
the applications of linear programming:

e Transportation problem

® Diet problem

® Matrix games

® Portfolio optimization

® Crew scheduling

Linear programming problem may be solved using a simplified version of the simplex

technique called transportation method. Because of its maj(?r applic‘ation in solvin'g
Problems involving several product sources and several destinations of products, this

i It gets its name from its
e . 1led the transportation problem. It g
type of problem is frequently Sr?ng {ransporting products from several sources to several

application to problems invol : :
destinati o Tl;e formation is used to represent more general assignment and scheduling
e stribution problems. The two common objectives

°fsuch problems are as follows: |
® To minimize the cost of shipping”” units to  des

® To maximize the profit of shipping m units to 72 destmat;c.ms. - Sl o i
. is to find the cheapest com lnatlon' of foods that will
o guulofihedifieb S | nts of a person. The problem is formulated as a

Satisfy g]) : ® ireme

: the daily nutritional requireIe=e = : i :

negy pro }3 the obiectiveis 0 minimize cost and meet constraints which require
SHm yneIs e traints are used to regulate the number of

At nutritiona] needs be satisfied. The cons

tinations.
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Game method is used to turn a matrix game into a linear programming problem. It
is based on the Min-Max theorem which suggests that each player determines the choice
of strategies on the basis of a probability distribution over the player’s list of strategies.

The portfolio optimization template calculates the optimal capital of investments
that gives the highest return for the least risk. The unique design of the portfolio optimization
technique helps in financial investments or business portfolios. The optimization analysis

is applied to a portfolio of businesses to represent a desired and beneficial framework
for driving capital allocation, investment and divestment decisions.

Crew scheduling is an important application of linear programming problem. It
helps if any airline has a problem related to a large potential crew schedules variables.
Crew scheduling models are a key to airline competitive cost advantage these days
because crew costs are the second largest flying cost after fuel costs.

Limitations of Linear Programming Problems -

Linear programming is applicable if constraints and objective functions are linear, but
there are some limitations of this technique which are ag follows:

e All the uncertain factors, such as weather conditiong

1 i i growth rate of industry,
etc., are not taken into consideration.

o Integer values are not taken as the solution, e.g., a valy

_ _ eis required for fraction
and the nearest integer is not taken for the optimal so]

ution,
e Linear programming technique gives those practical-valued answers that are really
not desirable with respect to linear programming problem

o It deals with one single objective in real life problem which is more limited and the

problems come with multi-objective,

e Inlinear programming, coefficients and
inrealty they do not take place.

e Blending is a frequently encountered problem in lin erammi
. - .. eal. rO i
if different commodities are purchased which have d];i)ffere sl
costs, then the problem helps to d

ecide how much ofeach
purchased and blended within specified bound so that th,
. - * i e

parameters are assumeq ag constants but

nt characteristics and
commodity would be
total purchase cost i

5.6 SOLUTION OF LINEAR = ————
PROGRAMMING PROBLEM

The linear programming problems can be solve

d as follows:

5.6.1 Graphical Solution

Simple linear programming problem with s .
eraphical method, F0 decision variabies can e easily solved by
Procedure for Solving LPP by Graphical Method

The steps involved in the graphica] method are as folloy,
St

Self-Instructional
Material
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Step 1: Consider each inequality constraint as ap Cquati
ation,

Step 2: Plot each equation on the graph as each will geometrically represent a
straight line.

Step 3: Mark the region. Ifthe inequality constraint corresponding to that line is
<, then the region below the line lying in the first quadrant (due to non-negativity of
variables) is shaded. For the inequality constraint = sign, the region above the line in the
first quadrant is shaded. The points lying in the common region will satisfy all the_ constraints
simultaneously. The common region, thus obtained, is called the feasible region.

Step 4: Allocate an arbitrary value, say zero, for the ob_j ective function.

Step 5: Draw the straight line to represent the objective function with the arbitrary
value (i.e., a straight line through the origin).

Step 6: Stretch the objective function line till the extreme points‘ o.f the feasible
region. In the maximization case, this line will stop farth:.as.t frf)m .the origin gnd. passes
through at least one corner of the feasible region. In the minimization case, t'hlS line Wlll
stop nearest to the origin and passes through at least one corner of the feasible region.

Step 7: Find the coordinates of the extreme points selected in Step 6 and find the
maximum or minimum value of Z.

Note: As the optimal values occur at the corer points of the feasible region, it is enough to
calculate the value of the objective function of the corner points of the feasible region and select
the one which gives the optimal solution, .., in the case of maximization problem, optimal point
corresponds to the corner point at which the objective function has a maximum value and in the
case of minimization, the corner point which gives the objective function the minimum value is the

optimal solution. .
Example 5.9: Solve the following LPP by graphical method.
Minimize Z= 20X, + 10X,
X, +2X, <40
3X +X, 230
4X, +3X, 2 60
X, X, 20 .
Solution: Replace all the inequalities of the constraints by equation,
X +2X, =40 If X,=0=>X,=20
1 2
IfX2=0:>X!=40
0,20) (40, 0)
9,30)(10,0)
1 20)(15,0)

Subject to,

. X, +2X, =40 passes through (
3X,+X,=30 passes throug
4X +3X,=60 passes through .
Plot cach equation on the graph.
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The feasible region is ABCD.

Cand D are points of intersection of lines.
X,+2X,=40, 3X,+ X, =30

And, 4X +3X =60

On solving, we get C (4, 18) and D (6, 12)
Corner Points  Value of Z = 20X, + 10X,

A(15,0) e P30
B (40,0) 800
C(4,18) 260
D (6,12) 240 (Minimum value)

.. The minimum value of Z occurs at D (6, 12). Hence, the optimal solution is
=X =12

Example 5.10: Find the maximum value of Z = 5X X,
Subject to the constraints,
X +X <4
3X, +8X,<24
10X, +7X, <35
X,X,>0

Solution: Replace all the inequalities of the constraints by forming equations.
X, + X, =4 passes through (0, 4) (4, 0)
3X,+8X, =24 passes through (0, 3) (8, 0)
10X, +7X, =35 passes through (0, 5) (3.5, 0)

Plot @ege lines 1n the graph and mark the re gion below the line 3
the constraint is < and is also lying in the first quadrant.

s the inequality of

The feasible region is OABCD.

B and C are points of instruction of lines,
X+ =4, 10X, +7X,=35

And, 3X, +8X,=24,

On solving we get,

B(1.6,2.3)

C(1.6,2.4)

Corner Points Value of Z = 5X, + 71X,

0(0,0) 0

4350 175

B(1.6,2.3) 251 |

C(1.6,2.4) 24.8 (Maximuin value)

D ('gili)maximum vaiie of Z occurs at C (1.6,2.4) and the optimal solution is

X = = i ! )
Elx ] 1.6; X; 1;2‘; company makes 2 types of hats. Each hat 4 needs twice as much
mple 5.11:

labour ime as the second hat B. If the company is able to produce only hat B, then it can

make about 500 hats per day: The market limits daily sales of the hat 4 and hat B to 150
e abou .

and 250 hats. The profits on hat 4 and hat B are ¥ 8 and X 5, respectively. Solve
ats. ;

8raphically to get the optimal solution.

Solution: Let X Land X, be the numbe

Maximize Z=8X, + 5%,
2X, +2X,5500

X, 2150
X,2250
X,X,20

r of units of type 4 and type B hats respectively.

Subject to,

Linear Programming
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wri ty I 5X, +4X, 2100
int | i lines in : g
First rewrite the inequali of the constraint into an equation and plot the i B
Programming ir :
" and X, X, 2
e 72X + X, = 500 passes through (0,500) (250, 0) o :
olution:
l X2 = 150 passes through (150, 0)
1
NOTES

X. = 250 passes through (0, 250)
2 . .
We mark the region below the lines lying in the first

quadrant as the inequality of

traints are <. The feasible region is O4BCD. B and C are points of intersection
the cons =

oflines:
X+ X = 500, where X, = 150 andX2= 250
1

NOTES

:-":7_/" ,‘ 2 ‘?4" '
101 region 28 "5;
On solving, we get B (150, 200) ; & o
C(125,250) @0y [ 10\ O30N%:30 ?«?;_o%xi{]\\
:%' ’%\\ 1‘?\\
% \a E \% %
500\ \\%
3 T Al CD.
400 D ible region is given by O4B
- Feasib CPOi: B Value of Z = 3X + 4X,
< Corner
300- = ¥ 60
, D (0, 250) C|(125, 250) X, = 250 0(20,0) 50,
=TT N e
| 200 %é B (150, 200) A4(40,0) 138.4 (Maximum value)
EFeasible = B (30.8,11.5) 120
100-E LS80 3 C(0,30) 100
== 25
T T D(©,23) . fZis attained at B (30.8, 11.5)
0 ATl T T 5 . 1mum value o
(0.0 100 200 \300 400 s00 X . The max : 8 X =115
£ (1509 o i Jution is X =30.8,4, = 11.
) ¥ .. The optimal solu 1 ) ive the following LPP:
p . thod to solv »
>y Example 5.13: Use graphical me
% Maximize, Z=6X, +4X,
. i +.X £2
Corner Points  Value of Z = 8X, +5X, Subjectto, —2X, +4X, e
0(0,0) 0 X-%=
; 3X,+2X, <9
- A(150,0) 1200 S
B(150,200) 2200 X, 4, 2
C(125,250) 2250 (Maximum Z= 2250) Solution:
D(0,250) 1250

The maximum value of Z is attained at C ( 125, 250)
. The optimal solution is X,=125, X,=250

Therefore, the company sh

ould produce 125 hats of
B in order to get the maximum profit of ¥ 2250

Example 5.12; By graphical method solve the
Maximize Z =3 y T4X,
Subject to, SX, + 4X, <200

3X, +5X, <150

type A and 250 hats of typ®

following LPP:
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a X+a,X+..+ta X<b

11771 12772

a X+a. X+..+ta X=2b

11" 1272

4. 1f a variable is unrestricted in sign, then it can be expressed as a difference of two non-

' negative variables, i.e., X, is unrestricted in sign, then X=X — X", where X, X7, X/ are
=0. e .

5 In standard form, all the constraints are expressed in equation, which is possible by

introducing some additional variables called slack variables and surplus variables so

that a system of simultaneous linear equations is obtained. The necessary transformation
will be made to ensure that b,> 0.

Definition of Slack and Surplus Variables
(¢) Ifthe constraints of a general LPP be,

zay. X, &8 0=102.,m),
Jj=1

then the non-negative variables S, which are introduced to convert the inequalities (<) to

the equalities Zafj X, +8,=b,(i=1,2,...,m),are called slack variables.

j=

Slack variables are also defined as the non-negative variables which are added in
the LHS of the constraint to convert the inequality ‘<’ into an equation.

(#i) Ifthe constraints of a general LPP be,
Y a X b =12, m).
Jj=1

then, the non-negative variables S which are introduced to convert the inequalities

(2)tothe equalities > a, X, —S,=b, (i=1,2,..., m) are called surplus variables.
1

Surplus variables are defined as the non-negative variables which are removed
from the LHS of the constraint to convert the inequality

5.6.4 Simplex Method

‘2’ into an equation.

Simplex method is an iterative procedure for solving LPP in a finite number of
. : teps.
This method provides an algorithm which consists o

of moving from one vertex of the
region of feasible solution to another in such a mann

er that the value of the objective
function at the succeeding vertex is less or more as th J

€ case may be that at th, ious
vertex. This procedure is repeated and since the numb o

er of vertices is finjte thod
leads to an optimal vertex in a finite number of Steps or indicates the é)tclil:tzrrllece of
unbounded solution.
Definition

(i) LetX, beabasic feasible solution to the LPP.
Max Z=C,

Subjectto 4,=band X> 0, such that it satisfies X,=Bp

Where B is the basic matrix formed by the column of basic variables
The vector C,=(C, ,C l

: 2~ \Cpp Cpy . Cp ), where C, are com i
with the basic variables is ca -4 e EotC sl

lled the cost vector assog; ; :
feasible solution X, SSociated with the basic

(i) Let X, be a basic feasible solution to the LPP,

Max Z=C,, where 4, = band X2 0.

Let C, be the cost vector corresponding to X;. For each column vector g, ind,,
which is not a column vector of B, let

m
a}' =Zaﬁbj
i=1

c : i ding to a.and
Then the number Z, = Z Cyay is called the evaluation corresponding to a,

i=1

i et evaluation corresponding to j.
the number (Z,— C) is called then

Simplex Algorithm

i i ithm, the existence of an initial basic feasible
lution of any LPP by simplex algorithm, : - :
521:1%25 (i)s]jil\grzys assyumed. The steps for the computation of an optimum solution are as
follows: . kol
jecti i the given LPP is to be maximized
: ther the objective function of" : aximiz
min Simtegic.l I(tzlllt‘fic‘)” ‘;l: minimized then we convert it into a problem of maximization
or :

by,
Min Z=-Max (-2) f 2
Step 2: Check whether all b (i=1, 2, ..., m) are positive. If any onne ;)f ? ;s
' i ' i int by —1 so as to get all b.to be
i ly the inequation of the constraint by :
negative, then multip
itive. . :
. vSt 3: Expressthe problem in the standard form by introducing slack/surplus
e : . . . .
variablesﬁ) convert the inequality constraints into equz.mons. .
btain an initial basic feasible solution to the prgl?lfem in the form
X Bf’;ep : : ?it i?ll the first column of the simplex table. Form the initial simplex table
= and pu

shown as follows:
G | G G |G 4 » SO 2 """ (,}S'

C S X, X X, X, | & [ X, Cadtest '""0”’
8 g g iHL IR

(,\3 h) by | an | %2 ay |4y i Sy
l » o

Y b ] ay | 9z |9 A Gan
Chz S 2| bexe

- i lation:
Step 5: Compute the net evaluations Z,— C, by using T

%—q:cﬂ(aj‘c}) i
Examine the sign of Z,— & b
() Ifall Z-C, 20, then the initia

J

basic feasible szollltéoz-o then proceed to the next step as the solution is not
(if) Ifatleastone £,—%;~ ™ !
optimal. - i e.. key column.

Step 6: To find the entering vyariable, 1.€., K€Y S N T

e negative Z,— C, choose e
it [fthere are s than;f:-s gives the entering variable X and 1s_1t;) llcﬁte i t;n
ar‘:;,f'; Er t;)r Some;;;rth 1colu.mn. If there are more than one variable having the
at the bottom o

asic feasible solution X is an optimum
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near Programming same most negative ZJ - Cj, then any one of the variable can be selected arbitrarily as
the entering variable.
(i) IfallX, <0(i=1,2,...,m) then there is an unbounded solution to the given
problem.
NOTES (if) If at least one X, > 0 (i=1, 2, ..., m), then the corresponding vector X,
enters the basis.

Step 7: To find the leaving variable or key row:
Compute the ratio (X, /X, , X >0)

If the minimum of these ratios be X /X, ,then choose the variable X, toleave the
basis called the key row and the element at the intersection of the key row and the key
column is called the key element.

Step 8: Form a new basis by dropping the leaving variable and introducing the
entering variable along with the associated value under C » column. The leaving element
is converted to unity by dividing the key equation by the key element and all other
elements in its column to zero by using the formula:

Product of el i
New element = Old element “[ clements in key row and key column }

Key element

: Step 9: Rtlapeat. th? prpcedure of Step (5) until either an optimum solution is
obtained or there is an indication of unbounded solution.
Example 5.18: Use simplex method to solve the following LPP:
Maximize Z=3X +2X,
Subjectto, X, +X, <4
X, -X,52
AR e

Solution: By introducing the slack variables A
form. ’

Max Z = 3X, +2X, +0S, + 0,

» convert the problem into standard

Subjectto, X, +X,+S =4
b A o G
X X5, 5,8, 20

b

Xy 50§
1 0 =
1

%]
a2
e = o1
[ I =N
= s

—

Aninitial basic feasible solution is given by,
X.= B,

Where, B = L, X (Sl, Sz)
ie.,(8),5)=1,(4,2)=(4,2)

Self-Instructional
276 Material
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Initial Simplex Table

Z=C,a
J B 7j 0\
Z, -C =Cha-C = 0 (l I)—-3=—3
0
Z,-C,=Cha,—C, = 0 (1 1)—2‘_”—2
! =-0
Z,—C,=Cga,—C; = 0 (1 0)-—0——-
’ 0=-0
A i O M B " (01)-0=-
C; 3 2 0 0
o
CB B XB Xl X2 S] S2 M]n?l
«0 S5 2 @ -1 0 1 2/1=2
Z; 0 0 0 0 0
Z-G L) -2 0 0

i -C= ent basic feasible solution is not optimum.
Since, there are somer q 0, the curn p

i =-31 tive, the corresponding non-basic variable X,
Since, Z,— C, 3 is the most nega p g :

enters the basis.
The column corresponding to this X, is called the key column.

X i
Ratio =Min {f:Xﬁ >0}

ir

= Min {% %} , which corresponds to S,

ble is the basic variable S, This row is called the key row.

. i ia % :
o THBIEHIGE MY X tounits and all other elements in its columnn,i.e., (X))
21

Convert the leading element
to zero by using the formula:

New element = Old element =
[Product of elements in key row and key column}

Key element

To apply this formula, first we find the ratio, namely

The element tobezero _1_
1

Key element L
r of elements that are converted in the key row.

Apply this ratio for the numbi shown as follows:

Multiply this ratio by key row elemen
1x2
I1x1

Linear Programming

NOTES

Self-Instructional
Material

2717



Linear Programming

‘rogramming 1x-1 2- (—% X 2) =3
1x0
1 x1 1-(-1/2x0)=1
Now, subtract this element from the old element. The element to be converted 1-(-1/2%x2)=0 NOTES
NOTES into zerois jcalled the old element row. Finally, we have 0—(-1/2x 1)=1/2
AN RE=2 1—(=1/2x-1)=1/2
1-1x1=0 Second Iteration
) —~1x=1=2 c 3 ) 0 0
1 = ]. X 0 = 1 (:8 B "YB Xl X: ’Sl 52
0-1x1=-1 - X, 1 0 1 172 -1/2
-. The improved basic feasible solution is given in the following simplex table: ; = 3 1 0 12 12
1
First Iteration = T 3 > 5P 12
Z;
g, 3 2 0 0 g 0 0 512 1/2
I o
Cp B Xs & X o S, | Min 7i Since all Z — C, = 0, the solution is optimum. The optimal solution is Max
J i R
" «0 S 2 0 @ 1 =4 22 =1 Z=11,Xl=3,andX1=1.
I 3 X 2 1 =l 0 1 _ Example 5.19: Solve the LPP when,
Z 6 3 -3 0 0 Maximize Z=3X, +2X,
Zi-G 0 | -5t 0 0 Subjectto, 44 +3X,£12
<
Since, Z, — C, is the most negative, X, enters the basis 4X, +X, <8
& ' 4X,-X, <8
TOﬁndMiH(}i,Xj2>0) ‘ Xl,ngo
; 7 Solution: Convert the inequality of the constraint into an equation by adding slack
Min | & variables S, S,, 5,
2 102273 +0S
. . . . MaxZ=3X1+2X2+OSI+OS2 3
This gives the outgoing variables. Convert the leaving element into one, This i X, 48, =12
done by dividing all the elements in the key row by 2. The remainin ele ‘ ts aré Subject to, 4X,+3X; 5
converted to zero by using the following formula. SIS 4X,+ X, + S, =8
i : —X,+8,=8
Here, — % is the common ratio. Put this ratio 5 times : 4, ;
3 and multiply each ratio by S =20
the key row element. Py r X, X, Sp5 52593
12 (4]
X, x, S 8 Six| 2
2 4 1 0 1 Ofgf|s
1 4 -1 0 0 1
5 %2 Lss _
-1/2x%1
-1/2x-1
Subtract this from the old element, Aj
.Allthero : .
zero are called the old elements, W elements which are converted int© Self-Instructional
Material 279
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. . : . Linear Programming
Linear Programming Initial Table Since, Z, -C, =— % is the most negative, X, enters the basis.
g 3 2 g 0 g To find the outgoing variable, find Min ( X %f X 0) :
X i2
Cs B Xs | X X S) S, S5 Min—)?‘g— NOTES
NOTES : Min | £,2, -1
5 12 | 4 3 1 0 0 | 12/4=3 nlg o’
4 =2
0 S: 8 @ 1 0 1 0 8/4 First Iteration
0 S 8 -1 0 8/4=2 : : e
i ’ 0 : Therefore, S, leaves the basis. Convert the leaving element into 1 by dividing the key
Z; 0 0 0 0 0 0 row elementsﬁby 2 and the remaining elements in that column into zero using the formula,
Z,~iC X %
1= G 3T - 0 0 New element=Old element
- Z, - C, is most negative, X, enters the basis and the Min X X & OJ Product of elements in key row and key column:'
| il ‘ - Key elemellt
| =Min (3, 2, 2) gives S, as the leaving variable. C 3 2 0 0 0
; Convert the le_aving element into 1, by dividing the key row elements by 4 and the - X,
/ remaining elements into 0. el B x; X X, S, S, S, Mm?3
First Iteration
1 Mials; 4 0 0 1 &, R
G 3 2 0 0
0
Ca B X | X X S, S Sy | Min %{:& 3 X 2 1 0 0 1/8 1/8 |2/1/8=16
2 |
B85, 4 e 4 B o ey 7 6 2 0 | 18 | -58
R e T I R e ey ey et 7 C 0o | o | us [-5"
- = . v
3 X 2 1 ~1/4 0
2 ® = AL ™A - Second Iteration
, o T e - ' -
: = he most negative, 5, enters the basis and,
Z-G 0 ~11/4% 0 0 Sid Since Z,— C; 5/81s the 3
H fadall == e T
8- x8=0 12_%><8=4 Min _J’Sﬂ T 118
Therefore, S. leaves the basis. Convert the leaving element into one and the
4 > "1
4 7 X4=0 4 _.% x4 =0 Temaining elements into Zero.
Third Iteration
4 0 0 0
l-—x-1=2 3._f‘_><__ ” Gy ) s -
3 f c —T Xp X X Si 5 55
B
L 1 -2 1
4 4 s 4,1 o 1
0-=x0=0 (T : ’ 2 | -12 | 0
4 PR 2 X, 2 X : ¥
k ; B - i 0 -1/8 | 38 0
Sl W vy WD s | o
4 0 2 %X0=0 7 17/2 |3 2 o
4 0 0 si8 | 18 0
0-2xl2 4 Blado B e e ivenby X =3/2,X,=2and
T = — fne ) P ; A . o # 1 = A =7a
4 I-gl=u Sinceall Z — C > 0, the solution is optimur and it1s gven By &, e
Mﬂx 7= 17/2. Self-Instructional
Self-Instructional Material 281
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[
Linear Programming Example 5.20: Using simplex method solve the following LPP. New element= Old element Linear Programming
Moioaloe Z=J36 50, liProduct of elements in key row and key column]
Subjectto, 3X, +2X, + X, <3 | Key element N
NOTES <
2Ky iy +205 52 First Iteration
X,X,, X;20
. . . ) C 1 1 3 0 0
Solution: Rewrite the inequality of the constraints into an equation by adding slack J
variables. &, B X, X, X, X § S,
Max Z=Xl i 0 P OS1 —i—OS2 0 5 2 2 3/2 0 1. -1/2
Subj 3IX 42X, +X. + S X 1 1 1/2 1 0 172
ubjectto, 3.X, 2+ X+ 8, =3 7 3 3 32 3 0 312
2X,+ X, +2X,+8,=2 4
7Z-C 2 1/2 0 0 3/2
' Initial basic feasible solution s, 7
| X=X,=X;=0 Since all Z - C, 2 0, the solution is optimum and it is given by X, =0, X, =0,
| §,=3,5,=2and Z =0 X,=1,Max Z=3. |
"f Example 5.21: Use simplex method to solve the following LPP.
/ X, X, X; S S, Minimize Z=X, - 3X, +2X;
3 2 oy = -0
24 et 2 ) wo Subjectto, 33X, —X;+2X;<7
AL G D _2X, +4X, S12
_4X,+3X, +8X, <10
q' 3 ) 0 0 X 29 X, 3 X 5 2 0
0
5 3 X—| m et~ | Y Solution: Since the given objective function is of minimization we shall convert it into
B . : ‘ .
1 Xz X3 S] S2 Min _X—j‘ lTlaXllmzatlon usmg Man=—MaX(—Z).
TR (R T 3 P P P oy ey Max 2=—X, +3% - 2%,
i = : . 1 @ 0 <7
= % 1 | 22= Subjectto, 3%, - X;+2X; <
/ o flatio 0 o | _2X,+4X, <12
S .00 1., _4X, +3X, +8X, <10
——]

