RAJIV GANDHI UNIVERSITY

(A Central University)

RONO HILLS:: DOIMUKH

DEPARTMENT OF MATHEMATICS

Semester wise Course Structure

M. A./M. Sc.

Mathematics & Computing

w.e.f. 2017-18

Department of Mathematics
HEAD
Department of Mathematics
Rajiv Gandhi University
Rono Hills, Doimukh (A.P.)

M. A./M. Sc. Mathematics Course Structure: 2017-18 (CBCS)

Semester	Paper Code	Course Title	Credit Distribution (T:P)	Total Credit	Contact Hour
I-SEM	MATC -401	Number Theory	5:0		
	MATC -402	Real Analysis	5:0		
	MATC -403	Algebra	6:0	25	250
	MATC-404	Mechanics	5:0		
	MATC -405	Programming In C	3:1		
	MATC-411	Complex Analysis	5:0		
II-SEM	MATC -412	Linear Algebra	5:0		
	MATC-413	Differential Equation	5:0	25	250
	MATC -414	Topology	5:0		
	MATC -415	Numerical Computations	4:1		
III-SEM	MATC-501	Fluid Mechanics – I	4:0		
	MATC-502	Functional Analysis	4:0		
	<i>MATE-</i> 503	Elective Theory Paper – I*	4:0		
	MATE-504	Elective Theory Paper- II*	4:0	24	240
	MATO-50x	Open Elective Course**	4:0		
	MAT-P-50x	Project-I***	4:0		
IV-SEM	MAT-C -511	Fluid Mechanics – II	4:0		
	MAT-C -512	Graph Theory	4:0		
	MAT-E -513	Elective Theory Paper- III*	4:0	26	260
	MAT-E -5xx	Elective Theory Paper- IV*	4:0	20	200
	MAT-E-5xx	Elective Theory Paper-V*	4:0		
	MAT-P-5xx	Project-II***	6:0		

Total Credit/Contact Hour

100

1000

*The **Elective papers I, II, III, IV, V** will be decided based on the specialization chosen by the student.

**The Elective Open Course: Student has to select an open course from the list of open courses offered by various departments other than Mathematics.

Project-I**** and **Project-II*****: A student shall be asked to choose a Supervisor/guide at the beginning of the session (notified by the department) III – Semester. After consulting with guide, the students shall be asked to finalize a topic (preferably within first month) for his/her project, and finally the students must submit a progress report to the department with a presentation (as notified by the department). The students shall continue with the same project (same topic and same guide) in IV semester, and finally must have to submit a final report in the form of a dissertation with a vivavoce in presents of an external. **The students are needed to take an Industry and Technical Institutes tour so that they get familiar with the applications of Mathematics in present day Research and Development works, and its recent trends of applicability. Total credit for the Project-I and Project-II is 10 (4+6).** Total credit for the **Project-I and Project-II is 10 (4+6).** Doing a project in master degree level will enhance the capacity of the students in solving problems and, further, the students can decide about their future prospects.

T-Theory, P-Practical, Pt-Project

Open Elective Course in 3rd Semester:

 Students have to select any one Open Elective course from following table of 3rd Semester.

Elective courses in 3rd Semester and 4th Semester:

- 1. Students have to select any two **Elective courses** from following table of **3**rd **Semester**.
- 2. Students have to select any three **Elective courses** from following table of **4**th **Semester.**

		3 rd Semester			
Elective Courses Any two papers can be selected					
Semester	Paper Code	Course Title			
III-SEM	MATE -503	Mathematical Methods			
	MATE-504	Mathematical Programming			
	MATE -505	Continuum Mechanics			
	MATE -506	Mathematical Statistics			
	MATE -507	Differential Geometry			
	Open Elective Course (To be offered to the students of other Departments of Rajiv Gandhi University, Rono Hills)				
	MATO-508A	Introduction to Mathematics Education			
	MATO-508B	Computer Fundamentals			
	MAT-Pt-509	Project-I			
4	t th Semester (Elective	Courses) Any three papers can be selected			
Semester	Paper Code	Course Title			
IV-SEM	MATE -513	Wavelets and Applications			
	MATE -514	Fuzzy Set Theory and Applications			
	MATE -515	Operation Research			
	MATE -516	Measure Theory			
	MATE -517	Space Dynamics			
	MATE -518	Algebraic Topology			
	MATE -519	Stochastic Processes			