Since Z, — C, =-3 is the most negative, the varj

, : : the constraints into an equation by adding slack
column corresponding to X, is called the key column, able X, enters the pasis. The We rewrite the inequality of

tandard form of LPP becomes,

|
‘ Zi-G -1 -1 4%
|

| Variables S, S, S, and the s

7 +08, +08, 08,
T i . Max Z = —X, + 3X, — 2X; ! 2
© determine the key row or leaving variable, fing Min |22, x>0 T X, 4551
-X_J-’ 37 Subject to, 3X, - X5 +24s :1_1,,
‘ Min[§=3,3= ) 2K, +4X; +5 =1
| : ~4X, +3X, +8X; 5, =10
| Therefi i 1l 808,58, 30
J R tﬁzei;z’siiif;‘;ng Vana‘t_)le 18 the basic variable § s the row Ky Xas a2 3 -
i . ement 2 s called the key element.2 s glegHiskEy . The initial basic feasible solutionis gtven by,
| Convert this element into one by dividin —v=x=0)
geachele 8,=7,8,=12, 8,=10. (X,=X;=4;

the remaining elements in that ment in the key row by 2 and

Key column ag zero using the formula

Self-Instructional
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— - Min Z = _Max (—-Z) =_11 Linear Programming
Programming Initial Table . — -
C -1 3 i) 0 0 0 ..M1nZ=—11,X2——4,X.3—-5,X5 0 |
: X Example 5.22: Solve the following LPP using simplex method.
Cs B X | X% | X5 | X | S S, | S | Min 73 Maximize Z= 15X, + 6X,+9X, +2X, NOTES
3
NOTES et T Subjectto, 2X,+X, + SX, + 6X, <20
o | @ 3X+ X+ 3X, + 25X, <24
«0 5 15 | =2 0 0 1 0 12/4=3 1K +X, <70
0 8 0.4 | 3 8 0 0 1 | 10/3=3.33 X, X, X, X, 20
7 g 1 9 0 g 0 0 Solution: Rewrite the inequality of the constraint into an equation by adding slack
Z-C 1|37 2 0 0 0 variables S, S,, and S,. The standard form of LPP becomes,
Since, Z, - C,=—3 <0, the solution is not optimum. Max Z = 15X, + 6X, + 9X, + 2)\(4 +08, +08, + 05,
The incoming variable is X; (key column) and the outgoing variable (key row) is Subjectto, 2X, +X, + 5X, +6X, +5, = o
given by, 3X, +X,+ 3X, + 25K, F 5, =24
TX A X, 8, =10
(X . (12 10 1 483
Mln( / X >0)=M1n[—,—]
X' oo 4°3 b 48 L v X, Sy S S, 20
! : Hence, S, leaves the basis. The initial basic feasible solutionis, S, = 20,5, =245, =70
| First Iteration X,=X,=X,=X,=0 non-basic)
The intial simplex table is given by,
G -1 3. 2y N0 0 0 c 15 6 R Y 0 0 0
e — -
Gl B 1%| & | 6| X% |5 |5 |s |Mode ol s lo| x| n|s|%|s|s]|S | My
7 | 2 i
ol & |10)GD (-0 | 21 [ | o 10500 T 5 | 2 ] sl 61 [ e o0 o b 0 20m=10
3 X3 3 -1/2 1 0 0 1/4 0 . S‘ y @ 1 3 25 0 1 0 24/3=8
oy 6_ 2 F4
B 0 R I
z 9 | 32 | 3 0 0 lraiggl 55 [ 10 < 23 5 o | o o | o 0 0 |0
Zi—G = (Y 2 0 3/4 ¢ T 0 0 0
0 - -6
Since Z —C o 55 B feasible solution is not opti
mce £, — C <0, the solution is not optj ) nt basic feasible solution 1s not optimum.
= pumum. Improve the so . 7 — C £0, the curre : i
the variable X_ to enter i : : ution by allowing . Assome of Z,— ;=™ nters the basis and the variable
A . enter into the basis and the variable S, to leave the basis, AR C,=-15isthe mosft negative value, and hence, Xe
econd Iteration 8, leaves the basis.
iy 3 2 0 First Iteration
3 B . S G o 9 2 0 0 0
"B Xy A X, X, &T—"’"—*———-—-—— i 15 6 A5
i - 1 S, S . SR . B e e
1 X, 4 1 0 4/5 "T}'E“—- - = S I X X o S, S3 Min —
2 A 5 0 1 25 ] e 0 G| B |xm|XH| % | 2
i s, ” . 5 s | 39 0 — 5 | 3 |3 | 1|20 | M2
: 7 s - ! -112 ; el I Rl a3 | 0 | 13| 0 | 8/1/3=24
=/ 148 8/1 15 X 8 1 1 =
i i | o l | oo | el 1 0. ) S
2y 9/ / = S Lo
‘ 12/5 145 &/10 0 IS 14| 0 e : - :
Since, Z,~ C > 0, the solution js optimum. e Z |120] 15| 3 : L/123" g : 0
).{. The optimal solution is givenby Max 7=1] - 1%-G _BJLLI_T,L__—— T s
= - Py elf-Instructi !
Self-Instructional 2 4’ X3 5’ )(5 =0 i
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Since Z,— C, =—1 < 0; the solution is not optimal, and therefore, X, enters the Since some of Z; — C=0, the current l;a;m}feastlble fglu;;c;?ss;ggﬂntgfa:ﬁ:
basis and the basic variable S, leaves the basis. 123 -G, Th_f"b 1s _theﬁf:lldOSt negative, the variable A, enters the :
eav
Second Iteration g the basts, -
g 15 6 9 2 0 0 0 Mm[ﬁ X3>0] =Nﬁn(4_?9=430,7=2soj NOTES
X, L
‘ Xf; i3
= g it S R L 51 5 S, | Min X . The variable S, leaves the basis.
«0| S 4 |0 | 13| 3 | -3213 1 -2/3 0 | 4/1/3=12 First Iteration
o A 8 | 1 | 13| 1| 2583 0 1/3 0 | 8/1/3=24 C, 3 B 5 0 ! P
pialarbiSs vl A4l of TB il L a8 | oo a9 | g - c, | B |x x| x| x| SfEssEe, Min 22
vl e bl e Bl i ] RO 0 5 0 g X,
4-G 0 |1t | 6| 123 | 0 | 5 0 <ol s l200bi2 | @ 0 T o 0 | 2002=100
1
Since all iy C; 2>, the solution is optimal and is given b 5 X, |230 3/2 0 1 0 172 0
= b ol 1 4 G SeanT S0 1 | 4204=105
MaxZ=132,X,=4,X,=12,X,=0,X,=0 0ol s, |4
Example 5.23: Solve the following LPP using simplex method z, |1150 15/2 0 0 0 5/2 0
Maximize Z=3X, + 2X, +5X, Bty o e | o e Ao r0i S eniops] S/2M AR <0
Subjectto, X +2X, + X, <430 Since Z. — C., =2 is negative, the current basic feasible solution is not optimum.
e e R Therefore, 'ché2 varizable X, enters the basis and the variable S, leaves the basis.
A M Method
X X, X >0 : . :
1 o e A . .
i i : i thod is used to deal with the situation where an infeasible
Solution: Rewrite the constraint into an equatio z In simplex algorithm, the MMe _ i "
. . S Basic Feasibl
The'standard form of LPP becomes quation by adding slack variabjes S, S, Sy starting basic solution 1S gtven. The simplex rn.ethod starts irox]rjone Paszc easible
, Solution (BFS) or the intense point of the feasible region of a Linear Programming
Maximize Z=3X + 2X,+5X,+0S, +0S. +0S Problem (LPP) resented in tableau form and extends to another BFS for constantly
i : : & 2 L . biective task till optimality is reached. Sometimes
Subjectto, X, +2X + X, + S =430 raisine or reducing the value of the obj p _ :
: Wl e : - be infeasible, then M method is used to find the starting
3X, + the starting basic solution may L metiol
1 F2X,+ S, =460 basic f %)le solution (refer Example 5.23) each time it exists.
easi e ;
X, +4X,+ 8, =420 Example 5.24: Find a starting basic feasible solution each time it exists for the following
mple 5.24: e P d
o ‘ X, X, X,8,8,8, >0 LPP where there is no starting identity matrix using M metho
The initial basic feasible solution is, Maximize, X = C'X
3 ot aximize, A, =
S, =430,5,= 460, 5, = 420 (X, = X, = X, = () "3 x>0; Where b>0.
Initi E Subject to, AX=b, A= B ;
nitial Table Solution: To wet a starting i dentity matrix, we add artificial Varlab!es_Xal.,Xaz, ...... ’
¢ 3 2 5 0 X Thon. QEELR fvalue s for the artificial v iables can be M for maximization proble.m
-_‘o-ﬁ (\;’,,l,l . i‘zgnszquen e s This constant Mwill check aftlﬁ(il;l vgnables that will
Czl, B 'x X e e . Tedd 18 adequa oy . al solutions. Now the LPP becomes,
3 Sl Th e S viin s arise with positive values in the final OPHIA
mn—-—
ol s X Max Z= CX - M. 1'X,
| T TR DRI UG5 iy s o ot P T
<0 5, |460 | 3 o | @ o 0 | 430/1=430 Hbjeetio, A% op \
0f s, |[420 1 4 0 : 0 460/2=230 0 r and 1 is the vector of all ones. Here, X =0 and
- K 0 0 1 Where Xa = (Xal’ Xaz, ...... s an,) an_ ble solution. For solving AX+ [m Xa =p, which s
7 OSSR o o i .= bisthe feasible starting basic {212 0 "
Z~-C, =3 -2 -5T 0 0 0 asolution to 4X = b we have to drive al a
““-——J-)-________,—-
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Linear Programming Example 5.25: Using the linear programming given in the above example, solve the

following LPP:
Maximize, X =X +X,

' +X. >4
NOTES Subjectto, 2X +.X,
X, +2X =6
X,X,20
Solution: Add surplus variable X, and artificial variables X, and X, and then rewrite the
equation as given below:
2X +X2—-X3 +X,=4
X, +2X, + X6

X, =X, =X, + MX, + MX,=0

The columns corresponding to.X, and X, form anid

k entity matrix. This can be represented
in tableau form as,

X X5

X 2
Xs 1 2
bl =1 -1

In the above table the row X

. . . . anables X4

5 4 A X Xs b
Xy 2 1 -1 1 5 |
Xs 1 2 0 : 4
X | (1+3M) —(1+3Mm) M 0 5 iEM

—_—

The artificial variable becomes non-b

asic and can b : )
Now the tableau becomes: ¢ dropped in subsequent calculations-
X] Xz X3 XS Fb\
X 1 12 -1/2 0 ———
Xs 0 3/2
L 4|

2 —(+Mn

12 1
= W

0

Eliminating artificial variables we get,

Self-Instructional
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Xl X 2 X’i b
X, 1 2 0 2
8

X3
X 0 1 i 6

Hence, the optimal solution is X= (6, 0, 8)" with X, = 6.

5.7 SUMMARY

o Decision-making has always been very important inthe busi.ness and indpstn'al
world, particularly with regard to the problems concerning production of

commodities. d ,
Alfred Marshall pointed out that the businessman always studies

ish economist : :
o Englishec d his input prices and substitutes one input for another

his production function and| i

till his costs become the minimum possibie. ‘

Linear Programming (LP) is a major innovation since World War Il in the field of
e Lin ¢ :

business decision-making, particularly under conditions of certainty.

e The word ‘Linear’ means that the relationships are represented l?y straight 1mes:
i.e.. the relationships are of the formy = a + bx and the word ‘Programming
me;ms taking decisions systematically. |

o LP is a decision-making technique under given cc.ms1rgints on the assumption that
the relationships amongst the variables representing different phenomena happen

to be linear. . 7
Jem for which LP provides a solution may be stated to maximize or
° Tl.le'pr'o b F N ome dependent variable which isa function ot_" several 11.1dc‘=:pendent
mu}lr}zlllze Oli:n the independent variables are sub ject to various restrictions.
variables w

fLP are numerous and are increasing every daty. LPis extensiYely

: : ¢ allocation problems. Production planning and-scheduhng,

usedin SO]Ymg reSOUI‘Cd advertising, financial planning, portfolio analysis, corporate
namppﬁahon, Salzsszrrlne ofits most fertile application areas.

plennine Pjtc‘, a-r - mplies straight line o proportional relationships among the

* The temn linoantty 770 P Styin economic theory is known as constant returns

S Vari?}? lf ff ttheI: zzimnt of input doubles, the corresponding output and
which mean tha

oubled. 4 .
IP):)ﬁt - dthe combination of particular inputs to produce a particular output,
® Process means

foroduction are used in fixed .ratios,. of course, depending
Ina process,lfactofs ;assuch no substitution is possible with a process.
ogya . ¢’ : i
upon techno g}’ T objective ﬁmCthl:l w.hlch states the determinants
® Criterion function 1s alsO od or to be minimized.

ity either to be maximiz et s i
;;the quamt;/ . d on the assumptions of proportionality, additivity, certainty,
® LPmodel is based 0

continuity and finite choices.

® The applications of linear Progrmm}?lslsgign prior t0 SO
matrix coefficients and data transmt blem statement using linear
° T} be formulated from the proviets
e problem can D¢

Programming techniques.

e The applications 0

roblems are based on linear prograrl:lm]'ng
lving the simplex algorithm.

Linear Programming

NOTES

Check Your Progress

9;

10.

11

12:

13.

14.

15.

16.

17.

. What is a feasible

‘When is an
objective function
minimized? When is
it maximized?

What is meant by a
feasible solution?

region?

What is an optimal
solution?

What are non-
degenerate and
degenerate type
basic feasible
solutions?

Define the simplex
method.

How is a leaving
element converted
to unity in a
simplex algorithm?
What is the role of
the slack variable?
When M method is
used?
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Linear Programming e Linear programming problems are associated with the efficient use of allocation
of limited resources to meet desired objectives. A solution required to solve the
linear programming problem is termed as optimal solution.

o Linear programming problem may be solved using a simplified version of 'fhe
NOTES simplex technique called transportation method. Because of its major application
in solving problems involving several product sources and several destinations of

products, this type of problem is frequently called the transportation problem.

o The goal of the diet problem is to find the cheapest combination of foods that will
satisfy all the daily nutritional requirements of a person.

o The problem is formulated as a linear program where the objective is to minimize
cost and meet constraints which require that nutritional needs be satisfied.

e The portfolio optimization template calculates the optimal capital of investments
that gives the highest return for the least risk. The unique design of the portfolio
optimization technique helps in financial investments or business portfolios.

e Crew scheduling is an important application of linear programming problem. It

helps if any airline has a problem related to a large potential crew schedules
variables.

e The general LPP can be put in either canonical or standard forms.

e In the standard form, irrespective of the objective function, namely maximize 0f
minimize, all the constraints are expressed as equations. Moreover, RHS of each
constraint and all variables are non-negative. ’

e In the canonical form, ifthe objective function is of m
other than non-negativity conditions are ‘<’
minimization, all the constraints other than n

aximization, all the constraints
type. If the objective function is Of

on-negative conditions are *>’ type-
e Simplex method is an iterative procedure for solyin

steps. This meti}od provides an algorithm which consists of moving from on®
vertex of. the region of feasible solution to another in such a manner thgt the value
of the objective function at the succeeding vertex is less or more as the may
be that at the previous vertex. i

g LPP in a finite number of

e In simplex algorithm, the MMethod is used t : ]
] - i ’ 0 deal with :
infeasible starting basic solution s given the situation where at

o The simplex method starts from one Basjc Feasible Soluti
: : ¢ ol .
point of the feasible region of a Linear Programming Pr?)t};fn (BES) or the mten?ﬁ
tableau form and extends to another BFS fo em (LPP) presented

i o :
value of the objective task till optimality is reacﬁg;tantly reising orredusing (1Y
5.8 KEY TERMS T

variables representing different phenomena are linear
* Decision variables: Variables that

fo jecti :
cost or profit depends m objective function ang on which th
o Linearity: i ¢
[l ty_ Straight llfle Or proportional relationships amq .
mearity in economic theory is known as constant mmng Wetelevant variables
Self-Instructional e Process: inati g
i A a The combination of One or more inputs to

e

i g R
5.9 ANSWERS TO ‘CHECK
59 An ro ‘CHECE ©°

o Criterion function: An objective function which states the determinants of the
quantity to be either maximized or minimized e

o Constraints: Limitations under which planning is decided. Restrictions imposed
on decision variables |

o Feasible solution: Any solution to a LPP which satisfies the non-negativity
restrictions of the LPP . :

o Feasible region: The region comprising all feasible solutions

o Optimal solution: Any feasible solution which optimizes (minimizes or maximizes)
the objective function of the LPP : -

o Proportionality: An assumption made in the objective function and constraint
inequalities. In economic terminology this means that there are constant returns
to scale -

o Certainty: Assumption that includes prior knowledge of all the coefficients in the
objective function, the coefficients of the constraints and the resource values. LP
model operates only under conditions of certainty. S/

o Additivity: An assumption which means that the total of all the activities is given
by the sum total of each activity conducted separately '

e Continuity: Anassumption which means that the decision variables are continuous

o Finite choices: An assumption that implies that finite numbers of choices are
available to a decision-maker and the decision variables do not assume negative
values : :

o Solution: A setof values X, X, .-, X, which satisfies the constraints of the LPP

: i f m linear equations with » variables
sic solution: In a given system ol 7 : : 1b]

° ?’;‘(\’ 1), any solution which is obtained by so!wng m variables keeping the remaining
n—m v,ariables zero is called a basic solution

Basic feasible solution: A basic solution which also satisfies the condition in
e Basic :

i ic variables are non-negative | |
e ve of the objective function. All the constraints

- . Tt is irrespectl . ;
° Canomca:::;’g; I;ciuatioii and right hand side of each constraint and all
are expre

iables are non-negative A
“aTanE sables: If the constraints of a general LPP bf} given as Za, Xl
e Slack varm2 es: e 1.2 n), then the non-negative variables S§; is
S b (z = 1’ Lt ’ == Ly g entd

Ty 60 oy lled Slack
- equalities ‘<’ to the equalities are ca
introduced to convert the ineq

variables

° Surplus variables: If the
(I = 1, 2, cany m,] =.l-, 23‘-":
convert the inequalities =

constraints of a general' LPP be. Ea,,j X 2 b,
n), then non-negative variables S; mt.roduced to
to ’the equalities are called surplus variables

YOUR PROGRESS’

n-making technique undera set of given constraints

i o isio : : :
1. Linear programming is a dec o that the relationships amongst the variables

and is based on the assumptio  linear.

representing different phenomen? " hich states the determinants of the quantity,
2. Criterion fimction is objective function WAEE

{0 be either maximized or minimized:

Linear Programming

NOTES
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e

. What is meant by continuity in linear programming? Linear Programming
fmear Programming

3. Linear programming finds application in agricultural and various industrial problems.

4. Constraints are limitations under which planning is decided, these are restrictions
imposed on decision variables.

5. Solution of a linear programming is a set of values X, X., ..., X , satisfying the
NOTES : ; g [0 e B
constraints of the LPP is called its solution.

. What are finite choices in the context of linear programming?
. What are the basic constituents of an LP model?

. What is the canonical form of a LPP? ' NOTES
. What are characteristics of the canonical form?

6. Ina given a system of m linear equations with » variables (m < n), any solution

which is obtained by solving m variables keeping the remaining n — m variables
zero is called a basic solution.

What are slack variables? Where are they used? Explain in brief.

V=T N R - NV R N ¥

What do you understand by surplus variables?
10. What is the simplex method?

7. Ina given a system of m linear equations with # variables (m < n), where ” 11. Does every LPP solution have an optimal solution? Explain.

variables are solved, keeping remaining » — m variabl i 1e
; s Sty es zero, m variables 2 _ ) thod?
called basic variables and the remaining variables are called non-basic variables: 12. What is the importance of the /method:

8. Basic feasible solution is a basic solution which also satisfies the condition in Long-Answer Questions
which all basic variables are non-negative.

1. A company manufactures 3 products 4, B and C. The profits are: ¥3,32and
T 4 respectively. The company has two machines and given below is the required
processing time in minutes for each machine on each product.

9. An ob]: ef:tive function is maximized when itisa profit function. It is minimized
when it is a cost function. '

10. Feasible solution ofa LPP is a solution that satisfies th,

¢ non-negativity restriction® [T ity
of the LPP. Machines | A [ B | €
11. Feasible region is the region comprising all feasible solutions III g g ‘5‘
12. Optimal solution of a LPP is a feasible solution

1M1 . 5 Wthh . s igeg or
maximizes) the objective function of the LPp optimizes (minimiz

13. Non-degenerate and degenerate solutions are

Machines I and IT have 2000 and 2500 minutes respectively. The company must
manufacturers 100 A’s 200 B’s and 50 C’s but no more than 150 4’s. Find the

3 basic feasible solutio blem < of each product to be manufactured by the company to maximize
g . ns. In a prob*” number of units ofeach p
‘::;izléizsi:’;z‘;giiﬁ E(;fi‘;l\ée l\lfagables,X 52, ..m), i.e.,none of tllfle basiC the profit. Formulate the above as a LP Model.
i i el zer:), By baS; f: s Srilgil-de;gegergte type and if one or more basic 2. A company produces two types of leather belts 4 and B. 4 is of superior quality
o ey ¢ solution is said to be degenerate type- - nd B is of inferior quality. The respective profits are ¥ 10 and X 5 per belt. The
: Stepls) Txh?;e;n e(zh 1(s:l an 1te.r§t1ve procedure for solving LPP in a finite number of :upply of raw material is sufficient for making 850 belts per day. For belt 4,
‘ o provices an algorithm which i e i ired and 500 are available per day. There are 700
vertex of the region of feasible solutio | COnsists of moving from ont a special type of buckle 1s requ ‘ _
: nto another in such e - It B per day. Belt A needs twice as much time as that
ft ] uch a mann, valu ble for belt Bp . .
ge ’:11121 ?Zﬁ}clz\g :;?Ctlon atthe succeeding vertex is less or more Z;ttl;:: :ize may buck.le:i1 E}Ziﬁzﬁ B and the company can produce 500 belts ifall of them were of
ous vertex. requre he given problem.
Jate a LP Model for the givenp
15. The leaving element is conye the type A. Formu e ; '
Tted to unity by divid; . ial purpose brick is 5 kg and it contains two
ele . y dividing the ke . key cight of a special purp
> merllt and all other elementg mits column to zero%) usiny telclluatlon by.the 3 The stf.mda;;l “I’l ng where B, costs 3 5 per kgand B, costs I 8 perkg. Strength
R I e formula: e e.d1ents. ! ad. tzﬁe that the brick contains not more than 4 kg of B, and a
P co.ngideratl?rzlsk lgf B.since the demand for the product s likely to be related to
=0ld element ﬁ[ roduct of elements in key row and key columﬂ} ;?1len;rrri1::lc>?the bgrick- f«‘ormulate the given problemas a LP Model.
: Key element ; . 4 per gram and 7 units of vitamin B per gram and
: : ; tamin gt 1 e
16. By introducing slack variable, the problem ) 4 Egg Semiai . uqlts Ofvrl ] am ang costs 20 paise per gram. The daily minimum
17. Mmethod is used to fing et ' 18 converted into standard form. 12 units of vitamin B PGA%:II d vitamin B are 100 units and 120 units respectively.
when an infeasible starting basic slrllg _baSI_c fe-:asible solution each time it X1 Ly GIEEEE t mix
Olution is given, Find the optimal product mix.

B de involving two operations.
5.10 QUESTIONS ANp EXERCISES 5. Tn a chemical industry two products 4 and B are made involvi

: duct 4 can be sold at
L Its in a by product C. The pro
;he production (31 B 2(111;0;;“8 profit per unit. The by product C ha§ a profit of
Short-Answer Questions - g profit E:;r lsilz aa;lotbe sold as the destruction cost is Re 1 per unit. Forecasts
per unit bu

) 1d. The company gets 3 units of C for each
1. Whatism T fi show that toSumtsochanbeSO . its of 4 and
Santby D roportionality in Jinegy Programmin 9 units of Z ;de produced. Forecasts show that they can sell all the units of 4 an SeliDuiatRl
g7
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ine times are 3 hours per unit for 4 on operation one
ar Programming B produced. The manufacturing tim P p

(iii) Max Z=X-3Y
d two respectively and 4 hours and 5 hours per unit for B on operation one and
an

Linear Programming

.. Subject to, X +Y<300
two respectively. Because the product C results from producing B, no time 18 X—2Y<200
d in producing C. The available times are 18, and 21 hours of operation one X +7<100
e : h of A and B need to be produced keeping Cin NOTES
and two respectively. How much of 4 and B need to be produced keeping ¥>200
NOTES mind, to make the highest profit. Formulate the given problem as LP Model. and X, 720
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6. A company produces two types of hats. Each hat of the first type requires as

much labour time as the second type. Ifall hats are of the second type only, the
company can produce a total of 500 hats a day. The market limits daily sales of
the first and second type to 150 and 250 hats. Assuming that the profits per hat
are X 8 for type B, formulate the problem as a linear programming model in order

to determine the number of hats to be produced of each type so as to maximize
the profit.

. A company desires to devote the excess capacity of the three machines lathe,

shaping machine and milling machine to make three products 4, B and C. The
available time per month in these machinery are tabulated below:

Machine Lathe Shaping Milling
Available
Time/Month 200 hrs 100 hrs 180 hrs
The time taken to produce each unit of the products 4, B and C on the machines
is displayed in the table below.

Lathe Shaping Milling
Product 4 hrs 6 o)
Product B hrs 2 2 ‘
Product C hrs 3 3

o 3

Thg léroﬁt per product would be ¥ 20,3 16 and T 12 respectively on product 4, B
and C.

Formulate a LPP to find the optimum product-mix.

. An animal food company must produce 200 k
ingredients X, and X, daily. X, costs ¥ 3/- perk
than 80 kg of X| can be used and at least 60 k
LP model to minimize the cost,

g of a mixture consisting of
gand X, I 8/- per kg. No more
g of X, must be used. Formulate 2

. Solve the following by graphical method:

() MaxZ=X -3X,
Subject to, X, +X2S3OO
X, —2X,<200
2X, + X, <100
X,<200
X, X,20
(i) Max Z=5X +8Y
Subjectto, 3X+2Y<36
X+2Y<20
3X+4Y<42
X, Y20

13. Usine simplex method, find pon-negative values of X, X, and X, when
- Using simp 3

10. Solve graphically the following LPP:

MaxZ=20Xl+10X2
Subject to, X, +2X, <40
3X, +X, 230
4X, +3X, 260
and X, X, 20

11. A company produces two different products 4 a.nd B. The company makes a
profit of ¥ 40 and ¥ 30 per unit on 4 and B respectively. The producuqn process
has a capacity of 30,000 man hours. It takes 3 hours t'o pfoduce one unit of:4 and
one hour to produce one unit of B. The market survey indicates that the maximum
number of units of product 4 that can be sold is 8000 and those of B is 12000
units. Formulate the problem and solve it by graphical method to get maximum
profit.

12. Solve graphically the following LPP:

Min Z=3X-2Y
Subjectto, —2X+3Y <9
X-5Y=-20
xXre=0

(i) Min Z=-6X,-4X,
Subjectto, 2X,+3X,230
3X1+2X2524
X, +X 23
X, X,20

(ii) Max Z=3X,-2X,
Subjectto, X, X< 1
2%, +2X,24
X, X,20

2

(iii) Max Z=-X, X, i
Subject to, X,“Xz—
_3X, +X,23

X,aXzZO

(i) Max Z=X, +4X,15%
Subject to the constraints,
3X, +6X,+3X,522
b4 +2x, +3x,< 14and

3xX, +2X,<14
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bability Distribution Functions

6.0 INTRODUCTION

/

In this unit, you will learn about the basic concepts of probability. Probability is the
measure of the likeliness that an event will occur. The higher the probability of an event,
the more certain we are that the event will occur. This unit will discuss the meaning of
sample space, events, and so on. You will also learn atlno-ut the addition and multiplication
theorem on probability. In probability theory and sFa.tlstlcs, Bayes’ theorem (alternatively
Bayes’ Jaw or Bayes’ rule) describes the probability of an event, based on conditions
that might be related to the event. The interpretation of_ Bayes’ theorem depends on the
interpretation of probability ascribed to the terms. You will learn gbou't the Bayes theorem.
Finally, you will learn about the random variable and probability distribution function.

ies to the values of the random variable,

The three techniques for assigning Pm]?abﬂit R a5, )
Subjective probabiliy assignmen, -prori probability ass etk afgempIiprotabilisy

assignment, are also being discussed in this unit.

B 1 syl gy 0%
6.1 UNIT OBJECTIVES
> U BJECTIVES

After going through this unit, U will be able to:
® Discuss the basic rules of probability
® Explain dependent and independent events

® Discuss the significance of compound and conditional probability

® Understand Bayes’ theorem | U o 5 5

» : : p Ability distribution functions

Descrlbe about l'aﬂdOIn var Elble uﬂd prOb b ty Self-Instructional
Material 299
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6.2 PROBABILITY: BASICS

The probability theory helps a decision-maker to analyse a situation and decide accordingly.
The following are few examples of such situations:

o What is the chance that sales will increase if the price of the product is decreased?
o What is the likelihood that a new machine will increase productivity?
o How likely is it that a given project will be completed in time?

o Whatare the possibilities that a competitor will introduce a cheaper substitute in
the market?

Probability theory is also called the theory of chance and can be mathematically derived
using the standard formulas. A probability is expressed as a real number, p € [0, 1] and
the probability number is expressed as a percentage (0 per cent to 100 per cent) and not
as a decimal. For example, a probability of 0.55 is expressed as 55 per cent. When we
say that the probability is 100 per cent, it means that the event is certain while the 0 per
cent probability means that the event is impossible. We can also express probability of
an outcome in the ratio format. For example, we have two probabilities, i.e., ‘chance of

inning’ (1/4) and ‘chance of not winning’ (3/4), then using the mathematical formula of
odds, we can say,

“Chance of winning’ : ‘Chance of not winning’ = 1/4:3/4=1: 3 or 1/3

Weareusing the probability in vague terms when we predict something for future
For example, we might say it will probably rain tomorrow or it will probably be a holiday

the day after. This is subjective probability to the person predicti ;
: Sy i dict : the
person believes the probability is greater than 50 per ceft_ 1ng, but implies that

Different types of probability theories are as follows:

(7)) Axiomatic Probability Theory

The axiomatic probability theory is the most
; general appro 1) )
for more difficult problems in probability. We stat pproach to probability, and js used

- with a set of axi ;
define a probability space. These axioms are not immediate X1oms, which serve 10

using the classical probability theory. lyintuitive and are deV@loPed
(i7) Classical Theory of Probability

The classical theory of probability is the theo

ry based on the p e
outcomes and the number of total outcomes, The Probability i favour.abl f
these two numbers. The term ‘favourable’ i /3 EXpressed a3 g rai ©

_ § not the subject; ;

; ) v he
outcoples, butis rat@er the classical terminology used to inclicjat € value given to t
to a given event of interest. ¢ that an outcome belong®

Classical Definition of Probabili
- : If i
event E is N, and the total number of 0 o it Otoutcomes belonging 1O -

utCO[[l&S iS N, the]l t (53 1 ]‘ty' Vent i
deﬂned as pE N *

For example, a standard pack of cards (wji
: s (without jok
draw a card from the pack, we can imagine abg}?lt 21:(3}? 8852 cards. If we randomly
c

Therefp.re, there are 52 total outcomes, Cal y ard as g possible outcome:
babilii alculating aj] ;
probabilities, we have the following possibilities: 1€ Outcome events and the!*

e Out of the 52 cards, there are 13 clubs. Therefore, if the event of interest is
drawing a club, there are 13 favourable outcomes, and the probability of this

13 1

event becomes -53 = Z

: B jupnides g
o There are 4 kings (one of each suit). The probability of drawing aking s 2° 13

o What is the probability of drawing a king or a club? This example is slightly more
complicated. We cannot simply add together the number of outcomes for each
event separately (4 +13= 17) as this inadvertently counts one of the outcomes

16 135 4 il

twice (the king of clubs). The correct answer is 5 from 5 e 2 52

We have this from the probability equation, P(club) + P(king) — P(king of clubs).
o Classical probability has limitations, because tin's.deﬁnition of probability imp-]jf;it]y
defines all outcomes to be equiprobable and this can be only used for conditions
such as drawing cards, rolling dice, or pulling balls from urns. We cannot calculate

the probability where the outcomes are unequal probabilities.
It is not that the classical theory of probability is_ not useful because of the
described limitations. We can use this as an impiortant guiding factor to calcullate tt%e
probability of uncertain situations as just mentioned and to calculate the axiomatic

approach to probability.

Frequency of Occurrence

ility1 i fscientific disciplines. It is based
' to probability is used fora wide range 0
zllzltilaepipdr:: fc:tlllat tﬁe underlying probability of an event can be measured by repeated

trials,

Probability as a
A oceurs after n trials. We define the

P(A4)=Lim™

n—=2 N

Measure of Frequency: Let7, be the number of times event
probability of event 4 as,

1 i i . (5]¥ It usually Sllﬁi{:es t()
.S not p()SS.b e 10 C( mtluctanlnf te number Oftl'lals [‘I()WCV 5 s
I\ 1 ]. 1g€i Il:.lmber Oftl'ials Whele the Standald Of laI ge depends on the pI obablhty
IldUCta ar t

we need.
being measured and how accurate a measurement

Definition of Probability

Very tim \' i i t consisting of
' wi 11 let us consider an experimen
eﬂ eIyt i not con erge ata L
ippin; ai’oci)ll; :n inllillnite number of times. We want that the probability of heads must
me up lowing sequence.
Come up. The result may appear a3 the following s€

HTHHTTHHHHTTTTHHHHHHHH TTTTTTTTHHHHHHHHHHHHH

HH,

This shows that each run of k he ad; and k tails are being followed by another run of the
s that eac

1 2
1y d 1 2
the sequence - oscillates between, 7 and .

sam By ] le, :
€ probability. For this examp ces may be unlikely, and can be right. The

Which does not converge. These seque

Probability:
Basic Concepls

NOTES

Self-Instructional
Material

301

e G BT



‘. '~—-'_i.._,_ju, e —————— T R —————

_Ii;r}cep s dEﬁIliti_OD given above do‘?s nOt eXpress convergence in the required way, but it shows o Joint Probability: The joint probability refers to the phenomenonvof occurrence Bas}froga::gg::
some kind of convergence in probability. The problem of exact formulation can be solved of two or more simple events. For example, assume that event (E) is a joint event ICACONCERS
using the axiomatic probability theory. or compound event) of drawing a black ace from a pack of cards. There are two

( > ) . d hich are, the card being black
i sis simple events involved in the compound event, which are, the car eing blac
NOTES Empirical Erobabllity Theory and the card being an ace. Hence, P[Black ace] or P[E] = 2/52 since there are NOTES
The empir}cal approa_ch to determine probabilities relies on data from actual experiments two black aces in the pack. ;
to detefffl_me_ approximate probabilities instead of the assumption of equal likeliness. e Complement of an Event: The complement of any event 4 is the collection of
Probabilities in these experiments are defined as the ratio of the frequency of th ibility outcomes that are not contained in 4. This complement of 4 is denoted as 4’
of an event, f{E), to the number of trials in the experiment, »n Wﬁneg S 551?2;11 as (4 prime). This means that the outcomes contained in 4 and the outcomes contained
P(E)=f(E)/n. For example, while flipping a coin, the empirical ,probabilitz?fheads isythe in A’ must equal the total sample space. Therefore,
number of heads divided by the total number of flips, P[4]+P[A'1=P[S] =1
The relationship between these empirj
Sl 4 1’ B : =1_P[A4"
probabilities is suggested by the Law of Lfrg:?c;lluprgbabﬂmes and the theoretiod o, FH Sl s
number of trials of an experiment increases, tho o mbers. The la_w states that as the For example, if a passenger airliner has 300 seats anq it is nearly full, but not
theoretical probability. Hence, if we roll a d,ie an mpéncal probability approaches the totally full, then event 4 would be the number of occupied seats and 4 “would be
come up approximately 1/6 of the time. The stugd Ut{n erlo.fumesj each number would the number of unoccupied seats. Suppose there are 287 seats OFcupled by
statistics. - Y olempirical probabilities is known a8 passengers and only 13 seats are empty. Typlcally, the stewardess will count the
number of empty seats which are only 13 and report that 287 peqple are aboard.
6.2.1 Sample Space This is much slzzpler than counting 287 occupied seats. Accordingly, insuch a
! et ; 6 ¢ efficient than knowing event A4.
A sample space is the collection of al] possible events situation, knowing event 4 is much mor : % i ig A
example, there are two possible outcomes ofat s outcomes of an experiment. FO o Mutually-Exclusive Events: Two events are said to be mut'ually excluglve, if
the sample space for this experiment denoted [:) ss of a fair coin: a heaq and a tail. The, both events cannot occur at the same time as outcome of a smg_le experiment.
S=[H T] edby S would be, For example, if we toss a coin, then either event head or event tail would occur,
WL but not both. Hence, these are mutually exclusive events.
So that the probability of the sample space e quals 1

/ P[S]=P[HT] =1 » Or Venn Diagrams Y .

| This is so because | We . 1alize the concept of events, their relationships and sample space using Venn

f n the toss of the cojp_ e e can visualize the € _ : d

} when we rpll a die, any of the six faCe;n, eitherahead or g tail, must occyr. Similarlys diagrams. The sample space 15 represented byta ;e]:tacniitﬂla:rr:egl_f;r; :nmg; egleexit:cat;lg gtie

atotal of six faces. Hence, the Siile S;:n cprge as aresult of the ro]] sin(;e there ar€ relationships among these events are represented by gl :
on i Cei1sSN= " k
e of the six faces must occyr. [l52, 37 4%5 6], and P[ S]=1, since ~ Forexa mple, two mutually exclusive events 4 and B are represented in the Venn
6.2.2 Events diagram in Figure 6.1.
i e SR e v R
An event is an outcome o
: I a set of outc :
example, gett : ' omes of an g ;
1 PI€, getting two he:':ids 1n the trial of tossin Ctl_V“Y_ Oraresult of g trial. FOf -
e an event. The following are th, g three fair cojng g S
i s g are the types of events: Simultaneously would
: : s menta
single po Iy event, alg
i gle possible outcome of an experiment 0 known a5 5 simple ¢ {518
enthe event ofa h Forexa : ple event, '
ahead coming up j mple, if we t oy i . Tiwo Mutually Exclusive Events Aand B
clementary event is (E), then the : Zan elementary €vent, Ifth o Fig. 6.1 Venn Diagrarm of Two
: Probability of - LLthe symbol for ant . i
e Jo . Of'the ; : Figure 6.2.
Int Event: A joint event, alsq kn SVent (E) is written as P[E]- Bvent P[4 L B]is represented 10 the Venn diagram in Figur
elementary events in it F OWnasa Compoungd
would be 2 ioj Or example, drawip event, has two or more s R U]
Jomtevent, since it copgy; 8ablack ace fr,, A
simple or elementary evep te Probabﬂlty refersto 3 ph L ndact
drawing ofa diamond ¢ dn oceurs. For example, 5 “homenon where only 2
are 13 d ard from a pack f5 > 4SSUme that he
1amond cards in th o152 cards, jg 5 event (E), th
probability of €packand each carq i . SIMple event, Since there
Self-Instructional svent () or P [E]=13/5) orl/4 raally likely to b;? drawn, the sing Event P[A UB] Self-I ;
302  Material : ; Fig. 6.2 Venn Diagram Showing Mm;zz;rucnona! e
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'i bility: i in Fi Since there are 21 students who do not read any of the three magazines, the probability Probability:
pility: Event [4B tedinF 6.3. :
[Cancegls e _ that a student picked up at random among this sample of 50 students who does not read BasicConcepts
A B any of these three magazines is 21/50.
The problem can also be solved by the formula for probability for union of three
- NOTES
NOTES events, given as follows:
P[AUBuUC] = P[4]+P[B]+P[C]- P[AB] - P[AC] - P[BC] + P[4BC(]
— 20/50+ 15/50 +10/50—8/50—6/50—4/50+2/50

48] = 29/50
: ; : The above is the probability that a student picked up atrandom among the sample of 50
Fig. 6.3 Venn Diagram Showing Event [AB ] reads either 'ng or Newsweek or Filmfare or any combination of the two or all the

three. Hence, the probability that such a student does not read any of these three
magazines is 21/50 whichis [1 - 29/50].

Union of Three Events

The process of combining two events to form the union can be extended to three events

so that P[4 U B U C] would be the union of events 4, B, and C. This union can be 6.2.3 Addition and Multiplication Theorem on Probability
represented in a Venn diagram as in Figure 6.4. E : : e i 2
events: o R el iyl g nion 606 This section will discuss the addition and multiplication the: em on probability.
A n Law of Addition
When two events are mutually exclusive, then the probability that either of the events
will occur is the sum of their separate probabilities. For example, if youroll a single die,
then the probability that it will come up with a face 5 or face 6, where event 4 refers to
face 5 and event B refers to face 6 and both events being mutually exclusive events, is
given by,
c P[dorB] = Pl4]+P[B]
Fig. 6.4 Venn Diagram Showing Union of Three Events p [4UB U] Or, P[5 or gl = i’/[gl:'/g [6]
Example 6.1: A sample of 50 students is taken _ =1/3
; and a SurVey iS Hlade t ‘ading = 2/6_ ]./
habits of the sample selected. The survey results are shown as follows: on the re P[4 or B is written as P[AU B and is known as P [4 union B].
Event Number of Students Magazine They Read S However, if events A and B are 0t mutually exclusive, then the probability of
[4] 20 Tite | __— occurrence of ei’ther event A or event B or both is equal to the p?obabﬂﬁy that event 4
{g']] i Newsweek oceurs plus the probability that event B 0CCUrS TIiuS the protalghilmt oy eonion
[4B] ' 1;) Filmfare toboth 4 and B occur.
[4c] 6 Time and Newsweck Symibolically, it can be written s,
(BC] i Time and Filmfare PAUB] = P[A]+ P[B]-P[4 and B]
[4BC] 2 Sewsweckand Filmar P [A intersection B] or simpl
i 5 Time and NEWSWeek and Filmf: P[A and B] can also be Written as P[A M B], known as ply
Find out the probability that a student picked ;lpatrw P4 B]
students does not read any of these three magazines andom from this sample of 50 . i<t of all those events which are contained in both 4 and B
Solution: : MG Vi - entoftaking cards out ofa pack of S2 playing
The proble b Imultaneously, For example, in an exPe
p m can be solved by a Venn diagram as follows: cards, assume the following:
2 Event4 = AnaceisdraWi:
ﬁ EventB = Aspadeis drawn.
6 5 Event [4B] = Anace of spade 15 drawn.

AVA Hence, P[4UB] = PlAI+F [B]- PIAB]

_ 4/52+13/52-1/52
‘ 5) = 16/52 Self-Instructional

c =113 Material 308

i N Ty

Self-Instructional
304  Material




pability:
sic Concepts

NOTES

This is so, because there are 4 aces, 13 cards of spades, including 1 ace of spades out of
a total of 52 cards in the pack. The logic behind subtracting P[4B] is that the ace of
spades is counted twice—once in event 4 (4 aces) and once again in event B (13 car ds
of spade including the ace).

Another example for P[4 B], where event 4 and event B are not mutually
exclusive is as follows:

Suppose a survey of 100 persons revealed that 50 persons read India Today and
30 persons read Time magazine and 10 of these 100 persons read both India Today and
Time. Then,

Event[4] =50
Event[B] =30
Event [4B] =10

Since event [4B] of 10 is included twice, both in event 4 as well as in event B, event

[4B] must be subtracted once in order to determine the event [4u B] which means
that a person reads India Today or Time or both. Hence,

P[AU B] =P[A]+P[B]-P[4B]
=50/100+30/100-10/100
=70/100=0.7

Law of Multiplication

Multiplication rule is applied when it is necessary
events 4 and B will occur at the same time. The
events are independent as against the two eve

to compute the probability if both
mult{pllcation rule is different if the tW0
nts being not independent.

Ifevents 4 and B are independent events, then the probability that they both will

occur is the product of their separate probabilities. This ; ¢
: -1lhs1sas it tha
events 4 and B are independent if and only if, frict condition so

P[AB] = P[4] % P[B]
or = P[4] P[B]

For example, if we toss a coin twice, then the
head and the second toss results in a tail is giv

P[HT|= P[H]x P[T]
= 1/2%1/2=1/4
However, ifevents A and B are not independent, meaning

ofan event is dependent or conditional upon the occ
other event, then the probability that they will both o

P[AB] = P[A] x P[B/Given outcome of A]
This relationship is written as,

P[AB]=P[A] x P[B/A] = P[A] P[B/4]
Where, P[B/A] means the probabjl; A8 5
f)ccurred. As an example, assume tha condition that event 4 hal
is drawn at random from the bow]. Then a second ball is drauS and 4 white balls. A b?

probability that the first toss results in 2
enby,

thatthe probability of occurren®
unepcg or non-occurrence of
Ceuris given by,

ty of event B on the

Self-Instructional
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; : 0
the first ball back in the bowl. The probability of the secor?:lwggzvu ‘;hgut rgflaﬁemﬁiw
eing black or

would depend upon the result of the first draw as to whether the first ball was black or
white. The probability that both these balls are black is given by,

P [Two black balls] =P [Black on 1st draw] x P [Black on 2nd draw/Black on 1st
draw]

= 6/10 x 5/9 = 30/90 = 1/3

This is so, because there are 6 black balls out of a total of 10, but if the first ball drawn
is black then we are left with 5 black balls out of a total of 9 balls.

6.2.4 Independent Events

Two events 4 and B are said to be independent events, if the occurrence of one event is
not influenced at all by the occurrence of the other. For example, if two fair coins are
tossed, then the result of one toss is totally independent of thfa result of the othfar toss. 'Ijhe
probability that a head will be the outcome of any one toss will always be 1/.’»%, irrespective
of whatever the outcome is of the other toss. Hence, these two events are independent. -

Let us assume that one fair coin is tossed lp_time and it happens that the
first nine tosses resulted in heads. What is the probability that the outcome of the tenth
toss will also be a head? There is always a psychologlca} tendency to think t_hat atail
would be more likely in the tenth toss since the first nine tosses resulted in heads.
However, since the events of tossing a coin 10 times are all independent events, the
carlier outcomes have no influence whatsoever on the result of the tenth toss. Hence,

the probability that the outcome will be a head on the tenth toss is still 1/2.

On the other hand, consider drawing two cards from a pack of 52 playing cards.
bability that the second card will be an ace would depend upon whether

i o .
he p ard was an ace or not. Hence, these two events are not independent events.

the firstc

6.2.5 Conditional Probability

sati er may know the outcome of an event that has already

(1;1: ::;rr;); s;%a;c;x;s‘;vig?;;gnow thz chapces ofa second .event occgn‘ing }Jased upon
the knowledge of the outcome ofthe earlier event. We are interested in finding out as to
how additional information obtained as a result of the knowledge about the outcome of
fthe occurrence of the second event. For example, let

a obability 0 £ IR :

ul;l event affects the Prbrand of toothpaste is being mtroduceq in the market. Based on

theasstsuuc;ne Ehat a ;;:Ki ve markets, the manufacturer has some idea about the chances of
y ofcom 3

' in a few selected stores in a few selected
1ts suc ¢ introduces the prodyct ina few :
areag ‘t:::;osrl(j\I rr(::;ﬁ;ting it nationally. Ahighly positive respocx;se ti;ror:l Ihltzz; :.gjirkla
area will jmprove his confidence about the success ‘of his bran Fa E‘n by, - woumgby’
the manuyf; - ’ ssment of high probability of sales for his bra e
bl from the test-market.

condjitj itive response :
1tional upon the post 4 and B. Then the probability that event 4 occurs, given

otation is given by,

P[AB]
P[A/B]= PB]

. Let there be two events
atevent B has occured. The nt

ability of event A on the condition that event B

Where P[4/B] is interpreted as the prob Jbility of event 4 and event B, and P[B] is not

eas occurred and P [AB] is the joint prob
al to zero,
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As an example, let us suppose that we roll a die and we know that the number
S ’

hat eup is larger than 4. We want to find out the probability that the outcome is an
that cam

even number given that itis larger than 4.

NOTES

Check Your Progress

1. List the different

types of
probability

theories.

2. On what the
glagaisal thosey of
provavny 2

bazed?

3. Whatis the Law of
Large Nifnbers

(LLNY?