MATE-520	Rings and Modules
MATE-521	Advanced Functional Analysis
MATE-522	Theory of Distribution and Sobolev Spaces
MATE-523	Biomechanics
<i>MAT-Pt-</i> 524	Project-II

FIRST SEMESTER MAT-C-401: NUMBER THEORY

Full Marks: 100 Term end: 80 Internal: 20 Credit: 05

Contact Hours: 50

- Unit-I Arithmetic functions; Examples and properties of some arithmetic functions;
 Multiplicative arithmetic functions; Dirichlet product of arithmetic functions;
 Moebius inversion formula; Group properties of arithmetic functions;
 Completely multiplicative functions.

 Marks-16
- Unit-II Quadratic congruence; Quadratic residue; Euler's criterion for quadratic residue; Legendre symbol and properties; Quadratic reciprocity law; Jacobi symbol and properties; Polynomial congruence.
 Marks-16
- Unit-III Linear Diophantine equations; Diophantine equations of second degree; Fermat's Last theorem. Primitive roots and Indices; Fibonacci numbers and their properties; Binet's formula for Fibonacci numbers.

 Marks-16
- Unit-IV Representations of integers as Sum of two squares; Difference of two squares;Sum of three squares; Sum of four squares.Marks-16
- Unit-V Partitions of integer; Graphical representation and conjugate partition;
 Partitions into odd parts, partitions into distinct parts, partitions into even parts; Generating functions for partitions; Euler's pentagonal number theorem; Jacobi's triple product identity.

 Marks-16

TEXT BOOKS:

- 1. I. Niven, H.S. Zuckerman and H.L. Montgomery: An Introduction to the Theory of Numbers (6^{th} edition); John Wiley and Sons. The New York 2003.
- 2. D. M. Burton: Elementary Number Theory (4 ed.) Universal Book Stall, New Delhi; 2002.
- 3. T. M. Apostol: Introduction to Analytic Number Theory, Springer International Student Edition, Narosa Publishing House, Fourth Reprint, 1993.

- 1. M. Rosen and K. Ireland: A classical Introduction of Number Theory, Springer, 1982.
- 2. L.E. Dickson: History of the Theory of Numbers (Vol- II, Diophantine Analysis); CPC, New York, 1971.

- 3. N. Koblitz: A course in Number theory and Cryptography, Springer, 2000.
- 4. G.A. Jones and J.M. Jones: Elementary Number Theory; Springer Verlag, 1998.
- 5. G. E. Andrews: Number Theory, Hindustan Publishing Corporation, New Delhi, 1992.
- 6. S. G. Telan: Number Theory, Tata McGraw Hill Publishing Company Limited, New Delhi, 1996.

FIRST SEMESTER MAT-C-402: REAL ANALYSIS

Full Marks: 100 Term end: 80 Internal: 20 Credit: 05 Contact Hours: 50

- Unit-I Uniform convergence, sequence and series of functions, point-wise and uniform convergence, Cauchy's criterion for uniform convergence of a series, uniform convergence and continuity, integration and differentiation.

 Weirstrass's approximation theorem.

 Marks-20
- **Unit–II** Definition and existence of Riemann-Stieltjes integral, properties of R-S integral, integrations and differentiations. **Marks-10**
- Unit-III Lebesgue exterior measure, Lebesgue measure of sets, theorems on measurable sets. Definition of measurable functions, properties of measurable functions and simple functions.
 Marks-20
- Unit-IV Lebesgue integral of bounded function, definition and theorem involving Lebesgue integral, relationship of Lebesgue and Riemann integral. Fatou's Lemma, monotone convergence theorem, the general Lebesgue integral, Lebesgue convergence theorem.