Let, Event 4 =Even
and Event B=Larger than 4
A Even and larger than 4]
Then, P[Even/Largerthan4]= P[Larger than 4]
P{AB]
or PlA/Bl=—"22=(1/6)/(2/6)=1/2
PB]

For, however independent events, P[AB]= P[4] P[B]. Thus, substituting this relationship
in the formula for conditional probability, we get,

P[AB] . P[A]P[B] _

PLAIB]=—r ]

This means that P[4] will remain the same no matter what the outcome of event B i5-
For example, if we want to find out the probability of a head on the second toss of @ fair
coin, given that the outcome of the first toss was a head, this probability would still be

1/2 because the two events are independent events and the outcome of the first tosS
does not affect the outcome of the second toss,

4__——-/

6.3 BAYES’ THEOREM

e
Reverend Thomas Bayes (1702-1761), introduced his theorem on probability. which 18
concerned with a method for estimating the probability of causes which are re; onsible
for the outcome of an observed effect. Being a religious preacher himselfa \?vell 258
mathematician, his motivation for the theorem came from his desire to prove th: existenc®

of God by look'mg atthe evidence of the world that God created. He was interested i
draw'mg conclus1ons_ a"oout the causes by observing the consequences. The theore™
contributes to the statistical decision theory in revising prior probabilities ;:)f tcomes ©
events based upon the observation and analysis of additiona] information o
Bayes’ theorem makes use of conditional ili | i

2 0 ition
can be described in terms of the additiona] prooebility formula Where the condf

probability of the outcome of an event. ormation which would result in the rcvised

Self-Instructional
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- _’irrﬁ_e;;- , rEini — ——= =
Mais !5;' — ‘1_7¥ i ngL_ e
Feinale P 2
o 4 10
Total % 3 ~
———— .3
T 50

Based upon this information, the probability that a student picked up at random will be
female is 30/50 or 0.6, since there are 30 females in the total class of 50 students. Now
suppose that we are given additional information that the person picked up at random is
Indian, then what is the probability that this person is a female? This additional information
will result in revised probability or posterior probability in the sense that it is assigned to
the outcome of the event after this additional information is made available.

Since we are interested in the revised probability of picking a female student at
random provided that we know that the student is Indian. Let A, be the event female, A,
be the event male and B be the event Indian. Then based upon our knowledge of
conditional probability, the Bayes’ theorem can be stated as,

P(4,)P(B/ 4)
P(4,)P(B/ 4)+ P(4,)(P(B/ 4,)
In the example discussed, there are two basic events which are 4, (female) and 4,

(male). However, if there are r basic events, 4,, 4,, .....4,, then Bayes theorem can be
generalized as,

P(4,/B)=

P(A4)P(B/4)
P(4,/B) = P(AI)P(B/A])+P(Az)(P(B/AZ)+...+P(A,,)P(B/A,,)

Solving the case of two events we have,

(30/50)(20/30)

= 20/35=447.= 057
(30/50)(20/30) + (20/ 50)(15/20)

P(4,/B)=

This example shows that while the prior probability of picking up a female student
is 0.6, the posterior probability becomes 0.57 after the additional information that the

student is an American is incorporated in the problem.

Refer Example 6.2 t0 understand the theorem better.

. i an wants to construct a hotel in New Delhi. He generally
I:E)ii?;: fﬁfeg'éﬁpﬁsﬁsﬁgf:gnmese are hotels w_ith 50 rooms, 100 rooms and 150 rooms,
for rooms, whichis a function of the area in wh;ch the h?tel
The demand can be categorized as low, medium or high.
emands, the businessman has made some preliminary
d possible Josses (in thousands of dollars) for these
e shown in the following table:

depending upon the demand
1S located, and the traffic flow.
epending upon these various d
assessment of his net profits an
Various types of hotels. These pay-offs ar
Demand for Rooms

__._”_-————_'—.__'_—._._—-_'_
Low(4) Medium (Al) High(4,)
R e e PR e R

02 05 03 Demand Probability
Numbel'ofRooms R=(50) 25 35 :;
R=(100) -1 0 40 it
ity 3 B =
Sobstion. 1o o e bk probabilies” (0 G demand strugture
i e THE Dugineeeiian hag als 20 - v Leinant OTIHE DUsinessman bused

,*!:}? These m‘uhﬁhilﬂi{iﬁa [ Hi‘*h‘l”‘g.,,i e oitenmes O The SREs of e,
- nGuition and his degree of eHETEETEEE
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Bt ot Demand for Rooms Probability of Demand Joint Probabilities 5 Ifrc:cl‘:abi!ig:_-
a.
II\J/IOG\Zl(ig 4,) g:é tate Erior Joint Probabilities N
2 G
NOTES Mgty 03 of Nature| Probability| P(4,X) PAX) PUX)
4, 02 02x05 =010, 02x03 =006| O - NOTES
Based upon these values, the expected pay-offs for various rooms can be computedS: ¥ d ; e
W, ol A, 0.5 05%02 =010 05x06 =030 05x02 =0.10
= X
(50)=(25%0.2) +(35x%0.5)+(50 % 0.3) =37.50 4, 03 03x0.1 =003 03x03 =009| 03x06 =018
i Ili((li(;(())))— (-10 % 0.2) + (40 x 0.5) + (70 x 0.3) = 39.00 Total Marginal Probabilities. =023 =045 =032
=(-30%0.2)+ - . i
This & & ¢ . )+(20%0.5)+(100 x 0.3)=34.00 Now, the posterior probabilities for each state of nature 4, are calculated as,
is gives us the maximum pay-off of $39,000 for building a 100 rooms hotel. Joint probability of 4 and X,
e St:j;“:;?:;:;t:h:; I:;?Stt f;cide whether to gather additional information regardirlg Pl &)= Marginal probability of X;
i g at these states ¢ i than o . .
preliminary assessment. The basis of suchan cll) N PI-EdICted fnore accurate}fy ptaining By using this formula, the joint probabilities are converted into posterior probabilities and
additional information. If this cost is less th atheCfls]on wc_>u1d be' the cost 010 profit the computed table for these posterior probabilities is given as,
then such additional information is justify edan eincrease in maximum expecte? S j it
Gt e Justitied. ’ tates of Nature Posterior Probabilities
at the business dic
the states of nature more accmaterf;a;;fksh? dco.nS\lltant to study the market aﬂ‘;%e 0. P(4,/X) P(4,/X,) P(4,/X,)
Thi o oy Lusstudy 1s going to inessman %
n:tltirzoizta‘:ﬁuktl é)le d%s(;uﬁed if the maximum eipecgte dC;::;ft'ﬁev}:El?ﬁe new gtates A, 0.1/023 =0435 0.06/0.45=0.133  |0.04/0.32 =0.125
as ) 0 mOI‘ i .ES' = = =
The bomamiltint haads S Stuz il:n the expected pay-off with the prior prob> 5 4, 0.1/023 =0435 | 030045=0667 10.1/0.32 =0312
medium demand (X)), and high demaruél1 came up with the estimates of 10W demand i 4, 003023 =0130 | 009/045=0200 [0.18/0.32 =0.563
This degree of reliability is xprene ) /12 degree of elability in these o2y Total -1 ~10 ~T%
that the consultant’s estimate of| 2 conditional probability which is the g El‘11 be et
actually low Similarly, there w; oW demand will be correct and the demand ! 0 Now, we have to compute the expected pay-offs for each course of action with the new
Shtedidsmani ;henet\gﬂl bea conditional probability of the ¢ onsultant’s esﬂ' aal posterior probab ilities assigned to eac.:h state of nature. The net Qrofits for each course
probabilities are eXI;ressed- © demand is actually low and These cm-;diﬂol1 of action for a given state of nature is the same as before and is restated. These net
nthe Table 6.1 BORI profits are expressed in thousands of dollars.
Table 6,1 ., ‘ A Medium (4.) High (4
Conditiong] Probabilities . Low(4) 2 850( 3
X umber of Rooms (R, JA 35 :
States of A 1 X (R) -10 40 7
() : £ : 2 100
Nature 4, 05 03 0 | [R,) -30
(Demand) (4, ?ﬁ 06 P Let O, be the monetary outcome of course of action i whenj is the correspor}ding state
The values in the \O?’L Ofnature, so that in the above case 0, willbe the outcome of course ofaction R, and
AT Preceding table gre S o0 2 State of nature 4 , which in our case is $25,000. S}mllarly, 0,, will be the outcome of
nditional probabilities and are inteP"" Action R and state of nature A, Which 0 OV G356 $10,000; andspon, Theexpectel
s The first value ofy) i o Valye EV (in thousands of dollars) is calculated on the basis of the actual state of nature
g s L ;
tﬁ?c:gz?tg () when the demat?;')bablhty that the consultant’s prediction will gefbﬂt that Prevails as well as the estimate of the state of nature as provided by the consultant.
nt’s estimate 15 actual] o i is 07 4 Cse ex ted as,
low, and 50 on, In other \::’ gl be for mediunf cllow‘ Similarly, the probability 8 and 1; pected values are calcula
=02and P(X /4 )= o DX/ 4)= emand (X,) when in fact the 47 /4; Course ofaction =R,
2 Az)"‘OG 1 !)'_'0.5 and 2 P 1
Our objective i t. » 850 o, P(X,/ 4 )=0.3. Similarly’ Estimate of consultant = ;
. Sh 1510 obtaj : A =4
information into considera£fam POsteriors which, (:1difioIl ¢ Wthual state of nature =4,
joint probability, which jg e . O° Way to e are computed by taking the®® 1o ere,i=1,2,3
each state of nature, Joing prop " Of Prior rctnis objective is to first o™i e e,
: abilities o com ablhty and conditional prov® ourse ofaction =R, =Build 50100™S hotel
Puted is given as R ] 4
i Ev| 2| _ zP __} O,
310 i;i{eifzn #uapdl ( X, } =z (X i ] i;l’ﬁln.srmctional
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= 043525+ 0.435 (-10)+0.130 (-30)

= 10.875-4.35-3.9=2.625

R 4o
(%) - k)

= 0.133(25)+0.667 (~10)+0.200 (-30)
= 3.325-6.67-6.0=-9.345

R 4
EV(?] . EP(XJ""

= 0.125(25)+0.312(-10) +0.563(-30)
= 3.125-3.12-16.89

= -16.885

(ii) Course of action= R, = Build 100 rooms hotel

(%) - w4,
X, X

= 0.435(35) +0.435 (40) +0.130 (20)

=, 13.225+ 174+42.6=35225

R, 4
(%) - x4,

0.133(35)+0.667 (40) +0.200 (20)
= 4.655+26.68+4.0=35335

dy) 4
EV[XJ = EP(?JO"Z

0.125(35) +0.312(40) +0.563(20)

= 4375+1248+11.26=28.115
(iii) Course of action =R, =Build 150 rooms hote]

R3 § 3
EV[ZJ £ ZPL%_] 0,

1

0.435(50)+0.435(70)+ 0,130 (100)
21.75+30.45+ 13 =652

by
~
N
Nk "‘_‘W
L
I
5
e S
el e
e
s

I

0.133(50) + 0,667 (70)+0.200 (100)
6.65+46.69 +20 = 73.34

y.|
TP| L
(X})OB

Il

=
~
"
w>< l‘-"z
S
Il
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— 0.125(50)+0.312(70)+0.563(100)
= 6.25+21.84+56.3=84.39

The expected values in thousands of dollars, as calculated, are presented as follows ina

tabular form.
Expected Posterior Pay-Offs
Outcome EV(R/X) EV(R/X) EV(R/X)
X 2625 35225 652
X, l -9.345 35335 73.34
2
X, -16.885 28.115 84.39

This table can now be analysed. If the outcome is X, itis de'sirable to build 159 rooms
hotel, since the expected pay-off for this course of actit?n is maximum of’ SGS,;OO. Similarly,
if the outcome is X,, the course of action should again be R, since the maximum pay-off
is $73,34. Finally, if the outcome is X, the maximum payoffis $84,390 for course of
action R,.

Accordingly, given these conditions and the pay-off, it would be advisable to build
a 150 rooms hotel.

6.4 RANDOM VARIABLE AND PROBABILITY
DISTRIBUTION FUN CTIONS

This section will discuss about random variable and probability distribution functions.

6.4.1 Random Variable

: 1t of the outcomes of a random

. s on different values as aresuit o1t
;‘; ranflom vanaltatlle::frds a function which assigns numerical values to each element
oflt)}fnmem' - tsethat mas; ocour (i.e., every element in the sample space) is termed as
a PGl The value of a random variabie is the general outcome of the random
random variable. Ihe < make a distinction between the random variable and

;?sgmexi; (t)ie Zﬁ‘;‘;}l{i ifﬁl these canbe illustrated by a few examples as shown in
ues thatitc g

Table 6.2
Table 6.2 Random Variable

Probability:
Basic Concepts

NOTES

———— T e Description of the Values of
Handom Vatatle chué {::;eble thepRandcf:n Variable
Y T S Possible number of heads in

] 0,1,:3:4 four tosses of a fair coin
\h—__'——_'/ Possible outcomes in a

N 1,2,3,45 ’ single throw of a die
\\'_‘_'“—“—“/‘— ible outcomes from

‘ 2,3,4,56 BRI e flgiswing a pair of dice
\—_/S,‘ Possible sales of newspapers

% oy TaZpdiee IR by a newspaper boy,

S representing his stock
—-—-"—-__'L——-_-__-_'i

\-———F—”//_
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All the stated random variable assignments cover every possible outcome

and each numerical value represents a unique set of outcomes. A random variable
can be either discrete or continuous. If a random variable is allowed to take on only

a limited number of values, it is a discr.et_e randorp variable, but if if‘ is allowed to
assume any value withina given range, it is a continuous random variable. Random
variables presented in Table 6.2 are examples of discrete random variables. We canl
have continuous random variables if they can take on any value within a range of values;

for example, within 2 and 5, in that case we write the values of a random variable
X as,
2<x<5

Techniques of Assigning Probabilities

We can assign probability values to the random variables. Since the assignment of
probabilities is notan easy task, we should observe certain following rules in this context:

(i) A probability cannot be less than zero or greater than one, i.e., 0 < pr< 1, wher®
prrepresents probability.

(i) The sum of all the probabilities assigned to each value of the random variable
must be exactly one.

There are three techniques of assignment of probabilities to the values of the rando™
variable that are as follows:

(§) Subjective Probability Assignment: 1t is the technique of assigning probabilities
on the basis of personal judgement. Such assignment may differ from individu?
to individual and depends upon the expertise of the person assigning the
probabilities. It cannot be termed as a rational way of assi gning pro]%abilities’

but is used when the objective methods cannot be used for one reason or the
other.

(#) A-Priori Probability Assignment: 1t is the technique under whj ili
is assi - . whi lity
is assigned by calculating the ratio of the number of ways in whjctclk;the proba”

: iven outcom®
can occur to the total number of possible outcomes. The basi ungerlyﬁlg

assumption in using this proc-edure is that every possible outcome s likely 10
occur equally. However, at times the use of this technj

conclusions. For example, we have to assign probability
of age 35 will live upto age 36. There are two poss
he dies. If the probability assigned in accordanc
assignment is half then the same may not represen
probability can be assigned by some other techniqu
(iii) Empirical Probability Assignment: Tt i s 30 )
probabilities and is usectlyby me%ecisiog—rifage:sr.ll?;ig;;e method of assigql?g
is assagr_led ny calculating the relative frequency of OCcutf:thue the Probabﬂlnt
3\efer zi.:rmgn:lte nEmbe; of occurrences. However, in practicee;lrcﬂe Ofg g.wenef;;izps
cagula tge y 111;: er of cases are.observed and relative freque  adupe (D ntis
' ated. The probability assignment through thig tecprs . of the eve ve
unrealistic, if future conditions do not happe echnique may as well

nto beareflect:
Th : P €ction of the past.
us, what constitutes the ‘best’ method of probability asgi " be
estto depi assignment can only

que gives ridiculov®
tytothe event that a pers®”
ible outcomes, he lives
€ with a-priorj probability

treality. In such a situatio
es.

6.4.2 Probability Distribution Functions:

When a random variable x takes discrete values x,, X,

we have a discrete probability distribution of X.

The function p(x) for which X =X, X, X,
probability function of X.

The variable is discrete because itdoesnota

plx) = Probability that X
=Prob (x =x)=p,
p(x) 20,Zp(x) =1

Discrete and Continuous

prenes X, With probabilities p,, p,s...P,,

takes values p,, Pyl is the

ssume all values. Its properties are:

assumes the value x

For example, four coins are tossed and the number of heads X noted. X can take values

0,1,2,3, 4heads.

> plx

This is a discrete probab

6 |

16

Sy

16

4 _

16

3

16

2

16

-L_-_ ’

i6 _‘_l/___#_

) 0 1 2 3 4
ol

1 6+ +""':1

e s

=Te 16716 16 16

ity distrib 1tion (refer Example 6.3).
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Example 6.3: Ifa discrete variable X has the following probability function, then find
(i) a (i) p(X < 3) (iii) p(X 2 3).

Solution:

X px)
0
a
2a

2a*

4a*

5 2a
Since Zp(x)=1,0+a+2a+2a2 +442+ 24 = |

—

A W= O

6a*+5a-1 =0, so that (6a - 1) (a + 1)=0
1

4 =7 ora=-1 (not admissible)

Fora “—“g,p(XS3)=0+a+2a+2a2=2az+3a= 5

P(XZ?)) =4a2+20=

O |

Discrete Distributions

as follows:

() Uniform or Rectanguly, Distribuyy;,
n

Each possible value of the

W rand : o)
distribution. If x takes vay Om variable x hag the same probability in the unifo

€s
xp xz....,xk, then,

1
Px,6) = ~
) 6(Here,x=1,2,3,4,5,6)

Bernoulli Trials
In a Bernoulli €Xperiment

: aneve
are, getting a head on togg »

ingac
The Bermnoullj random v

E either

happens d Exarﬂples
1 ; or .
Oin, getting 5 iy T m“?es not happen (E')

iahla: ngadie, .
anablelswﬁtten gadie,andso 0

X=1 ifg Occurg

Probability of suce Sitisa cage ofad

€SS=p=p(E) iscrete variable wher®”

Profitability of failure = 1—p =g =p(E")
We can write,

For k= I,f(k) =p

Fork=0,fk)=¢q

For k=0 or 1, k) = p*q"*

Negative Binomial

In this distribution, the variance is larger than the mean.

Suppose, the probability of success p in a series of independent Bernoulli trials
remains constant. . |
Suppose the rth success 0cCurs after x failures in x +r trials, then
] ili fthe last trial is p.
(i) The probability of the success 0 : . :
(if) The number of remaining trials isx +7—1 m_wmch there should be »—1
successes. The probability of — 1 successes is given by,

r-1 x

-1
x+r Crfl p g )
The combined pobability of Cases (1) and (ii) happening together is,

+r—= r-1 x Ll
pEy= P TC AP V=0, 1,2,

This is the Negative Binomial distribution. We can write it in an alternative
form,

P(x) L —rCIpr (_q)-" x=0, 1,2,....

This can be summed up as follows:
In an infinite series of Bernoulli trials, the probability that x + 7 trials will be
n - - . .

required to get  SUCCESSES 1S the negative binomial,

SEyAC, g itel]

If =1, it becomes the geometric distribution.

ive binomial tends to be the
= onstant, then the negative
Ifp— 0, >, 1P mac

Poisson distribution.

() Geometric Distribution | ‘
1 a series of independent trials remains constant.

Su ility of success P 1 . .
ppos;e the pro:b]ﬁrzsuccess occurs afterx failures, L.e., there are x failures preceding
uppose, the

the first success, The probability of his event will be givenby p() =¢p (x=0,1,2,....)

buti derived from the negative binomial.
isi .t tribution and can be
This is the geometric distr!

. o1 distribution, then
twe put =1 in the negative binomial distribution,

x+r-l G
p(x) = Cr—lp q

We get the geometric distribution:

p) = *Cop' 4" = P4

:——“":1
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Solution: Ba;;;(?;:cjig;
Probability: P x _ = =2.n=5
Basic Concepts E(x) =Mean = - We have Nl =3, Nz =N- NJ =17,x=2,n '
9 317
2 Y3
. A e NOTES
Variance = % P@) "C;
NOTES z
317

1 X
Mode = | =
ode [ 2)
Refer Example 6.4 to understand it better.

Example 6.4: Find the expectation of the number of failures preceding the first success
inan infinite series of independent trials with constant probability p of success.
Solution:

The probability of success in,

1sttrial =p (Success at once)
2nd tria] = gp (One failure, then success, and so on)
3rdtrial = g% (Two failures, then success, and so 0n)
The expected number of failureg preceding the success

Ex)=0.p+ 1. pg +2p%p +

............

Pa(l+2g+3g24 )
1 1
=Pl—— =gy -4
. U-g =73 p
Sincep=1-g4,

(iii) Hypergeometic Distributiop,

H

Sample of gize 5 ; ) ent.
Let there be v | Successes o Esize n s drawn without replace™”

Self-Instructional
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ut of v
The number of failures js )y ~ N-py

The disribution of he Ty
in the di . oTandom vy i g
in the discussed case, is called th, s :gb;zﬁe\:hlgh 18 the number of successes obtat?

1C distribution,
p(x) = : Civcmx
Here, x is th Vg .  X= 3 e - n)
; , en
frilures i the sample Umber of Successes i fhe samp] ' ¢
. m - i n
It can be showy that ki
Mean:E(X) = Y,
N
Vari :
Tlance : Vyy (X) s ‘%‘_“i’l_ fﬂ L
il ]

Example 6.5. The e N ]

; *9+ Lhere are 9() :
of 5 tickets Purchageq exact?;t :v? tickets v £ ot

Gl

~ ; 1o B
T1Zes are wo::e Prizes. Find the probability th

0 5

The probability ofno prize p(0)= —3 .

3 C 17C
. 1 4
The probability of exactly I prize p(1)=—% c,

Example 6.6: Examine the nature of the distibution if balls are drawn, one at a time
without replacement, from a bag containing m white and » black balls.

Solution:
It is the hypergeometric distribution. It corresponds to the probability that x balls will be
white out of 7 balls so drawn and is given by,

a .\'Cx nCr—.r
P(x) m+n Cr

(iv) Multinomial

There are k possible outcomes of trials, Viz., X;, Xp -+ % Wlt_h prQbabllltlesp 2P s Py
» independent trials are performed. The multinomial distibution gives the pr.o‘t?abllhty that
out of these  trials, x, occurs », times, x, 0CCUIS 71, tIMEs, and so on. This is given by

n ! m o.M

'p] P pf

k

S

i=l

Where,

Characteristic Features of the Binomial Distribution

The following are the characteristic features of binomial

i) Itis a discrete distribution. : . .
(E?) It 1s.a lih & probability of x successes and »n —x failures in a specific order.
gives

(iii) The experiment consists ofn repeatefd trials.
i ure.
(iv) Each trial results in a Success or a fail o=
i 0
(v) The probability of success remains constan

(Vi) The trials are independent.

distribution:

m trial to trial.

; ime. This conditi
(Vii) The success probabilityP ofany outcome remallns constfla;l:):;:;? and CCOTIOII’li((:)Sn
: fisfied in situations IMVOLVINS manag : ” s
tansuallyos ﬁﬂ.ly. s onse from successive informants is not the same.
e.g., the probability of rf:SPd that the condition is reasonably well satisfied in
However, it may be tszﬁzome of one trial does not depend on tj:l gutcotljrnetof
o Thinopeiiontoo meytt ISR R EER SRR LR
may nolt approach a secon d informant with the same min
informant.
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(viii) The binomial distribution depends on two parameters,  and p. Each set of different
values of n, p has a different binomial distribution.
(ix) Ifp=0.5, the distribution is symmetrical. For a symmetrical distribution, in#
Prob (X=0) =Prob (X=n)
i.e., the probabilities of 0 or 7 successes in # trials will be the same. Similarly,
Prob (X'=1)=Prob(X=1- 1), and so on.

Ifp>0.5, the distribution is not symmetrical. The probabilities on the right ar
larger than those on the left. The reverse case is when p <0.5.
‘When # becomes large the distribution b

e ecomes bell shaped. Even when# jsnot
very largebutp=0.5, itis fairly bell sh

aped.

(x) Thg bi'nomjal distribution can be approximated by the normal. As » becomes Jarg®
andpisclose to 0.5, the approximation becomes better.
Through the following examples you can understand multinomial better.
Example 6.7: Explain the concept of a discrete

robability distribution.
Solution: Ifa random variable x p ity distribution

i assumes n diSCl'ete 1 ith res ecﬁVC
babiliti valuesx..x . . x_, withresp
gﬁh:r;;asislﬁi’éf;f@{"gp AP 4Pyt ...t p = 1), then the distribution of values”
e ﬁequem; fm; G n), is called the discrete probability distribution of x.
different values x , 3 Ctljcn 0; fref_luency distribution of x is defined by p(x) which
1 p_.. ..... 2 OLX, gives the corresponding probabilities:
p(xi) "‘P,— Where, p(x) > 0 Zp(x) " 1

Example 6.8: For th ;
¢ following Probability distribution, find p(x>4)and p(x Z 4):

Solution:
Since,
Dith e OFR ., 2
5
ez Spx=5y=2 1
40 10
Prsdy=qy,, 3+ﬂ+a+9a o
Example 6.9; A fair coin : 2 AT =—
: IS toggeq " 4 10
corresponding standard deys..q: 400 times, F; he
Solution: Viation, Ind the meap number of heads and

1
q = — § n= 400
The mea :
0 Number of heads i5 8iven b
Yh=np= 400
X— =200

/ b
=l = [400x—x—=10
and S.D. © np ><2X2

Example 6.10: A manager has thought of 4 planning strategies each of wyich has an
equal chance of being successful. What is the probability that at least one of his strategies

1 3
will work if he tries them in 4 situations? Here p = Z’ q= Z

Solution:
The probability that none of the strategies will work is given by,

wo-s(3] )6
gj“ _175

The probability that at least one will work is givenby  ~ ( 1 256"

Example 6.11: For the Poisson distribution, write the probabilities of 0, 1,2, .... successes.

Solution:

X

—
x PEISE x!

p(0)=e"m"/0!

=

1 p)= e -;1:- = p(0).m

_-__.__.__-——-__'_'__.__.__.—
2 m
m i
-m M _ p2) = pQ).
2| ", p@) 7
3 m
m M _ 5(3)=pQ)-7
3|le 30 P( ) 3
and so on.

Total of all probabilities Tpx)=1.
EXample 6.12: What are the raw moment
Soluﬁ()n:

s of Poisson distribution?

! =
First raw moment b, = 2
I = +m
Second raw moment k' ;n e
I = + m
Third raw moment 13 m

o icfributions
®) Continuous Probability Distrib#i? | K
alue in the given intervala<x < b,itisa

; v SV A
e a random variate can take 0¥ ontinuous probability distribution.

“Oontinyoyg variate and its distribution jsac
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Table 6.3 Bivariate Frequency Table Probability:

Theoretical distributions are often continuous. They are useful in practice because Basic Concepts

they are convenient to handle mathematically. They can serve as good approximations . ey il
to discrete distributions. —> M Boits g;’;:ugncies
The range of the variate may be finite or infinite. Y Series e i of y NOTES
- T i
A continuous random variable can take all values in a given interval. A continuous Y
probability distribution is represented by a smooth curve. H
The total area under the curve for a probability distribution is necessarily unity: %
The curve is always above the x axis because the area under the curve for any interval y
represents probability and probabilities cannot be negative. g SED) | 0
. IfXisa continmfs variable, the probability of X falling in an interval with end g §
points z,, z, may be written p(z, <X <z). 5S
. s . Y
This probability corresponds to the shaded area under the curve in Figure 6.5-
Total of 2 Total
Frequencies * o =N
ofx

Here, f(x,y) is the frequency of the pair (x, ). The formula for computing the

correlation coefficient between x and y for the bivariate frequency table is,
T N (x,5) - (Cf) (E35)
r= =
; : _ 2 2 2f —(Zp)
Fig. 6.5 Continuoug Probability Distribution ‘/[Nzx L = ) ]x _NZ}’ b ]

A functionisa probability density function if
[.p()dr =1, p(x)0,

where, N is the total frequency.

FRSX<o, je the x) is |
and the probability of x lying between two val b IS e GG : Th 6.5 SU_NIMARY
most prominent uesa, b,ie., pla< itive — o B A
i example of a continyeyg Probability funCtioi (1‘; thJeC :o?;;pcﬁztribuﬁon' o The probability theory helps a decision-maker to analyse a situation and decide
umulative Probabi]ity Funct;
tion (CPF) accordingly. i

) ' ' s ili the condition

The Cumulative Probability Funct; N akes use of conditional probability formula where
unction (Cp * Bayes’ theoremIn itional i tion which would result in the

less than or equal to, say, za (CPF) shows the probability that x takes @ yalue can be described in terms of the additional informatio

come of an event.

nd correg
POnds to the gy
€aunder the ¢ toz.
PR different values as a result of the outcomes of a

revised probability of the out

p(x < 2) =
[mP(X)a'x o A random variable takes on

This is denot i . sy
enoted by F(yx). ‘ random experiment - S — alue in the given interval a<x < ?), itisa
6.4.3 Extension to Bivari ® When a random s :bution is a continuous probability distribution.
a7 s ate Case: Elementary ¢ continuous variate and its distr '
Ofatwo-way table. In thj € large, then th in the 6
lisss (10 nscosary s o "R, vl e gt |~ KEY TERMS e
considerations as in the case of uni?,th the Variables) keep‘; r%Touped mtot O e . theory: Themost general approach to probability, and is
: i Lpe ° : C . e
ﬁ'equency distribution presents in arlate distributiop In oth ct wrsels pivariat Axiomatic pm!mbmty blems in probability
|| frequencies, - a table pairg er words, a b1 i used for more difficult pro

an activity or aresult of a trial

of
° Event: An outcome or a Set of outcomes

For example, if there j fferent values as a result of the
ISmc on diffe

Y—variable series then t D classes for the X—var * Rand sable: A variable that takes
: \ ere will be A~ Variable ser or the andom variable: ;
the different pairs of the values (x X ncells in the two-w oS and. clgsses f ugh outcomes of a random experiment
for each cell and th »Y) and using )y 4y table. By going thr Self-Instructi
= us get the S0 Called b 3 g yma‘['ks we 61]0 elf~-Instructional
/ ariate » We can find the freqW!
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1. Different types of probability theories are:
(i) Axiomatic Probability Theory
(ii) Classical Theory of Probability
(iii) Empirical Probability Theory
2. The classical theory of probability is based on the number of favourable outcomes
and the number of total outcomes.
3. The Law of Large Numbers (LLN) states that as the number of trials of an
experiment increases, the empirical probability approaches the theoretical

probability. Hence, if we roll a die a number of times, each number would come
up approximately 1/6 of the time.

4. Bayes’ theorem makes use of conditional probability formula where the conditio?
canbe described in terms of the additional information which would result in the
revised probability of the outcome of an event.

5. The product of prior probability and conditiona

I probabili h state of natur®
is called joint probability. probability for each s

6. If p=0.5, the distribution is Symmetrical.

7. When arandom variat.e can take any value in the given interval a < x < b it 15
continuous variate and its distribution i a continuous probability distribution-

————--/

6.8 QUESTIONS AND EXERCISES

————-——'/

Short-Answer Questions

1. List the various types of events,

2. What are independent events?

3. What are the rules of assigning Probability?
4. What are the three techniques of agg ;
5. Whatis Bernoulli trials?
6

igning probability?

. What are the significant characterj

Wt Ot stics of binomia] distribution?

~]

Long-Answer Questiong

3. Describe Bayes’ theorem with
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70 INTRODUCTION

ctation and its properties. Expected value of X'is the
Jues that X' can take. You will be familiarized with

Mean, variance and moments in termS of expecta_tion. Also, the unit will explain the
Process of summing two random variables, you will learn about vanﬁ;alrllcc? and ;t;ndmd
CViation of random variable and finally abou'f rr}omt.:nts genergtmg : ctions. This unit

Will also discuss standard distribution and statistical inference 11 detail.
i . bleis a function that associates a unique numerical
alue ;i?}: xg:;zﬁiiif?gg r;:;ae?-iﬁtent. The value of the random variable v.vill vary
O trial to tria] as the experiment is repeated. Ther? are two pres of random Val'iable%-—
tribution of a discrete random variable isa

discr : ility dis
isto. 2nd continuous. The prObablhty Itis also sometimes called
bability density function of

= of probabiliti : - chofits possible values.
abilities associated with €2 e The pro n
ted to obtain the probability

 Probabil i ility mass
ility function or probability 5 ichcanbe inteers

2 thjs unit, you will learn about expe
Weighted average of the possible V2

a

Contip ;
Uous ablei ction s RN N S i
that e rand;?nn 32;;?2?:;:;,%3 inagiven interval. Binomial distribution s used in
ampling problems where each 0

ftwo possible outcomes  Self-Instructional

i : €0
fes hservation has on Sefam .
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(“success’ or ‘failure’). Poisson distribution is used for modelling rates (?f occurrel'}(i;;
Exponential distribution is used to describe units that have a constant t_"allure.rate. .
term ‘normal distribution’ refers to a particular way in which observations will tend t0
pile up around a particular value rather than be spread evenly across a range of value:sci
i.e., the ‘Central Limit Theorem’. It is generally most applicable to continuous data an
is intrinsically associated with parametric statistics (for example, ANOVA,
t-test, regression analysis). Graphically, the normal distribution is best descrlbe.d byla
bell-shaped curve. This curve is described in terms of the point at which its height1S
maximum, i.e., its mean and its width or standard deviation.

7.1 TUNIT OBJECTIVES

After going through this unit, you will be able to:
e Understand about expectation and its properties
e Discuss about mean, variance and moments in terms of expectation
o Understand moments generating functions
e Discuss about standard distribution and statistical inference
* Understand the basic concept of probability distribution
* Explain the types of probability distribution
® Describe the binomial distribution based op Bemoulli process

e Describe the significance of Poisson distribution

® Explain the basic theory, characteristics and family of normal distributions
® Measure the area under the normal curve

o Analyse Poisson distribution as an approximation of binomjal distribution
° Explain the beta and gamma distribution

ofthe outcome occurring,

Therefore, the expectation is the outcome
Let us consider the Example 7.1

Example 7.1: What is the expecteq value

when we roll a fair gi02
Solution: There are six air die?

possible oyt v
probability of 1/6 of occurring, L et Xg;)fﬂr::s 1,2,3,4,5, 6. Bach one of these D2

outcome of the exper:
Then, Periment.

P(X=1)=1/6 (this shows that , 1 ot
is Lis 1/6) © probability that the outcome of the experim®

Youexpect of an experiment.

fVar(X).
The Standard deviation of X is the squar® rooto

P(X=2)=1/6 (the probability that you throw a 2 is 1/6)
P(X=3)=1/6 (the probability that you throw a 3 is 1/6)
P(X=4)=1/6 (the probability that you throw a 4 is 1/6)
P(X=5)= 1/6 (the probability that you throw a 5 is 1/6)
P(X = 6) = 1/6 (the probability that you throw a 6 is 1/6)

E(X) = 1xP(X=1) + 2xP(X=2) + 3xP(X=3) + 4xP(X=4) + 5xP(X=5) + 6 x

P(X=06)
Therefore, .
EX)=1/6+2/6+3/6+4/6+ 5/6+6/6=7/20r3.5

Hence, the expectation is 3.5, which is also the halfway be;ween the possible values the
die can take, and so this is what you should have expected.

Expected Value of a Function of X

To find E[f{X)], where f{X) is a function of X, we use the formula,
E[f(X)] = Z fAx)P(X=x)

Let us consider Example 7.1 of die, and calculate E(X?)

Using the notation above, f{x) = x*
A =1,/2)=4./3)=9./(4)=16,/5)= 25,/(6)=36
P(x=1)=1/6, P(X=2)=1/6, tc.

Hence, E(K?) = 1/6 +4/6-+ 9/6-+ 16/6+25/6 + 36/6 = 91/6=15.167

ectedv is] :, as for example £(1 )= 1. Multiplying
Th ed val constantis just the constant, as
a r:: expect : bll; i 0;: constant multipiies the expected value by that constant.

ndom variable b

Therefore, E[2X]=2E[X]
An important formula, where and b are con
E[aX+b]=aE[X] +0

ion is a linear o
HenCe, we can say that the expectationis

stants is,

perator.

Variance

i f'the possible
Values O?EIC: w?arfilall‘ale For a discrete raix. vt variable &,

ar(x).
Var(X) = E[(X - p)’]
€re, |1 is the expected value E(X)
his can also be written as,
Var(X) = E(x?) - p?

A\ ? add
8 i -J

* The variance does not behave in the
1S to random variables.
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Var[aX + b] = a*Var(X)
Because, Var[aX + b] = E[ (aX + b)*] - (E [aX + b])>
= E[ aX + 2abX + b?] - (aE(X) + b)?
= a’E(X*) + 2abE(X) + b* - *EX(X) - 2abE(X) — b*
= @’E(X*) - a’EX(X) = a*Var(X)
Expectation (Conditional)

The expectation of a random variable X with Pro

. x)
babili i ion (PDF) P
is theoretically defined as; ability Density Func

E[X]= [xp(x)dx

If we consider two random variables Xand ¥
combined behaviour is described b

eif
(not necessarily independent), then is
defined as,

y their joint probability density function p(% ) 2"

p{xsX<x+dx,ySY<J')+dy}=P(X, y)dx GEV
The marginal probability density of Xis defined as

px(x)=[p(x, Y)dy

Expectation (Iterated)

The expectation of the random Variable ig exp d
ressed as,
E[X]=E[E[x) |

This expression is know

Double Expectation’. g nas the Ty,

o of
€0 ., «Theor®
; ) ymboﬁcally, it carrf g] of Iterated Expectation” of The
(/) For the discrete case

€ expressed as,
EX] = Zy Elx |y

\ S VP = »}
(if) For the continygyg case

: -4y
Expectation: Continygyg Variap)
ables

Ifxis i W
a continuoyg random Variable
€ define th,
at,

Th E(x) < Ix Pl
© eXpectation ofg f .
OCtiop h(x) :
S’
Bhey it
® I h(x) P(x) gy

~®

The rth moment about the mean s,
E(x—p) = j(x—p)’-P(x)dx

Consider the following examples.

Example 7.2: A newspaper seller earns T 100 adayif there.is suspense in .the news.
He loses ¥ 10 a day if it is an eventless newspaper. What is the expectation of his
earnings if the probability of suspense news 1s 0.4?
Solution: E(x) =px, T PX,

=0.4x100-0.6x10

=40-6=34
Example 7.3: A player tossing three coins, earns X 10 for 3 heads, ¥ 6 for 2 heads and

% 1 for 1 head. He loses ¥ 25, if 3 tails appear. Find his expectation.
Solution:

111
_ Ssal == pgay | 3heads
PHHH)= 55378~ 7
o gt g .
R A e y 2 heads, 1 tail
p(HHT) = Ci"z A9 LR P2
ik ,l,l.l=§=p3say 1 head, 2 tails
pHTD = C- 57573
by L2 3 tails
= —e—r— =—= sa
BITD) = o o s i
E(x) =p1x1 + Py, + P¥y— Py
1 3 3 1
i 2x6+=—x2——x25
_8x10+8>< +8>< 3
sl 05
8

Example 7.4: Calculate the Standard Deviation (S.D.) when x takes the values 0, 1,2
ample 7.4: Ca

and 9 with probability, 04, 0~ 0.1.

. i p . .t, -3, 0.1.

2x(0.1=11.0
- +12X0’2+3x0,3+9
E@) =sxip,= 0> 04

_11-2=9
M) = EG) - =112
i : - bili
Example 7 ( ) J9 hase of SOme shares can give a proﬁt‘of 3 ;tt‘{})l(t)3 \;ﬁi 6f)ro‘oa ility
vy B ir price 0 :
/100 ;l:r:i ?203 v:ig?;robabﬂity 1/20. Commentona fairp
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Solution:

Expected value E(x) = Zx,p,= 400 x ﬁ +300x 1 _ 19

7.2.1 Mean, Variance and Moments in Terms of Expectation

Mean of random variable is the sum of the values of the random variable weighted by
the probability that the random variable will take on the value. In other words, it is the
sum of the product of the different values of the random variable and their respective
probabilities. Symbolically, we write the mean of a random variable, say X; as X - The
expected value of the random variable is the average value that would occur if we have
to average an infinite number of outcomes of the random variable. In other words, it S
the average value of the random variable in the long run. The expected value ofa
random variable is calculated by weighting each value of a random variable by its

probability and summing over all values. The symp random
variable is E (X). Mathematicall ymbol for the expected value of &

r Y, We can write t alue of @
random variable, X, he mean and the expected v

E(X):E(Xf)'pr‘(Xi)

X
Where, X, is the ith value X cap take

I

Sum of Random Variab]eg

E(X+Y+2)=E(

Similarly, the ex g
value of the randomy oo, 2100 0f a ¢

: d
0m variable, Symbo]

OHStant tlme

i . . th
ically’ random variable is the exP®

b s We can write this as,
C. = v
Where cX is the Constant ¢ : CE(X) e

Variance and s
The m thSta“dal'd Deﬁaﬁon of Rapg
€an of the expecteq ygy om Variahj
| e
times to study the Problem ag ?eﬁ Tandom, Variable ugh ¢
as well be interested i knowino W tandom Variabl?ay o pomdoquale enOe o
are dispersed abou g ﬁl s:tr;lething about hoyy Zstualiy behaves and “;ria lﬁf
: €I Wordg ¢ values of random V¢~

we w )
a0t to measyre the dlspel'sw

random variable (X) about its expected value, i.e., E(X). The variance and the standard
deviation provide measures of this dispersion.

The variance of random variable is defined as the sum of the squarfad deviat‘igns
of the values of random variable from the expected value weighted by their probability.
Mathematically, we can write it as,

n 2
Var(X)= O = Z[X,- —E(X)] or.(X;)
i=1
Altematively, it can also be written as,
2
Var(X)=0% = 3 X2 prX;)-[E(X)]
Where, £ (X) is the expected value of random variable.
X is the ith value of random variable.

pr: (X)) is the probability of the ith value.

The standard deviation of random variable is the square root of the variance
of random variable and is denoted as,

O'ir =0y

The variance of a constant time random variable is the constant squared times

the variance of random variable. This can be symbolically written as,
Var (cX ) = ¢* Var (X)

The variance of a sum of independent random variables equals the sum of the

variances. Thus,
Var (X + Y + Z ) = Var(X) + Var(¥) + Var(Z)

If X, Y and Z are independent of each other. _

The following examples will illustrate the method of calculation of these measures
of arandom variable.

i tandard deviation of random variable
Ex : the mean, variance and s : ‘
salssng);;-’tii gﬂ;ﬂ; information provided by a sales manager of a certain business

Unit for a new product:

Monthly Sales (in_units) Probability

0.10
o 030
. 030
- 0.15
- 0.10
. 0.05

s s 300

be developed as shown in the following table

Solyg i : :
e The sl standard deviation for random variable sales:

o : ;
" Caleulating mean, variance and the
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Probability Distribution Monthly Sales Probability  (X) pr (X)) X,-E (X)) X = E( ;)0 7.2.2 Moment Generating Functions
] X r : ;
(in units)' X; pr (X) 2 ;_._‘?—1-0—6-0’—0-6' According to probability theory, moment generating function generates the moments for
%y 0 - 40 (F0-450) ' the probability distribution of a random variable X, and can be defined as,
= 10000 NOTES
NOTES X, 100 030 3000 (100 - 150)2 75000 M) =E (), ter
=2500 - , . . i
ine function exists with an interval ¢ = 0, the nth moment
X, 150 030 45.00 (150 - 150)2 000 gvegzll; g;e moment generating
=0 i
X, 200 0.15 30.00 (200 - 150)2 37500 E(X‘h) = MX(") (0) = [d' MA’ ) / dr'] =0
el o =2500 00000 The moment generating function, for pro.bai?ilit-y distribution condition being continuous
5 ‘ 2500 (250 - 150)? % or not, can also be given by Riemann-Stieltjes integral,
= 10000
X, 300 .00
: = 1500 (300 - 1502 12 My (0)= [ e*dF (x)
=22500 I
2 . ve distribution function.
2(X) pr (X) S - E (X) Where F'is the cumulative distribu . .
¢ ' . ; : i t generating function
=150.00 pr ( X) = 425000 The probablhty denSIty function ﬂx), for X havlng continuous moment gen g
Mean of rand: ; . : becomes,
random variable sales = ¥
or, =
Vari ¢ E (X) Z()(r)pr(X,) =150 Mx(t) = _[:erxf(x) dx
ariance of random variab
< le sales, =E(1+tx+t2x2/2! +...) f(x) dx
2
Zf( ' E(X)) -pr(X 1) =4250 Note: The moment generating function of X" always exists, when the exponential function is
= positive and is either real number or a positive infinity. ' ;
Standard deviation of random variable sa 1. Prove that when X showsa discrete distribution having density function £, then,
e sales, g
or, g [
Th 1 cX--\/::;;:\/mz65'2‘11)pr0x I Mx(t)=ze“f(")
€ mean value cal ‘ il ¥eS
be 150 units pe @culated above Indicates that e sal vﬂe : -th density function ; then
i d{] I month, The variance aqd thm the long run the averag * asure thd 2. When X is continuous w1
Sper m
sk S PEISion of random, Variab] ¢ standard deviations . te
Om variable. ¢ values about the mean or the M, (t)= J e f (x)dx
Example 7.7: Given are the me . AT ¥ 5
B, C and D. an values of foyp different random variable® i 3. Consider that Xand Y'are independent. Show that,
2 = =y
Fmd the mean Va]_ue 43 the 20, B= 40, E =10 D=5 MX+ Y(t) = MX([) Mxt)
. rand()m g /
Solution Variab] S
- €Ad+B+C+D) 73 STANDARD DIS"[‘RIBUTION
TBHE WD) - 2l TR I 1) T
) E(4) + EB)+ g ] .1 case of the normal distribution. Itis the dlSh‘ﬂ:?utlon
o N e (©) + E(D) The standard distribution is a specia % has a mean of zero and a standard deviation
= 20-:B : D that occurs when a normal random variablehasa
& =75 0+10+5 ofone, | distribution s called a standard
ence, the mean vajye of ra The normal random variable ofa Standafrd e be transformed into a z-score
ndom Variah] 5Co ] random yariable X can be tra
CA+B+C+ D) is 75 Ie or a z-score. Every normalt
Ough the equation,
z=X-wl/o
1, Computations canb
100 € made eggin. ; ¢ Self-Instructional
Self-Instructional 852,200 a5 4 anq 80 on_asler 1fwe take 50 unitg le 5‘Jab Material 335
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Where X is a normal random variable, p is the mean of X, and o is the standard
deviation of X.

For example, ifa person scored a 70 on a test with a mean of 50 and a stgndz:lrld
deviation of 10, then they scored 2 standard deviations above the mean. Converting the
test scores to z scores, an X of 70 would be,

70-50
BT

2

- T e
So, az-score of 2 means the original score was 2 standard deviations above th
mean.

Standard Normal Distribution Table

A standard normal distribution table shows a cumul
particular z-score. Table rows show the whole num
Table columns show the hundredths place. The cum
infinity to the z-score) appears in the cell of the tabl

ative probability associated with 2
ber and tenths place of the z-scOre-
ulative probability (often from minus
. This is further discussed in Unit 7

————--'_-’

74 STATISTICAL INFERENCE

4__-___/

Statistical inference refers to drawing conclusions based on data that is subjected ©°
random variation; for example, sampling variation or observational errors. The terms
statistical inference, statistica] induction and inferential statistics are used to describ®
systems of procedures that can

beu

sed to draw conclusions from datasets arising fro™
systems affected by random variation,

Tltllere i}l’e I:'lfany ?Ont":i;'ts inwhich inference is desirable, and there are also Vaﬁo?é
approaches ot performing inferenceg, One of the i ’ S 1 metr!
mo aral
models. For example, if you have ng; i D OLALLGOTEXIS IS
=Pyt B,x+error, then yo i
y=Bit B, you can est o P> and the magnitude of the error.
The fundamenta] Tequireme

t
nts of such g ; are thd
they must be common so that it cap b et of procedures for inference

generally yge

1
TR seoe . |
O statistica] i d for point estimation, int

cance testing and prediction of a rand®

7.5 BINOMIAL DISTRIBUTION

Binomial distribution (or the Binomial probability dis.tribution) isa wide;ly used problabﬂ;‘ty
distribution concerned with a discrete random vgna!)le and as sucljl isan Zzﬁamp Sl.:,-l gn a
discrete probability distribution. The binomial distnbution_ desc;'lb;s. dlscir;taeﬁxedrzumbe%
i i . The tossing of a fair co

from what is often called the Bernoulli process s

i h tosses can be represented by the

imes i Ili process and the outcome of such s :

Efgcﬁz;scl?sﬁ?gﬁizn. ’P}he name of Swiss mathematlaan_ Jacob Bernoulli is assoc1atte;1
with this distribution. This distribution applies in situations whert_'a therf: a;;l zesp(zz;t Zn
trials of any experiment for which only one of two mumfllly exclusive outc
denoted as ‘success’ and ‘failure”) can result on each trial.

7.5.1 Bernoulli Process

O i ich has the

Binomial distribution is considered appropriate in a Bernoulli process whic

following characteristics: ! bl

() Dichotomy: This means thateach trial has only two mutuafly excusive possiale
outcomes, e.g,, ‘Success’ or ‘failure’, ‘Yes’or ‘No’, ‘Heads”or by
. Bt < L | } W]‘_‘[
(i) Stability: This means that the probability ofthe outcome ofany FiE 18 KoY

given) and remains fixed over time, i.€., 1emains the sam

; ooty i dent, i.e., to
(#@i7) Independence: This means that the trlal:s are statls'tlc_illljin I'I:ffspi::iependent L
say the happening of an outcome or event in any particular
its happening in any other trial or trials.

7.5.2 Probability Function of Binomial Distribution .
iable, say X, in the binomial distribution is tpenu'mbe;s()f SUECCSSES” m#
;h? ra}[l‘ﬂonlzngﬂit; function of the binomial distribution is written as,
als. The P
i FX=r) 5 "G P4t
r=0,1,2...n

= als.
Vhere, » = Numbers of tri2 | | .
p = Probability of success 1n a single tnal.. A
=(1-p)= ili “fajlure’ in a single trial.
Probability of
g=(1-p) ty

in ‘n’ trials.
» = Number of successes in ‘n

3 istribution

7.53 Parameters of Binomial Distrid ich in fact are its parameters.
: on the values of p andnwl'llc n e e

Binomial distribution depends up bility of X'since nis known by de

w tru fines th ba : . e
p (t))l lmedge ofp ly]il : fet;e lfal;;(:ming of exactly r events in trials can be found ou
T0blem. The probability 0

. snomi tion. AN
g B e e/ ral appearance of the binomial distribution,
i T izati ¢ as follows:
ifsh The valu_e of palso c%etzontext the usual generahzatu')ns ar el
((;WH o thlSO 1), the binomial distribution is skewed to the ie.,
*) Whenp is small (say 0.1); _

. Fioure 7.1.
graph takes the form shown 11 Figur

Probability Distribution

- NOTES

Check Your Progress
1. What is expected
value?

2. What is the mean of
random variable?

3. How is expected
value of a random
variable calculated?
4. What is z-score?

5. Define the term
statistical inference,
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Probability

I

Ol 20 3.4, 5 .6 1 8
No. of Successes

Fig. 7.1 Graph When p<0.1

(if) When p is equal to 0.5, the binomial distribution is symmetrical and the gr aph
takes the form as shown in Figure 7.2,

i

6

Probability

-
No. of Successes

Fig. 7.2 Graph When p=05

-2, l0C bm i * et ; : and the
graph takes the form as shown, in(;?g‘ilrgl’?t;lbuuon is skewed to the left

Probability

No. of

Fi
& 7.3 Graph ey p>0.5 I
i tant and <, ; 4ic?
lines become not Dnly nurnerous nd hn mcreases, then as ‘n’ increases the ve : e,

0 . n Ntk iz » DUt a]
i.e., the binomia] distribution tends o, S0tend to bunch up together to form a bel Sshapﬁ

as shown in Figure 7 4. eCome symmetrica] and the graph takes e

il
MLLL

Successes 8

If, however, ¢ P’ stays cong

Probability

7.5.4 Important Measures of Binomial Distribution

The expected value of random variable [i.e., E(X)] or mean of Fandomf\;z:;&lz
(ie., X) of the binomial distribution is equal to 7.p and the vanancz of S
variable is equal to #. p. g or n. p. (1 - p). Accordingly, the standard deviation o

binomial distribution is equal to yn.p.g. The other important measures relating to
binomial distribution are as,

Sk _ 1-2p
ewness = m
2
1-6p+6
n.pgq

I

Kurtosis

755 When to Use Binomial Distribution

Th .+ o sitpations fulfillin the conditions
e use of binomial distribution is most a;?propnate insi : UCZI:S e rﬁ) Bl
outlined in Section 7.2.4. Two such situations, for example,

i fa fair coin.
() When we have to find the probability of 6 heads in 10 tarows 012

i d by amachine,
o - that 3 out of 10 items produce !
(i) When we have to find the probablltli?et?;ms on an average, will be defective.

which prodnces S péreely e Jom variable X is the number of
Examl)le 7.1: A fai in is thrown 10 times. The rall g 4 find the probabi]jties of
Cad(s) i el Using the binomial pmbab%hty g ‘OD, ial distribution has a
all poss(izg?nnglupwargjs ch SXn::gan take and then yerify that binom _
¢ values whic
mean: X = pp, and variance: > =~ P

¢ either with head upward
Solution: Since the coin s fair and 50, When thrown, can CO%

! ired probability
or tg; _1 . ndg@o head) =7 The required p
tail upward. Hence, p (head) =3

ﬁmcti()n iS,
fX=p =rC pq

r =0, 1,2...10 .

i is function:
oo s constructed using this
The following table of binomial probab it

L X-X K-D &-Dp,

X, pri

X (Vi -
: mb 1 ¥,

of Heads)er Probability PTi — > = e
0 10 1/1024 o 16 160/1024
1 g o q9 10/1024 2 3 9 4051024
2 i g ot Y 1022 5 4 4801024
3 :;Cz pz q-; 120/1024 360/1024 i 1 210/1024
4 10C3 Pl — nonos 840/1024 1 : Lo
3 % 252/1024 1260/1024 : ] 2101024
6 e LA aonozs 1260 102 5 4 4801024
7 e e 12011024 g40/1024 3 9  405/1024
8 s 45/1024 360/1024 i 16 160/1024
9 Gyt a 10/1024 90/1024 5 25 25/1024

10 9 .1 4
10 loc9 g 13 0 v 1/1024 oty Variance = 62 =
o TE al o7 = 512011024

z (X;— Xr)z-Pr;‘ =

X=3 2560/1024=2.5

e

Probability Distribution

~NOTES
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The mean of the binomial distribution is given by n. p. = 10 x }2_ = 5 and the

variance of this distribution is equal to n. p. g. =10 x _:12_ % % =25.

These values are exactly the same as we have found them in the table. Hence
these values stand verified with the calculated values of the two measures as showni?
the table.

4__——-—---'-

7.6 POISSON DISTRIBUTION

___———--’-"

Poisson distribution is also a discrete probability distribution which is associated with the
name of a Frenchman, Simeon Denis Poisson who developed this distribution. Poisso?
distribution is frequently used in context of Operations Research and for this reason has

agreat signjﬁcat.lce for management people. This distribution plays an important rolein
queuing theory, inventory control problems and also in risk models.

Unlike binomial distribution, Poisson distribution cannot be deducted on purely

theoretic'al grounds based on the conditions of the experiment. In fact, it must be bas
on experience, i.¢., on the empirica] regy] . ,

m
A S ek ts of past experiments relating to the Pfobl‘?
m;der Smdj: Poisson dlstalbuuon 1appropriate especially when the probability of haPPeIlﬂ‘g
0 a}rln gnvexth is very sma (st? thatg or (1-p) is almost equal to unity) and # is very large;
such that the average of series (viz., 5, P.)is a finite number. Experience has shown tha

The random variable of interest iy p..: es
Te. _ ; i C
of a given even stinPoisson distribution is the number of occurTe”

t during a given j :
S48 Ven Interval (interyq) may be time, distance, area, etc.)
T

use capital X to represent the dj
. screte i o
specific value that capital X cap take The oy bl and lovie case x10 ion

: i
generally written as, The Probability function of this distributio”

x!
% 0.1,
Where, & = Average numbe, of occurrenc ords:
115 the mean of the dis tfibutfs Per specified interval?, In other ¥
€ = 2.7183 being the basis of nagyy
x al logarithms

2. The value of the binomia]
1 Probabi|; . w
in tables (known ag binom;j Nction f i i
el ' or Varioys avare 1
work. The tables arg o Considerabeli)h‘:ih iy Values of » and p are also 0
p
n we v

ulat
rticular]
h Y wh
Mean for Poisson distrj ad stateq that mean

buti
5= ution (op M‘*n. 3

for the purpose to ease €31

3. For Bi ial distribyti
‘or Binomial distributio ®0 1 is large.

=n‘p-

A
Hence, mean = = 5
n

Poisson Process

The characteristics of Poisson process are as follows:

(i) Concerning a given random variable, the mean relating to a given interval can be
estimated on the basis of past data concerning the variable under study.

(ii) If we divide the given interval into very Very small intervals we will find the
following; . o 4
(2) The probability that exactly one event will happen during the very very sm. :

interval is a very small number and is constant for every other very sma
interval. . G
(b) The probability that two or more events will happen within a very small
i i ion it a zero value. :
interval is so small that we can assigit ‘ 1t
(¢) The event that happens ina given very small mte;'val is independent, when
the very small interval falls during 2 gtver S Bellate Ju ot
(d) The number of events inany small interval is not dependen
events in any other small interval.

i istribution
Parameter and Important Measures of Poisson Distrl

occurrences
Poisson distribution depends upon the value of A, the a;;r:g;rzg:;?ﬁi;i el
PEr Specified interval which is its only Param%t_;’ir' function®. The expected value
OcCurrences can be found out using Poisson probabi ‘:Yaﬁance is also A5, The standard
or the mean of Pojsson random variable is A and its

®Viation of Pojsson distribution iss V-

: ssum
Underlying the Poisson model 15 the :re onpthe Al occurrence; o
e ; L
: urrenc i al ¢, then there < ce counted in a given hour,
inte €s per 1nter§f ber ofamvals at a servl g SR
val kt. For example, if the num ¢ number of arrivals at a

th ;
coy & Poisson gisribution with » =4 B iiputon 1. = 24, . 6 % 4
Unter ihg o d has the
given 6 hour day

tion that if there are on the average

W a . ion ;
hen ¢, Use Poisson Distributio 11oincases whenwe do not know the value of
sorte

jon1i in certain
¢ ize Use of Pojsson distribution is 1650 degree of accuracy. In fact, 1n ce
R’ or When ¢y tbe estimated with any e of ‘w’ For exmple, the goals
h° canno \ . va .
Cases i does not make any sense i asking the t cannot be stated how many goals

g
SCoreq by one team in a football match are 81Ve ofully one may find out how many

i i i watches 627 times it did not flash.
timed o be scored. Similarl: e gsible to state how many

: in a district
Sthe lightn: it isnot po of deaths per day ma ais
Itis he lightning flashed, butitis ibution. The pumber i e
in .. SUch cases we use Poisson dis or of SCOOtETS passing

inti i s per
1® Year due to a disease, the pumb the number of printing mistakes p

- ew months: here Poisson probability
Dagen'g A Certain part of the day fors fare afew other examples W

disﬁ‘igl a‘book containing many pagess
Ulion is generally used-

x

A
i -+ =~ values for
hese tables also give the €™ —

ion Wofk.

e

e .
'® are tables which give the €

Probability Distribution

NOTES

iate the calev!a® isson distribution is A.
X = faclhtate / of Poisson dis )
5 1 0 L2,.. fora given A and thus bt d the va;zzc;ointed out earlier . p.= A in
Tane o o1 digtribution 187 2 unity and 38
There oieoathe Bmomlé;l' dé:ti; is almost © & Lodistribution is also A-
) =n. P 9q. 1n

0f ' Poiss0
8s0n distribution. Hence, variance of
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Check Your Progress

6. Write the
probability function
of binomial
distribution.

7. What are the
parameters of
binomial
distribution?

8. What is Poisson
distribution?

9. Where and when
will you use
Poisson
distribution?
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Example 7.2: Suppose that a manufactured product has 2 defects per unit of product

inspected. Use Poisson distribution and calculate the probabilities of finding a product
without any defect, with 3 defects and with four defects.

Solution: The product has 2 defects per unit of product inspected. Hence, A = 2.
Poisson probability function is as,

x -4
f(X =X)=—;{ il
x!
2=, 1,2,
Using the above probability function, we find the required probabilities as,

P(without any defects, ie., x = 2072

0)=

1.(0.
=—(£113—53-4—)=0.13534

P(with 3 defects, j.¢. x = 3)= Pe? 2x2x 2(0.13534)

3 Ix2x1
0.54
9 _7@ = 0.18045
P(with 4 defectS, I e 4) = 2% 72 2X2%x2x% 2(0.13534)
4 4x3x2x1
Example 7.3: H S —o |
€ /.5 How woulq you us : the
= € a Poj istribif imately
Erqbabll iy of exactly 5 Successes iy 10, sson dlstnbuuoq to find approX_1ma : grial
cmg p = 0.1? trials the probability of success in €2
Solution:

i ?‘zn-p=100><0‘1=10
To find the required it
¥ °d probabi)
approxnnatlor} to Binomig| pmb%ﬂ‘i’:; f‘;‘;llnﬁuse Poisson probability function e
Clion as,

mi
n
f(X, =x)=££:l_=@k‘inﬂ

x! 7
10° g-10
o, P(5) = N_-Si_ﬂ (100000)(0.00005)
__ 5.00000
X4 % =
A K R S
24 = 0.042

Amongall the probabjity s, - S MAL DISTRIBUTION
most important ty distribyy;

and Ons, the p, : . arme
this distribution f; o enlyuseg COntiny g I1;1.r().13511:>11ity distribution is by £ s’

AP ts well i . e :
significance in infegens: i Tﬂk_lny types of o ility distribution, This is $© b cia1
entia] StatlStlcs Si.n 5 problems_ Thl - " . Of Sp 4
€it descriy 8 distribution is o

statistic andaparameter i
(ie., betw, o f:spl;‘ti'sbabilistically the link betwehicb
Wlts and the population fro™
population

e
eenthe say,

' ict 1d be obtained.
. finityand p = ¢ = % , then a perfectly smooth symmetrical curve wou

the sample is drawn). The name of Karl Gauss, 18th cgntury mam§ma$1a$a§$$§$i2
isassociated with this distribution and in honour of his contribution, this dis
often known as the Gaussian distribution.

! L L
The normal distribution can be theoretically derived as tlhe lumtmf foim ﬂ;);‘ 3:;11113; ilfs?,rﬁiz
distributions. For instance, if in the binomial expansion of ( + )"

fthe value of the exponent ‘»’ happgls
metrical curve of normal probability.
(orat times knownas normal curves of

Even ifthe values of p and g are not equal but1
to be very very large, we get a smooth and sym
Such curyes are called normal probability R A
€rror) and such curves represent the normal distributions.

e . 'b
The Probability function in case of normal probability distr1
2
1{x-H
i
fE=—p=

Wher €, L = The mean of the distribution

o%= Variance of the distribution o
The normal distriution s thus defined by two parameters

- Fi 7:5%
Can be represented graphically as shown in Figure

ution’ is given as,

viz., prand o2 This distribution

X

—4—— +lo +2¢ +30
_35 —20‘ ——10'

nting Normal Distribution
rese

Fig. 7.5 Curve Rep

i i ial distribution
- mation of the binomia
N e nol'glal slgox1£nnq R
than 30 an an g

jmplest for™ is,

A g(x%u’)
A t a distance of X from the mean.

£ an ordinate 2 stant in the equation
nate at

Quite often, mathematicians use
1, *hever ‘n’ is equal to or greater
ation of the normal curve in its §

Wher &

i is a con
» ¥= The computed height © the mean. It 1

im

¥, = The height of the maxif2
U and is worked out as Ul! er d
i

}’o=?ﬁ?

the sample

um ordi

Where’ N'= Total number of items 1

i= Class interval
n= 3.1416

= 27 = /62832 = 2.5066

ithms
e= 271828, base of natural logar!

o= Standard deviation

ang

b :
riable expressed as a deviation from th
va

Probability Distribution

NOTES

dent
X = Any given value of the depent

mean.
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|
Probability Distributi s 42 . . .
iy LIERUeon 77,1 Charactenstlcs of Normal Distribution (vi) Th o s ! ’
: . e normal distribution has only one mode since the curve has a single peak. In Probability Distribution
The characteristics of the normal distribution or that of normal curve are as follows: : other words, it is always a unimodal distribution.
| .
(i) Itisa symmetric distribution.® } (vii) The maximum ordinate divides the h of normal cure'e into two equal parts.
NOTES oA G
(i) The mean p defines where the peak of the curve oceurs. In other words, the ordingicas| (viii) In addition to all the above stated characteristics the curve has the following NOTES
at the mean is the highest ordinate. The height of the ordinate at a distance of one properties:
s‘Fan_cllarld :1hev111at_10n from mean is 60.653% of the height of the mean ordinate and . a. p=Xx
similar i : i .
. e B etepollio s st o standed dositins (3) f008 med? b. = o*=Variance
M Boieis relationship with the height of the mean ordinate- c. p=3c¢"
iif) The curve is asymptotic to the base line which i i roach i i
WO e e atizoria s means that it continues to apP d. Moment Coefficient of Kurtosis =3
iv) The vari . . . gt
(( )) Ar ariance (o) defines the spread of the curve. 7.7.2 Family of Normal Distributions
v) Areaenclosed between mean ordi : ' istributi
deviation from the mean is alordmate and an ordinate at a distance of one standad e can have several normal probability distributions buteachp articular normal d{sn?but[on
Tt ways 34.134 per cent of the total area of th curve ISbeing defined by i 7., the mean () and the standard deviation (s).
means that the area enclosed between tw z . - tance here ; ned by its two parameters Vi, ily of 1 curves. We can
from the mean on either side would a] vodhsnesipne (D) dnls red: exlfi? is, thus, not a single normal curve but rather a family OtROTRE .
This can be shown as follows: ways be 68.268 per cent of the 102 2 1tsome of these as follows: 4
(1) Normal curves with identical means but different standard deviations:
Curve having small standard
S4'134% +34.134%) = 68.268% ———— deviation say (0 D
rea of the total ____ Curyehaving (arge stan
; o4 o=
curve between p + 1(c) i (éc;\;l‘?etlggvﬁ}é very large standard
— Jeviation say (0= 10)
= = Il in a norinal
361 276 g , — distribution .
W +o 25 135 XorX l ith di :
Xie o i ... 1t each with different means:
Similarly, the other area relationghj (if) Norma curves with identical standard deviationt bt
Between psare as follows:
Area Covered to Total Ared of the
pl SD. Normal Curve’ - =50
=3 :
pE2 S.D. 68.27% n=15 Cme% Tk moaity M Cuve “rgi ;he
Wes SD 95.45% Curve 4 with otween means © T
. Lol lrg smallest mean betw ¢ and CUrve
B£196  SD. 99.73% . curip e . fferent means:
hE2578 s ) ) No . ¢ standard deviations and difteren :
.D. 95% I'mal curves each with difterent 8 i
p+0.6745 SD. 999%,
8 A ' 50% o=1 g s
: S?'H}metric distribution ;
statistical properties: 1S one which has no gk 1]0""iﬂg /// pn= '30
(@) Mean=Mode=Medj ewness. As such it has the A= 13 Curve with very
ode=Median (j.e., y=z- u=>5 P ith larger farge meai
(®) (Upper Quantile — Median’) (;15 (lflt:éve wihh sm{;:ler ‘;;';,?;,'; and 178ET and very '{‘,'{fﬁon
g 2 = . an ST YA »vial . (4
(&) Meen DeVlatlon=0.7979(Standae?1mn ~ Lower Quantile) ie,Q3-M~ wdV Standard deviation standard 4" g
) Q3 -Ql L Dewation) (i.e., Q3 7 al Curve
) =5=L=06745 (Standard peyiy 13 g o Under the Norm
9. ;fhls also means that in a normal ¢ ) : Weh OW to Measure the Are [vingce - intervals of standard
imits are as follows: istribution, ¢ oV’ Qve onships 11V0 rmal curve. But
Llrimts Picbability of gl » 1€ probability of area lying betwee™ v \d:"iatim?;ated above some of the a7¢2 refatt {hatare true 1l case Pﬁengtatistical iils
ﬁ i ; g.g_ 0.6827 €2 lying within the Stoed Qohat ShOul(gluS and minus) from the mesr’ Wwe can make US; t?les we can find the area
2 0.9545 1mits hg be done in all other c85*° Using these .
KE38D. ot ose. UsIDE ormally distributed
Self-Instructional R (This means that 5] Egrpm asd by mathematicians forls pw;[:fw as equal tol) L the"}l'hese distances are
344  Material lie within H£38D III'OSF. all cageg 4, lhty’ taking the entire area ofﬂle(‘: i i from the mean- i;lf-lra.strncrional
) Variable will Jje within certai® jstan atertal 345
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ility Distribution

Probability Distribution
defined in terms of standard deviations. While using the tables showing the area under

the normal curve we talk in terms of standard variate (symbolically Z ) which really

means standard deviations without units of measurement and this ‘Z’ is worked outas, |
T |

X
NOTES Z= G“

Where, Z = The standard variate (or number of standard deviations from X to the meal
of the distribution)

NOTES

X = Value of the random variable under consideration |
p = Mean of the distribution of the random variable
o = Standard deviation ofthe distribution

The table showing the area under the normal curve (often termed as the standard normal
probability distribution table) is organized in terms of standard variate (or Z) values: It
gives the values for only half the area under the normal cyrve beginning with Z= 0at
the mean. Since the normal distribution is perfectly Sy'[nmetl-icjal the values true for one
half of the curve are also true for the other half, We now illustrate the use of such @ table
for working out certain problems (refer the following examples)

Example 7.4: Abanker claims that the life of a reeular sav: with DiS
bankcaverages 18 months witha siandard deviation £t s sy F s ollowinE

For the purpose we calculate,
72218093
6.45
7=0.93,1s 0.3238 which refers to the area

The value from the concering table, when fthe entire left hand portion of the

0
Ofthe curve between p= 18 andX: 24. The arca

veis0.5as usual. — 0.8238 which is the required
Hence, the area of the shaded portion is (0.5)+ (0i323§)befqt;re 5 years, .01, before
Probability that the account will have been € 08

; 24 monthg :ne the income of the
Owlﬂg nths. i e oncerning the mc
(2) Whatis the probability that there wjj] lbe 0f6.4.15 months, Answer th.e foll out W dhiigle 5 s ding a certain pormal distribution c o oviation =100 rupees.
opened with the said bank by a depogit f? tinoney in 22 months in a savings acco ; it £u§17 -5t Regar urllgth - mean= 500 TUpees an;l S;;a:n I belong to income Sroup,
will have been closed before twq 5 : :I‘Ssr. (b) What is the probability that the 3¢ Find prit‘:; ?1rilt3y gg; » 1 individual selectedat rando
Solution: ' @) 5502550 (b) 420570
(a) For finding the requir, 1 jon© Solution, ion of
the normal curveis s;(:cll);glﬁzllh}t]y We are interested in the area of the porﬂo ron: bability W€ are interested in the area of the portion o
Shown below: (8) For finding the required pro 9% below:
the norma% curve as shaded and shoWD
G= 100
6=6.45
‘. h_—-—__-_-_"‘—-—--.
Let us calculate Z gy A= L
asunder: ~0 x=550 -
650, let us do the following
Z= 3(_:£=22~18 F betweenXssso— :
S 645 062 o finding the area of the CWV®
The value from the tap)e o 8 L Calculations. S
0.2 i e =0. ' ~500 2~ 0.
Hei:zj tgfi::i?:}i th;t the areq of thefsivg[i)der the normal curve for 2 02324' Z= 20{6’6" 100 . Sas pertabile
? €8s adedpomo e'fWeenu= 18 and X= 2215 ) ’ ﬂ]6 XsSSOlnt e curv
area of the entire right hang poreiyy ¢ 10 UV s (0.5)— (0.2324) — 0.2676 9 e C W L
probability that there wi]] still be mél of the curye always happens to be 0 Thus iS(::rreSponding to which the area °°
n
(b) For finding the required probal:] 122 months ing savings account 18 f Halto0.1915 and, 650500 150 _y.5
i : =700
the normal curve as shadeg g o "'© &7 interested in the area of the PO Z==100. Dk’ : s per table
tdshown in the following figure: 500 and X= 650 in the curve, asp i
' C() . . etweeﬂ p=
is enesp()ndlng to which, the area b Self-Instructional
Qual tq 0.4332. Material 347
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Ifthe probability of the area falling within p=200 and X= 68 is 0.3790 as stated above, Erobability Disteibution
roba

} . " : i i .
'r"liry Distribution Hence, the area of the curve that lies between X'= 550 and X = 650 is, , the corresponding value of Zas per the table!® showing the ?fiz ciihvee )IlOl‘mal curve1s J]
ff (0.4332)—-(0.1915)=0.2417 , = 1.17 (minus sign indicates that we are 1n the left portion o I
This is the required probability that an individual selected at random will belong to the Now to find &, we can write, NOTES ‘
NOTES income group of X 550 to X 650. -
(b) Forfinding the required probability we are interested in the area of the portion of the L= S
normal curve as shaded and shown below: 68 — 200 ‘!
_ or, ~1.17= +
To find the area of the shaded portion we make the following calculations: o !
, : ; o -1.176 = -132 %
f o, o= 112.8 lbs. approx. .
/ ) ximately.
b e Thus, the required standard deviation is 112.8 105. 8PP ¢ below 45 and 8 per cent |
Example 7.7: In a normal distribution, 31 per centftems 3
Are above 64. Find the X and o of this dlsmt?utlf')ﬂ' rmal curve as shown below: i
| u=100 \ SOlutiOm We can depict the grvey e o nob bility of the arca |
Probabiit ‘
_ lity of the arca between ji and X 61 {
g Tomeenpnd 1. 09 (ba8) =042
T is (0.5) - (0.31) =0
570-500 2 _
=" = bility of the
Z 100 0.70 . P;%E;:{ih,:a({,cn as
Corresponding to which the area between | = . er tabl® Pr—‘?,bflbxh‘?i& ::sm
is equal t0 0,258, D= 3500 and X= 570 in the curve as P : ;i:cn 0.31 L—"%4
X=4550 B gt d out)
and, 7= 420 -500 E ¥ (to be foun i B e
IO T e dX=45is0.198sS el
; : If th ; s g within | an th normal curve 18 —U.JU.
Corresponding to which the areq be ! r table © Probability of the area falling ing the area ofthet
is equal t0 0.2881 R =500 and =420 n the curve as P° c?: ®SPonding valye of Z from the tablii??: ‘e can express this as under
Hence, the required area i the % Weare in the left portion ofthe L)
curve between x =47 — 570 _
© 2580, and X=570is, 050 351 64is 0.42 as stated above,
)+ (02881)=0.5461 Si o ing within 005" 0 e we are in the right
isi : 2 . i ; , we are 1
*hisis the required probabiity that an iy g | incom® the . 13 fthe probability ofthearea B v 4y 41, Sinee
group of T 420 to T 570, Halselected at random will belong t0 * COrTespon ding value of Z from the &% =
Portigy, g this as undss 2
Example 7.6: A certain comp A Ofthe curve we can expres (

any Manufactyreg 121

de frO
imported hemp. The mang all-purpose rope M

: 1)< 54=p ¥ . wehave,
X er n _ or A,
capacity of the rope is 20 1ng ASOfth.e company noys that the average load-bea” I G obtain the yalue of @)
deviation ofload-beagie <. B ANOMM distibution applies, find the Si27 " 0lve Equaions (1) and (2) 300 © 4)
eviation of load-b 8 Capacity for the ;1" rope ifit is o hasa0_121 L05 o —45-11
probability ofbreaking with 63 b 2 given that the rope 1 e e
S.or less pul] B C =64-p .0 (3) W have,
Solution: Given informatigp canbe den: y SUbtractiy, Equation (4) from Equatio?
Cdepicted in 5 normal curve as shown below: ~19 ig qua 1«;911
Probability of t,: Ry =&
t;
N8 o=10p Equation (3) we b2V
Brobabiliy =7 (to be found out) ~5 = 45- U
ility of thi R
G § M= 50 - ormal distribution
as given is 0.12]( ellce > Concel‘ﬂmg ;
»X (or 1W=50and =10 for the 7 value (See Appeﬂdlx)- i}gbﬂhalsrlructional
10‘ ; finding va ateria 349
X= = © table in the reverse order 0
Self-Instructional =68 H=200 18 to be read in

348  Material z2=0
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j“ Probability Distribution
7.8 PROBLEMS RE —
CTIC | 3 plain Poisson distribution as an approximation of the Binomial distributi o
APPLICATIONS ICAL with the help of Example 7.8 and Example 7.9. e e
NOTES 7.8.1 Fitting a Bi ' . = Example 7.8: The following information is given:
- inomial Distribution (a) There are 20 vl : o) I
Whente\binertialidistebg re 20 machines in a certain factory, i.e.,n=20. NOTES
ution i - : ) 1
procedure is adopted: ion is to be fitted to the given data, then the following w}ib) .The probability of machine going out of order during any day is 0.02.
(i) Determine the values of ‘p’ and ‘g’ . o lat is the probability that exactly 3 machines will be out of order on the same day?
g =A1'=p). q’ keeping in view thatX = n. p- and St:tCUIate the required probability using both Binomial and Poissons Distributions and
(if) Find the probabilities . ite whether Poisson distributionisa good approximation of the Binomial distribution in
the binomi or all possibl this ca
e binomial pl’obabiﬁty ﬁ'mCtiOn, V?ZVﬂlueS of the giVen random variable applyiﬂg Soluﬁ::e'
» n:
X.=p) = it ] ‘
T ‘ e "C.pqT Probablht}’a as per Poisson pmbabﬂity function (using n.p 10 place of 1)
(iif) Work out the expected r=0,1,2,.n (since n 2 20 and p £0.05)
multiplying N (the tota? ﬁfiquencieg for all values of random variablé by
(iv) The expected frequencies quency) with the corresponding probability- P =)= (np) e
to the given data 0 Celculated, constitute the fitted binomial distributi” SR
0 !
7.8.2 Fitting a Pojs Where, x refers to the number of machines becoming out of order on the same day. |
SOH Dist 2 r
When a Pois LT g rlb“thn 3 —(20x0.02)
procedure 15 :ggp?;‘sifnbutmn is to be fitted to the gi ing P(X,=3) = (20x002) "
(@) Dottt d, ; o the given data, then the follo! 3
‘ € the value of ),
‘ , th
/ ol fhm%the probabilities for 4] ¢ mean of the distribution = M@l = &@Eg@ ‘
e Poisson 24 possib ' : i 1
probability function, vi;e values of the given random variable usiv? IREA
F Prob = 0.00715
f(x 25 o ability, as per Binomial probabilify function,
;= L e
' x)h__‘x_“ Wi f()(, =p) ="C, prqn-r
& ere, A X nd hence q = 098
(i) Work out the expected froquencic. . 2 n =20, r=3p =00 |
quencies ag, fX, =3) = 20C3(0.02)3 (0.98) |
(v) The result n -
above 18 i The di = chines becoming out of order on the
7.8.3 Poi . the fitted po; o . 1§ Ifference between th robability of 3 A% i e b
]P;nss?n Distributjop Poisson distribution of the &1 % f)a‘(;le day caloulated j:iﬁg p?'fbability ction and bmmaltf: 01:]i:tﬂi11t1y ti;l)l:Ctll\?:n: Scj;:;
istributiop a$ an Approximatj ) " ‘0'0065' The difference being very very sma'll, i cartl'I;inr.?mial diStfiblinﬂ-
Under certain circumsta waition, of Bmomlﬂl 1850n distribution appears t bea good appro;mnat!Oﬂ o :
approximation of bing nces, Pojssop gic j Xamp) PP i distribution {0 find approx'lmatcly the
which permit this, are mial distribugigy, stribution can be ; o soﬂabl probabﬂf’ 7.9: How would you VS 3100 rials the probability of success in each trial
zero (n = number of t: lien 7 is large and can be ygeq acc:): (Eszller?[ias . rumstﬂﬂca; being b ltg of exactly 5 successes ™
meanin als, p= 8pproaching infin; rdingly. The CIr¢ i =417
ps 0.05,Tn o o his D obability of ‘slﬂzfemi?mty and p is small aPP“’aG;ﬂW *lution;
ey t[‘ises‘where these twse’ When 5 > 7 55°). Statisticians usually " pe? the ) |
so th stribution (viz V0 condit; and by small ‘p’ they mea’ 3 o Question we have been g1V
at the probability fiy, "P-) in plag ons are fulfilleq 4 an of
ction ofpoise of the mean of P , We can use me (% M 2 n =100 and p = 0.1
0N dicte 0  tributi :
on dlstnbUtionb isson distribufion T A= np = 100 X 0.1 10 ity function as an
p ecomes as stated; O fing o e can US® Poisson probability
Self-Instructional (Xi & x) = w app TOXHnat:o:legu];ﬁi?)nr;fiﬁbigg;gilW ﬁ'mCtiom o i below.
X P Self-Instructional
Material 351
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f(Xi:x): X‘. xl
10571 (100000)(0.00005)  5.00000
o, P(5Y =5 T s5xax3x2xl  S5x4x3x2xl
=513 — 0.042

79 BETA DISTRIBUTION

In probability theory and statistics, the Beta distribution is a family of continuous
probability distributions defined on the interval [0, 1] parameterized by two positive shap®

parameters, denoted by o and f that appear as exponents of the random variable and
control the shape of the distribution.

The beta distribution has been applied to model the behaviour of random variablés

limited to intervals of finite length in a wide variety of disciplines. For example, it has
been used as a statistical description of allele f .

o ) - e
il ; equencies in population genetics i

allocangn in project management or control systems, sunshine data, variability of sthJll

properties, proportions of the minerals in rocks in i i ity in the
% S enelty

probability of HIV transmission, Hatigraphysndbelcion

di -bIn-Ba?SEn glf i i ‘ft}e Beta distribution is the conjugate prior Pf"babﬂity

istribution for the Bernoulli, Binomial ang Geometric distributions. For exampl®:
Beta distribution can be used . : stributions. ;

the Beta prime distribution_

The probability densit
parameters a, 3> 0,isapo

Y functi et s ap®
'on of the Beta djgtri bution, for0<x<1, and sh _Pe
follows:

wer functi .
TTunction of the Variable x and of its reflection (1-¥)
J(x;0,B) =constant , yo-1 (e
X7 (1= P
U 1- ) gy

=—M.)_ -1
Tr@)™ -x

=i
B(a,p) "

Where, I'(z) is the Gg SRt

i

normalization constant te on, Tt t
: ; ensure - The Betg : ears ¢
equations x 18 a realizatjon that the total pr b fllnctlon, B, app poV

: thed
process X, 4 Obseryeq Value that acttlyallrll;eogcrc?lt;:;g - I:f at %

(1- x)P

Ob(3

Where, B (x; o, B) is the incomplete beta function andT, (o, B) is the regularized

incomplete beta function. _ : N biihe
f The mode of a beta distributed random variable X witha, B> 11s gl y
| following expression:
a-—1
a+p-2

is i ti-mode - the
When both parameters are less than one (0, p < 1), this is the an

lowest point of the probability density Curve:

= I (o, B) f
sy s i al number * =41 % PJ 10r
The median of the beta distribufion1s the unique 1€ 2

: = 1/2, there are no general
Which the regularized incomplete bet2 ﬁnczz& %igot;’iggtiorlllfor arbitrary values of o
closed form expression for the median of the e ofthe parametersa an b follows

and . Closed form expressions for particular va

® For symmetric cases &= P rned:anl= 1/2.. A
® For .= ] and B> 0, median= 1-2F (this case is
. ::-czoz [(()) ,alr]lji [:iblllt,i:‘)a.dian = 2’£ (this case is the pOWer function [0, 1]
iisu‘ibution). pb
° - — e s e i -
g 6t 1 i)
! 'f‘;;z;lixi: :r: ’ttrlr;elihr:ilt; w.ith one parameter finite (non zero) and the other
approaching these limits:

724318676105..., the real solution to the

i 1 = 1
: lim median = 4,
gm (I)nedlan = g>®
=y
a—-—>0

Jim median = 0.
: —*w 3 - -
; e median of the Beta distribution,

of th - h
inellg Ofe:h ies‘g\lrl;z py the following formula:
]1to on¢,
1

_j,_—%’fora’ﬁzl'

a+tP-3

0 A reasonable approx
" 00th ¢ and B greater or €qua

median #

. SR
divided by the median) in thi

i or (the > 7 it is less than 1%. The
When o, > 1, the relative & - both > 2 and B 2

= is similarly
: 0 and the mode 1s s1m1
Ximation is less than 470 &7 ence betweer! the meafl

APpro

4 .
beta distribution random variable X with two
ofabe

. arameters:
The expected value (m?an)o%gnly the ratio p/a. ofthese P
eters o and B is a functio?

w=EX] = J:xf(x;a,ﬁ)dx

0=
B(0.,P)

=X
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Letting o= B in the above expression one obtains 1 = 1/2, showing that for &= B
the mean is at the center of the distribution: it is symmetric. Also, the following limits ¢a™
be obtained from the above expression: ’

.B ‘>b°°a the mean is located at the right eﬂ?e’
e s ¥ y istribution becomes a one-point degener?
(111:2:121;?;) Elzgfb?lgylr:\fe?vlvtﬁeﬁmiﬁm spike at the right end, x = lpwith prob abilly

r ; \ " i
e aiodnt te i =ele se. There is 100% probability (absolute certain®y

x = 1. For these limit ratios, the Betg ¢

ca :
beta(a,, B) such that (o, f < l)se‘f?tll'l“tlﬁlfonn or ‘U.
> e

The logal‘lthm of ' mOdeS 10Cated att . t['ibutlo
Xis the arithmeti the Geometrlc Mean G . he ends of the dis plo
VROt o ecluivalé 0 ofa distribution with random VA"

ntly its €Xpected value:

shaped’ Bimodal distributio?®, A

Self-Instructional
Material

_ 1 ":c?Jc“'l(l—Jc)[H i
B(a,p) oo

__ 1 0 feg-xM'a
B(a.,pB) oo

1 8B(o,B)
" B(o,p) 0o

_0Oln B(a.,pB)
a oo

oinl(e) oml@+P
= A il
—y(o)-¥(@+P)

Where, v is the Digamma Function.

: d
Therefore, the geometric mean ofaBeta :
and B is the exponential of the Digamm?a functions of 0. an:

1 eEU“X 1 =
X' = (. it follows that
_ arameters .=, it 0
Wh. ok . Wlth cqual Shape P ] ; than 1/2:
SkEWneSSlzl—.eon;Z ];):tz dl_s.;iil/lzlalzo:nMGdlan = 1/25 the geomft‘e mc;:glalr;:;‘js;iy weights
0< G <12 The reasoor? for this is that the logarithmiC i tive infinity as X
Fie Values of X close to zero, as In (X) strong

ly tends towards nega
“Phroaches zero, while In (X) flattens towards ze10 X-1l
Along alin o= B, the following ™
lim Gy = 0
1

lim ==
&:ﬂaw G5

ter finite (non zero) and the other

istribution with shape parameters o
B as follows:

e\y(u)—‘i'(“‘*ﬂ')

apply:

: ame
Following are the limits With ©%° P

PProach:
lin‘l0 Gy = gIP-)oo Gy=
—
ﬂ' limegcir=0
o d the geometric
i een the mean an .
erenc; b];::ides the fact that the difference

ch infinity and that the difference

Meay, The accompanying plot shows ﬂl‘:n e o

Bety,. . Shape parameters o and p ¢ roa _

a4 t

bez‘:een them approaches zero a5 * 2 angﬁing zero, one can Observ; ﬁcf gquelllle
™es large for values of o 804 PPt to the shape parameters .

asl,] .
i eHneE : 1 values of . in
itk ~ Sy atthogenielic At .t cf the mean 18 larger for small va

T .
Telag (? fIce between the geometric meal qnitudes of pand .
0t0 § than when exchanging *'°

I8 the The inverse of the Harmonic Mean

: its € .
& Uthmetic mean of 1/, OF; equlvaleﬂﬂy’ 1 arameters & and p1s:
2 (H) of a beta distribution with shape?

Probability Distribution
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Probability Distribution 1 | Following are the limits with one parameter finite (non zero) and the other Probability Distribution
H, = ——E 7 approaching these limits:
liE:l | BEO Hyx= undefined
| A . 0 NOTE
NOHES 3 A (nop) E% Hyx) = gﬂw Hy =0 3
E = dx lim lim H = 1
X oy H(]—J’) = B (1-X)
4 1 G that both shape parameters
R " Although both H and H,_,, are asymrnetnc,mthe case tha |
E x_‘(}L)B‘ i are equal g =%h the h ar;‘n ey (11112 ans are equal: Hy=H_y This equality follows from
xB(a,p) the following sy : both harmonic means:
s e following symmetry displayed between bo
a-1 . i >1.
- if o >1land B> 0 H, =B@p)=H o BB, if o,p
o+p-1
T e S RC S

, The Harmonic Mean (H,) of a beta distribution with ¢. < 1 is undefined, becays®
its defining expression is not bounded in [0, 1] for shape parameter a less than unity-

7.10 GAMMA DISTRIBUTION

a distribution is defined as a two parameter
cases of the gamma distribution
distribution. The following are
only used:

In probabilj . s, the gamm

) ty theory and statistics, th€ &4 ;
.farmly of continuous probability distributions. Th.e specmeld
"Clude common exponential distribution and C‘hl—_sgiutai;n e
three significant parametrizations of gamma distribu

' ameter 6.
- Wl j and a scale parameter
asiporaeath J and an inverse scale parameter =1 /6, called a

Letting .= in the above expression one can obtain the following:

a-1
200—-1"

Showing that for ¢ = B the harmonic
foro =B — .

H, =

1/2:
mean ranges from 0, for a.= = 1,10

Following are g RS :
g are the limits with gpe parameter finite (non zero) and the ©

approaching these limits:

lim

a0 Hy = undefined

lim 7
23

a—l HX = i;T)co HX =0

lim H. - lim

B_)O 3 O—0 HX =1

The Harmonic mean plays oW

a b .
f.%ecrb?111:1;11-11?l maximum likelihood estimation fof B o
¢mean. Actually, when performing " b?»‘s‘3d
ides the harmonic mean 7x  ;i¢

2. With a shape parameter =

rate parameter.
. am
3. With a shape parameter J and a mean par

; s,
In each of the above mentioned three form

€rs. ‘ )
ed in econometrics and some

. -« basically us 5
e paramsterization vl fe 3ilsstribution ;s normally used to model waiting
a

Spec; ; ot
ﬁpemﬁc applied fields where tbe gamin " pasically used in Bayesian statistics, where

eter p =K.
both parameters are positive real

Num

Mes. The parameterization with & nd 3 15 035! ate prior distribution for several types
the 8amma distribution is typically used as a conjug the A of an exponential distribution
L hasusiné an integer, then

WNverge scaling orrate parameters: suc , distribution itself. Ifk s

E:1 I_JOit_sson distribution or the B Oft?;_gm as the sum of kindependent exponentially
ety TeplcSetTy s Eilihe e whichhas a mean of 6.

digty
Stibuteq random variables, each0

» al80 anoth :
b . erha
mean based onthe hnear tTaHSfonnation (;I:l()mc mean appears naturany: the H 1/")' : ibution
- o image of X, denowdby ( Some Significant Properties of Gamimt D buti
istribution:
H < 1 cties of gamma distribu
ey Sentey. ., B he follow:  nificant prope ; is denoted
E[__L m if B>1,&a > 0. 1 OWing are some SIB™ , distributed with shape kand scale 0is denote
(1-Xx) * Arandom variable X that18 & 0

The Harmonic me 0 ' 1 @) = Gammath :
i - an (H ‘ s Xz Tk trization is denoted
its defining expression is oy é;"’) e Beta distribution with B < 1 is undefined: be? 2 .o using the shape i i

Using o= i undedin [0, 17 for g AT ity - The probability density ¢

1n the aboye eXPression o, shape parameter {3 less th? by: )
€ Can obtain the following: (1,0 gandk 6> 0.
H, _B-1 B
Th h (I-xy = 2[3 f(x; kJ 6) £l Bkr(k)
1s shows that for ¢ = =1 (0 . [uated at k.
1/2, for o, = =B the harmp; il He : o function &2
B T, Onic mean ranges from O, for o = ﬁ & r(k) is the gamm i;ift—;r.:g]rucu'onal s
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[ & — == — e e — _-——— e _— _————T
.’i’
fty Distribution 3. If kis a positive integer, i.e., the distribution i istributi it i |
defined as follows: & ution is an Erlang distribution thent e Statistical inference means drawing conclusions based on data that is subjected Probability Distribution f
to random variation; for example, sampling variation or observational errors. |
F(x; k 0)=1- il ( X )j P R R E; ' e Binomial distribution (or the Binomial probability distribution) is a widely used
NOTES Y Lil\ 8 —¢ ; ile probability distribution concerned with a discrete random variable and as such is Kok I
o : it distributi i
4. The gamma distribution can be parameterized in terms of a shape parameter an example of a discrete probablhtydls.tnbutlon. . |
a.= kand an mverse scale parameter B = 1/9, called a rate parameter. A random e Poisson distribution is frequently used in context of Operations Research and for !
variable X that is gamma distributed with shape o and rate B is denoted by: this reason has a great significance for management people. w
X~T(a, B) = Gamma(o, B) o Unlike binomial distribution, Poisson distribution cannot be deducted on purely I
. ), ’ : iti fthe experiment. ‘
5. The corresponding probability density function ; s theoretical grounds based on the conditions 0 |
zatlo S A .
is denoted by: e i hedlpergle PRNTELE ° Amongall the probability distributions, the normal prObabl,l{ty dis butions by fat |
the most important and frequently used continuous probability distribution. This is |
g(x; o, B) = M 50 because this distribution fits well in many types of problems. |
I'(o) forx>0and o, p>0 ® Under certain circumstances, Poisson djsmmﬁ(gl e b; CODSlgefiiigggls)‘:“;fﬁ: |
6. The function fbelow i " . a N .01 distribution and can be used @ : !
18 a probability density function for any k>0. Pproximation of binomial di < is large approaching infinity and p
clrcumstances which permit his, are s . = Probability of ‘success’) ‘
fx) = adll g 1S small approaching zero (7= Number of trials,p= . |
7. Arandom variable X ;i 712 |
th th * K E
gamma distribution with Sh;;smbablhty density function is said to have \\___Y TERMS_________———-'“
Parameter lue that would occur
8. The gamm st average value
oAl density functiq * Expected value of random Yarlable. The st |
® [f0<k<I then n satisfies the following properties if we have to average an infinite number of outco :
fis decreasjng with g .o that ocours when a normal random
° Ifk=1 thenfis decreas; Sy asxlo ® Standard distribution: The distribution dz iation of one
g with 0)=1 vari £ zero and a standard devl
° If&>1 then fincre . : | tiable has a mean of 2er _ .10 the generation of the
(=1, c0). sesonthe interval (0,%-1) and decreases on the inter?? ® Statistical model: A set of assumptions concerming |
: oObserved d d similar data ; :
® The spe - : c¢ddataands - d is used to describe |
> e ¢ase k=1 gives the . Whe? ® Binomial dicieihmfion: Also calledas Bernoulli process 4l J
21, thenthe distribution jg yyn: Standard exponential distribution: - 10mial distribution:
: Sunimodal with mode /1. Screte random variable e the empirical results of past experiments g
7.11 SUWARY / ® Poisson distribution: Used t© deSCﬂ;—"ﬂ‘;ommt role in queuing theory, inventory :
5 re]ating to the problem and plays an
problem
o © The expected valye (orm __‘,/5 €ontro] problems and risk models
€an s ; (4 9
‘;lilzt X can take, ) of Xis the Weighted average of the possibl® valv 713 ANSWERS 10 ‘CHE CK YOUR PROGRESS
° The variance of 5 1, ER
i Ildom . e s
0ssibl Variab] : and the probability
o evalues of the varigy, > © 115 s something about the spread ofisl L. ; hof the possible Outeom® ;
- Xis Wwritten ag Var( e. For a dlscrete rando g : b‘ll ¥ thpvaria c The expected value is the sum ofeac
Check Y ; mv € ; : .
2 :h our Pri]lgress o Ig/letailln ofrandom Variable js g, ariable X, ; ;:the outcome occurTing. _mofthe values of the random variable weighted
. Why a norma o e . . . i ; ;
distribution is Ti © Probability tha e randcs)lnli,ofﬂle values of the random variable weigh" byeta}lln iy Vaﬂabt}f lizfiom variable will take o1 L7 valU? h value of
° . ili € i v O
E:;t;rred 0\:;:1- the o ttielglean or the expecteq valy, ariable wil] take % ithevale. B € probability that variable s calculated by weighting eac
e ©510 study the probery . r22d0m varigh eno” * The expected value ofarandom ¥4 ming over all values.
11. Under what may as well be interesteq M as to hoy, i al lt? may not be adequat® g arandom variable by its probablhty an { distribution is called a standard
OmEUnspmCces, variable are disperseq ¥ OWing s ™ variable actually behaVve® do” 4. T iableofa standard norma
Poisson distribution €d aboyt the mEthlng about how the values © I € normal random variablé
is considered as an ® T_he _Standard distribution ; Mean, SCore or g z-score. . o based on data that is subjected
approximation of distribution that 10n js 5 Specia] . {he SR e win conclusions® as Jtional errors
binomial standar S occurs whe a Case of the no o son. 1t15 49 tatistica] inference means dra lin yariation Or observ :
disteibatingg ndard deviatiop of N0rmal rapg, rmal distributl A tor . e, sampling
istribution? One, Ndom Variable has a mean of zer0 andom variation; for examp:®
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ility Distribution 6. The probability function of the binomial distribution is written as,
7 f(X: r) = ncrprqn-r
c a0 (W A
NOTES Where, n = Numbers of trials

p = Probability of success in a single trial.
g = (1 — p) = Probability of ‘failure’ in a single trial.
» = Number of successes in ‘»’ trials.

7. The parameters of binomial distribution are p and »n, where p specifies the
probability of success in a single trial and n specifies the number of trials.

8. Poisson distribution is a discrete probability distribution that is frequently used 17
the context of Operations Research. Unlike binomial distribution, POiS_Son
distribution cannot be deduced on purely theoretical grounds based on the Conditl.OIls
of the experiment. In fact, it must be based on experience, i.e., on the empiricd
results of past experiments relating to the problem under s,tud}:.

9. Poisson distribution is used when the probability of happening of an event is Ve
small and 7 is very large such that the average of series is a finite pnumber- his

PR _ s
filsml?utlon' is good.for calculating the probabilities associated with X occ;urrencﬁ
in a given time period or specified area.

10. Normal distribution is the most important and frequently used continuous probabil'ily

%th::?;??s amongall the probability distributions. This is so because this di Smbuu??l
. ; Inmany types of problems. This distribution is of special Signiﬁcance
inferential statistics since it describe ehelin

$ probabilistical inkb tweenaswtisﬂc
and a parameter. istically the link be

11. When n is large approachin

gsoP
distribution is considered as

g mﬁ“it)f_‘dnd p is small approaching zer0; ke,
anapproximation of binomial distribution-

714 QUESTIONS AND EXERCISES
AND EXERCE

/

Short-Answer Questions

Differenti e
ate between conditiona] and iterated expectation
S.

Differenti :
tiate between a discree and a continy '
How does a random variapje function? .

What are the characteristi(:s of Be

1
2:
3.
4.
St
6.
7
8. Whatis Poisson distribution Wh moulli process?
9. When is the Poisson distribution

10. Define the term normal dj
distribution?

used?

11,

Write the fi y
: ormula for Mmeasuring the areg
Self-Instructional 12, nder the curve.

Under what cire
umst
360  Material Stanges the norma} prObability distributi 5) used?
S 1tinn ~on DE

_

Long-Answer Questions

1. Explain the concept of expectation of a random variable with the help of an
example. _ i

2 A and B roll a die. Whoever gets a 6 first, wins 3 550. Find their individual
expectations if 4 makes a start. What will be the answer if B makes a start?

3. What is statistical inference? Discuss in detail.
4. Describe binomial distribution and its measures.

. The followings a probability distribution:
f
X, pr (X))

— B RN L e
1/8

0

) 28

5 3/8
28

3

————

ts variance, and standard deviation.

Calculate the cxpected value of X, i f S
B A aniins d3 times Let Xbe the number ofrt}ns@tll_e Se_quentf; Omf‘?al ]f;
- ﬁr;? :(I,IS;S toss:ndtol; ﬂﬁrdtoss. Find the probability distribution of X.
, S€C 3
of X are most probable? St its main characteristics.
7 (a) Bl TI;'I 1eanino ofBemOIﬂli pfOCGSS pOll.I'lUIl.gOUtltSh o binomial 3
(b) pr iy m;les narrating some situations Wher 3
ive a few exa 2
distribution canbe used. ;
1afl

. J il 44
5 Dot il o apfl') trl(l) pinomial Poisson and normal probability
es of the ;

9. State the distinctive featurb' ca distribution tend to become a normal and a
distributions, When does 2 1no .

Poisson distribution? EXplait: . obability distributions are used:
‘ in the circ
(2) Binomial distribution
(b) Poisson distribution ‘
(¢) Normal distribution b 0.5 per centare defective, are packed in

onof pinomial distribution. Explain.

¥ i rtons are free from
1. Certain articles were Producgi 0 cles. What proporti.onzo; c;l O(r):fi B
Za;tons’ = Conr‘;a“it[lllln%propoﬂiml of cartons contain
efective articles? Wha
(Given e05=0.6065)- %W
w;"! No. of Times the Mistake
No. of Mistakes Aot 2
— relbe g i
. %
1 19
5
; 0

325

N

Probability Distribution

NOTES

— 4 Rl e ot
&_/

Fit a Poisson distribution 1

e go
. /iyen above and test the g
the datd gl
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13. In a distribution exactly normal, 7 per cent of the items are under 35 an'd 89 Pe;
cent are under 63. What are the mean and standard deviation of the distribution’

14. Assume the mean height of soldiers to be 68.22 inches with a variance of 10-_8
inches. How many soldiers in a regiment of 1000 would you expect to be over siX
feet tall?

15. Fitanormal distribution to the following data:

4_________-’
Height in Inches Frequency =
60-62 5 |

63-65 18

6668 4

69-71 .5

72-74 3
4————-'—-—’/
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8.3.1 Test of Significance
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8.

0 INTRODUCTION

- tical inference. Statistical
N thig : ¢ basic concepts of StﬁtlS_th%iﬁ SR it
: resnléglits, g;)u will lea;? ;:;;tiltll; properties ofan u;f;;ﬁiopulaﬁon: this includes
Ofdaty, mferee ?rfctzsgstical analysis infers propemiell also learn about the hypothesis
teSting hypot}? 1als d deriving estimates. You :,lso discuss the Chi-square statistics,
fi Mulagion, zses aI}  ipoaaC RS thIlme one-tailed and two-tailed tests.
“lestand fqqagiois Fiely, you will lam 20"

81 UNIT OBJECTIVES

it pID10;
Aftey 80ing through this unit, you will be able
® Discysg about sampling disu,.ibur'
® Understand hypothesis sl

R ndtest of significance
Plain the tistics
:_square Std
: D lain ¢ SigniﬁcanceofChl qt ol
AL ou isti d F-statist! '
Iscuss about t-statistics 2 .l i

® Explain the significanc® oLong]

RIBUTION
e k]lOW . tS
Op . i .o analysis 18 to knov cost and other constrai
D&re Ofthe major objectives of statistic2 ible due to tIE: Jes are taken from the

. rtanot POSE
{0 tg.. oS Of the population. S itisnOtPO o ndom samp
© the entire populationt for co

nsideratif
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. i ible samples of size 2, Statistical Inference
_ . ations that Now, let us assume the sample size, =2, ax:}d take all the poss1 fgllows o
jistical Inference population. These samples are analysed properly and they lead to generalizations | from thi lation. There are 10 such possible samples. These are as h
are valid for the entire population. The process of relating the sample results to populatiof Wigme;i)g;nznon- e
is referred to as, ‘Statistical Inference’ or ‘Inferential Statistics’. ' 4 L NOTES
\ ; ; : ; " 25
In general, a single sample is taken and its mean X is considered to represent 'fhe X, X, (2.4) ‘] s
NOTES population mean. However, in order to use the sample mean to estimate the populanog X X, (2,6) 2
mean, we should examine every possible sample (and its mean, etc.) that could h?;e - P 2,8) Xy = 5
occurred, because a single sample may not be representative enough. If it was posst e 7. =6
to take all the possible samples of the same size, then the distribution of the T SSUHSEE X X, (2,10) vt
these samples would be referred to as, ‘sampling distribution’. The distribution oft ’ = 3 4,6) =%
means of these samples would be referred to as, ‘sampling distribution; of the means - 2 3 49) X, =6 !
The relationship between the sample means and the population mean can best b° Ay X, , ey j
illustrated by Example 8.1. X, X, (4,10) 7 7 !
. " (v v = |
Example 8.1: Suppose a babysitter has 5 children under her supervision with aveles X X, ©8) )fs
age of 6 years. However, individually, the age of each child be as follows: X, X, (6,10) e 2
e z, =
1 8, 10 10
" e 2, o raken, the average of the sampl‘l’v' WOUI‘E 1251133'[
; as ; re to
. Pl i it O ifonly the first sSmPICWE 16, Bothofthese SR S0 T
/ X3 8 u;Irn Harly, the average of the 123, Sampowever ifa grand mean oo
’ G €presentative of the population- ;
X, =10 tese sample means is taken, then,
Now these 5 chi - W
children would constitute our entire population, so that N = 5- .
Solution: = X;
X ==l
10
The populati IX
popiaionmean === 3+4+5+6+5+6+7+7+8+9=60“0:6 ;
i\M————_/_ .
Letus organize
10 anof the populatlon: Lo e
244 _ Jue as the MEAT = bability distribution.
=t B0 R0, 20/526 thy  This grand mean has the s2™° Vaﬁ equencydismbunon and probability |
a . rule : S distribution of sample means into @ i Prob. |
nd the standard deviatiop i givenb . Rel. Freq 1 E
Y the formula: Sample Mean Hred: 1/10 - |
ol
o= m 3 i 1/10 32
N 0 -
Now, letus calculate the standard deviag i 2 o 02
€viation, 5 2/10 >
2 (X—p)? 2 0.1
6 7 1/10
4 16 1 0.1
6 p 4 8 1/10 ——
8 g 0 9 . =
10 S 4 e means i referred to as ‘sampling
> 16 i -+ tion of the sampl€
ist.., This probability distribut
Th Total ;;—_—_—_ S ibution of the mean.”
en, N A an ility distribution
2 Mpling Distribution of the M be defined 2 AP ?-a(?;l,lw i
ation’.
g dlad B =283 0? - Sampling distribution of the med Calilze selected from @ PP SelrInstruationgl
4 . W possible sample means of a giver = PRATIS, o
Self-Instructional
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n of the means, if we know the Statistical Inference

i ling distributio
For example, in the case of sampling R o

grand mean p = of this distribution, which is equal to p, th
i this distribution, known as *Standard error of free mean’ and denoted by ;’f e “{:
know from the normal distribution that there s a 68.26 per cent chance thata samp

istical Inference

Accordingly, the sampling distribution of the means of the ages of children as tabulated
in Example 8.1, has 3 predictable patterns. These are as follows:

(1) The mean of the sampling distribution and the mean of the population are equil

gk NOTES
i ) " - lies within one standard
NOTES This can be shown as follows: . selected at random from a popu_latlon_, w;ll'ha.\lfe ?m&?:ctﬁch;mases t095.44 per
Sample mean (%) Prob P(%) — error of the mean of the population mean. Simuarty. fthe mean (o — ) of the
cent, th 11 lje within two standard errors O e MEan = 5
3 01 nt, that the sample mean will lie ' ling distribution tells us as
4 ' Population mean. Hence, knowing the properties i fn
: 0.1 to how close the sample mean will be to the true population meat.
0.2
822§
6 -~ dtandard Error
0.2
¥ St
. 02 andard Error of the Mean (0 }) _ ion of the distribution of sample
; 1S
0 0.1 Standard error of the mean (o) 152 measur e 'Ofdlfigjuenc y distribution and it measures
0.1 e Eeafls and is similar to the standard deviation1i aand mean of the sampling distribution.
Th 1.00 - ¢ likely deviation ofa sample mean B be calculated as follows:
eca ;
=t o ; Ifall sample means are given, then (oz)can
H=ZXP(X) =(3%0.1)+ (4 x0.]) + g x 0. le means
| +9x1)=6 (X 0D+(5x02)+(6 % 0.2)+ (7% 0.2) +( S(-—7%) where N = Number of sampe 2
, ) Op= = ™ ibution of the
. Xxe . & lon
/ This value is the same as the mean of it N Example 8.1 of the sampling distriou
(i1) The spread ofthe sampl ofthe original population. 100 age Thus we can calculate o5 for =X
ample means i S O . atl S of 5 chys o
Vil Tt 1 Sprealclil the dlstljlbuftlon is smaller than in the POpl;l(l) vois »hildren as follows: (X 1)’
from 3 to 9, while the spread i thm e distribution of sample means? X (1) 9
F (iif) The sha € Population was from 2 to 10 , | 6
pe of the sampling distripyy; ha > !
and approximates the normal bu K-)[-l of the means tends to be, ‘Bell-$ | P 4 6 1
is not normally distributeg ,l;r}f ability distribution, even when the poP" a i 5 5 0
Theorem’ 15 last Property leads us to the ‘Centra L 6 & 1
8.2.1 Central Limit Theorem ! 2 x
Central Limit Theorem states ;i :
: that, ‘R P11 6 =
dlstnbutl‘On gf the sample meang appm:ciardless of the shape of the p0pule?t1011’ 10 9 > (Xt y:=28
sample size increases.’ 8 the normal probability distributio® T’h \_///’—
The question now s hg o
W larpe sh ﬂoﬂ
of sample means to approxim, £€ should the sampje distrib¥
' ate the S4nple size be in order for the In
practice, the sample sizes of3() or larnormal distribution for any type of pop aﬂog s o, = |Z2R— 1)
:}lioulqbe noted however, that the Sam%‘]"jfnarzizonsldered adequate for this purpos®” 7| if N
5 e o LNl L ot
e orlg:lal population is normally disﬁb%ltedihggl:r?;t? WOllllld be normally (.hstnbut _ @
s e can see from or sarthi €r what the sample S1Z€. f _7_
pling digtrity e 70 I
— an dme . = = i am 185
itis not possible to takx 1‘:(:l sl jthe Population B gran 4 va=2 Lle to take all posslble i
€ all the possihj can. However, realistically SP° ;-6 Hoy, ince it i ossible -
onl . 10le samp) ; »Teall 10 We ever, since it is nOt P o : f
y one sample is taken but the g; Ples of size y; ; rac Mgt mpute O x following formula, 1
with the proximity of ‘3 :sa 1 ¢ discussiop on the g {) e Drplatiat T fﬂed Use alternate methods 10 ° b computed fomiioig
Mple mean ¢, th Mpling distribution is O™ Th ancan e Hence,
: € populatj th € standard error of the M€ tion mea-
ol fniia;]ctz:z :3?:: gﬂ:at éh € possible values Ofsal:n Ttlon mean, latioﬂ e DOpul ation is ;"]nletl:znd we know the POPu}a
; 0 Central Limjt y, Plemeans tend towards the poP™ 410
g:;z":ﬁ)llfzf ; lS;llmple Size of nbeing laizzer?l; the;,dish'ibuﬁon of sample means ©° 'gﬂs 6.0 |[(N-n) e
ur an 1 Ry Maisrial
owledge about the CharacteriSticsO (-)?ence, we can draw conclV Jn\ (N-1) e o
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Where,

o = Populationstandard deviation
N = Population size
n Sample size

very large populations, which can be considered infinite, so that if the population $12¢

assembly line operations, then,

This formula can be made simpler to use by the fact that we generally deall Wlﬂf

. . s m
is very large and sample size n is small, as for example in the case of items tested 10

(N—-n)
(N _1‘) would approach 1.
Hence,
graud,
©
The factor =) isalsokn i ldbeused
¢Ia (N —n) 52180 known as the “finite correction factor’, and shou

when the population size is finite.

As this formula suggests, ¢
that the general dispersion amon

any single sample mean will become ¢]qo ; he va
s sertot n, ast
(o) decreases. Additionally, since accord: he population mea i

1 o -1 the
of 120 and standard deviation of | Of‘ﬁge Students are normally distributed with
(a) What s the probabilj do
Rarl Sas 125? that the IQ score of any one student chosen at ran

me
students s taken, what s the probability that e

of this sample will be between 120 and 125

Solution:

(a) Using the standardizeq normal distribytion formul
rmula,

z=¥=p)

Self-Instructional
Material

o

aniv®
x decreases as the sample size (w) increases; mf:r the!
g the sample means decreases, meaning ft ueof

_ 125-120
10
The area for Z=.51s 19.15.

This means that there is a 19.15 per b2
random will have an IQ score between 120 and 125.

ill be much
(b) With the sample of 25 students, it s ex_Pe‘ftEd th?l't: Tﬁi?i?g;g;qnean S
closer to the population mean, henceit1s highly likely

be between 120 and 125.

The formula to be used in the €
distribution of the means is given by,

VA =5/10=.5.

cent chance that a student picked up at

e of standardized normal distribution for sampling
cas

X
Z= -——_ﬁ
o X
Where,
g
O ="
n
Hen(:e,
125
M =120
o=10
z-X-u
ox
W 10 105
S L
Thep,
21252120 (/525
h ]e mean will be
®area for 7 =2.5is49.38. of49.38 per cent gdt tﬁ:;»s:;l:iﬁ e
: : e : c ;
be This shows that there is 2 chanc increases elr), insg between 120 and 125 1s
It ¢q 120 and 125. As the samples ]e mean b€ ganIQbetween 120 and

g a sd vin
‘Ilucn € noted that the probablhfy Y individual student ha
125 gher than the probability ©
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8.3 HYPOTHESIS FORMULATION AND TEST OF
SIGNIFICANCE
e

A hypothesis is an approximate assumption that a researcher wants to test for its logicé!
or empirical consequences. Hypothesis refers to a provisional idea whose merit 1€
evaluation, but has no specific meaning, though it is often referred as a conveﬂlf’r’t
mathematical approach for simplifying cumbersome calculation. Setting up and testing
hypothesis is an integral art of statistical inference. Hypotheses are often stateme“ts
about population parameters like variance and expected value. During the course?
hypothesis testing, some inference about population like the mean and proportio" .r.;;re
made. Any useful hypothesis will enable predictions by reasoning including deduc.t%ve
reasoning. According to Karl Popper, a hypothesis must be falsifiablo and that a propoSiie:

or theory cannot be called scientific ifit doeg i ibili being shO
false. Hypothesis might predict the oy not admit the possibility of

2 : come of an experiment in a lab, settit®
observation ofa p}_lenomenqn mnnature. Thus, hypothesis is :n explanation ofa phcnorneﬂf’ﬂ
proposal suggesting a possible correlation between multiple phenomena.

The characteristics of hypothesis are ag follows:

e Clear and Accurate: H

wa
3 ypothesi to dra
consistent conclusion, sshouldbe clear and accurate 50 45

Oresear . .
o Simplicity: A b, ; chon such kind of hypothesis. b 0
make it understandable, ould be stated in the most simple and clear K

D
i o RO e ot o itin 5
el LT e
ot g g
of decisiqn-making, 3 hYPOth:];itSO; :sﬂlmption concerming a population. For the Puqi*ohis
Sf(il?:i::ﬁtl i?elp Ofobs.el_'vation: t0;o tz:teriﬁed and then accepted or reject? e.bas b
e med. Decision-mgy.; asample and make a decision OP Such

industry and manageIHen% Playsa significant role in different areds
Statistical Decision_Making ;

Testing a statistical hyp

¢
hypothesis should pe

othesis on the bagig ofa sam, ftbr

e
Ple enables us to decide Whethe tf

accepted or re;
Jected,
4T ample data enables us to a°

he g

reject the hypothesis. Since the sample data gives incomplete information about the
Population, the result of the test need not be considered to be final or unc?hallengeable.
The procedure, on the basis of which sample results, enables t.o demf:le whether a
hypothesis is to be accepted or rejected. This is called Hypothesis Testing or Test of
Significance,

Note I: A test provides evidence, if any, against a hypo e s ainat it
The test cannot prove the hypothesis to be correct. It can give

The tegt ; o i
test of hypothes's is a procedure to decide whether tolaocq)t or re]:]a]d hyroi]?we

/ ; : s
Note 2: The acceptance of a hypotheses implies, if there is no evidence from the samp

should beljeve otherwise.

thesis, usually called a null hypothesis.

The rejection of a hypothesis leads us o conclude ﬂ?ﬁflitr;f ﬁﬁﬁiﬁgﬁ
Putting the problem is convenient because of the uncertainty

i to reject.
VIew of this, we must always briefly state 8 hypothesis t?at we hope ;;h j o
A hypothesis stated in the hope of being rejected i called a null hyp
is denoteq b .
- i thesis denoted
IfH ois rejoﬂcted, it may lead to the acceptance ofan alt. .native hypo
by f

1

! ull hypothesis
. edmthemaﬂ(et.'Ihe.n ‘
soap s miIod‘LKI:1 ot better than the existing soap.

11 the dice a number of times to test.

For example, a new fragrance ;
o Which may be rejected, is that the 16W soap 18

Similarly, a dice is suspected 0 perolled. Ro .
g six.

The null hypothesis H,: p = 1/6 for show1n

The alternative hypothesis H:p# 1/6.

torace X orrace ¥ on the
3 . ito mayall belong ( :
asriexample:, skulls found at an ancient sltf; thes};s’ that the mean 1S 1 of the population

S of their diameters, We may test the 2P theses.
3 h 0 ese
> Which the present skulls came: W have the VP

. 5 i o
HEre ().}‘L—I'L)c’ﬁrl'!“l Hy

the éWe Should not insist on calling®
Verse could also be true.

Coipnco.. 1
"Mitting Errors: Type I and TYP®

Pes of Errors

tw is
5 typ : :otical hypotheSI ;
€ two types of errors in statist1c

: lternative since
:spulland the othera
ither hypOthes1s

which are as follows:

is when it is
tanull hypothesis W i
o 1d have been accepted. It1s

may €]
* Tpe I Error: In this type Ofenc;;e};?: which shou
€. It means rejection of ahypPo Ipha error i
. wn alp 11 hypothesis
e Iso eptanu yP
Doted by ¢ (alpha) and 18 5} o youare supPOSe_d tc:ﬂ E;lcli hps hould have been
. e ’ S1S,
g efll‘l Error: In th;S U’P:n(; accepting 2 : ﬁnﬂ;‘e,vn as beta erTor.
1t is not true. It me dis also le, if you fix
rej : eta) al For example, 1LY
TJeCted, It is denoted by P (bb fxingitat -fl!ower 12‘;;; ¢ Type 1 error is 0.02.
; Ype Lerror can be controled! yu robability t0€ ¢ when the sample s1Z¢ 15
tat 2 per cent, then the maxm:)r as @ disadvant?f other words, it cal be said
. 88 . i
:WGVe I:, I:e ducin g Type Ie e 5 I e{TOlft aneously- The Ollly SOlutlolﬂ.Of
N ed, as it increases the chal o imu p ts and penalties
atboth ferrors cannot by const s of errors.
I8 prob lteyrlrﬁz (t)0 setan aPPmpriate ebalafige
Attached to them or to strike 2 prope!
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;| . s s i Statistical Inf
ol Igerence In a hypothesis test, a Type I error occurs when the null hypothesis is rejected when it | 1-Bis called the power of the test. It depends on the level of significance c, sample size n atistical Inference
is in fact true; that is, H, is wrongly rejected. For example, in a clinical trial ofa ﬂ:hw I and the parameter value.
o , €
drug, the null hypothesis might be that the new drug is no better, on average, than 8.3.1 —
current drug; that is H: there is no difference between the two drugs on average: A -1 Test of Significance
NOTES

: NOTES
Type I error would occur if we concluded that the two drugs produced different effects, B
when in fact there was no difference between them. Tests for a Sample Mean X

In a hypothesis test, a Type II error occurs when the null hypothesis H, 18 not

We have to test the null hypothesis that the populationmean hasa specified value p, 1.€.,
rejected, when it is in fact false. For example, in a clinical trial of a new drug, the nu

i : Hi ¥ =y For large n, if H, is true then,
hypothesis might be that the new drug is no better, on average, than the current drucg);
that is H: tht?r‘.: is no difference between the two drugs on average. A Type I err_s o K 1 . . 1 The theoretical region for 2 depending on the
would occur if it were concluded that the two drugs produced the same effect, that 15 SECK)| 1S approxima tely nominal.
there is no difference between the two drugs on avera i hey produc®
ge, when in fact they P
different ones.

desired level of s gnificance canbe calculated.

h variance 4. Can a
In how many ways can we commit errors?

iohi ke wit
For Cxample, a factory produces items, each weighing 5 kg

. be justified as having been taken
L . random sample of size 900 with mean weight 4.45kgbe]
erejec yp . when it may be true. This is Type I Error. om thig factory?
We accept a hypothesis when it may be false. This is Type II Error 2 =900
The other true situations are desirable: We a¢ ; . We reject g =44
: 1% : true.
f a hypothesis when it is false. cepta hypothesis when it is p=>5
,‘/ | G — \/Z‘_’ = 2
Hy Accept True H, Reiect True & 2=Iepon| /| | 2
T Desirable Jeg’ ~ IS o ay not be regarded as
rue le may
Type I Error . iacted. The samp 2
o We is is rejected- % - nding t0 99.73
g b | Otio; ave z> 3, The null h}"pOthGSIS clevel of significance (corresponding
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