 Marks-20
- **Unit-V** Functions of bounded variation, basic properties of functions of bounded variation, bounded variation and absolute continuity, differentiation of an integral, integral of the derivative. **Marks-10**

TEXT BOOKS

- 1. H. L. Royden: Real Analysis; PHI, 1995.
- 2. W. Rudin: Principles of Mathematical Analysis, Mcgraw Hills.
- 3. P. K. Jain and V. P. Gupta: Lebesque measure and integration, Wiley

- 1. Charles Swartz: Measure, Integration and Function spaces, World Scientific
- 2. T. M. Apostol: Mathematical Analysis; Narosa Publishing House, New Delhi, 1985.

3. Robert Wrede and Murray R. Spiegel: Advanced Calculus; Schaum's Outline Series, McGraw Hills.

FIRST SEMESTER MAT-C-403: ALGEBRA

Full Marks: 100 Term end: 80 Internal: 20 Credit: 05

Contact Hours: 60

Unit–I Conjugacy class, Normalizer, Centralizer, Centre of a group, class equations, Cauchy Theorem, Sylow's Theorems, Applications of Sylow's theorems.

Marks-16

- Unit-II Direct products of finite numbers of groups, Decomposable groups. Normal and Subnormal series of groups, Composition series, Schreier's Refinement Theorem, Jordan Holder theorem, Commutators, Derived subgroups, Solvable groups.

 Marks-16
- Unit–III Ideals, Principal and Prime ideals. Integral domain and quotients of an integral domain, Divisibility in Commutative rings. PID, UFD and their properties, Eisenstein's irreducibility criterion.

 Marks-16
- Unit-IV Field theory- Extension of fields. Algebraic and Transcendental numbers, Splitting field. Perfect fields. Existence of finite fields. Marks-16
- Unit-V Galois group, Fundamental theorem of Galois Theory, Galois Group of the general equation, Galois group of a quadratic, cubic and quartic equation.
 Solvability of equations by radicals, Constructability of regular polygons.

Marks-16

TEXT BOOKS:

- 1. N. Herstein: Topics of Algebra: 2nd edition, Wiley Eastern 1975.
- 2. M. Artin: Algebra, Prentice Hall of India 1994.
- 3. D. S. Dummit and R.M. Foote: Abstract Algebra, John Wiley and Sons Inc. 2nd Edition 1999.
- 4. I. Stewart: Galois Theory, Academic Press 1989.

- 1. F. Loonstra: Introduction to Algebra, McGraw Hill, London, 1969.
- 2. D.S. Mali, Jhon N. Mordeson and M.K.Sen: Fundamentals of Abstract Algebra.
- 3. P. M. Cohn: Basic Algebra, Springer Publ. 2003.
- 4. T. W. Hungerford: Algebra, Springer-Verlag 1981.

FIRST SEMESTER MAT-C-404: MECHANICS

Full Marks: 100 Term end: 80 Internal: 20 Credit: 05

Contact Hours: 50

- **Unit-I** Motion in two dimensions under finite forces and its various applications, Kinetic Energy, Moment of Momentum, Motion of sphere in a rough inclined plane. **Marks -16**
- Unit-II Conservation of linear and angular momentum under finite and impulsive forces, Conservative energy.Marks-16
- **Unit-III** Eulerian angles, Euler's dynamical equations of motion, motion under no external forces, Kinetic Energy, Instantaneous axis of rotation.

Marks-16

- Unit-IV Generalized coordinates: Lagrange's equations of motion for finite and impulsive forces, conservative forces, Small oscillation. Marks-16
- Unit-V Hamilton's canonical equations, Hamilton's principle and principle of least action.
 Marks-16

TEXT BOOK:

- 1. S. L. Loney: Dynamics of a Particle and Rigid bodies, Cambridge University Press (1913).
- 2. F. Chorlton: Text book of Dynamics, CBS **Publishers** & Distributors Pvt. Ltd., New Delhi (2004).
- 3. E. T. Whittaker: Mechanics, Edmund Tayl Hardpress Publishing.
- 4. Brahma Nand, B. S. Tyagi, B. D. Sharma: Dynamics of Rigid Bodies, Kedar Nath Ram Nath Publication.
- 5. M.R. Spiegel: Theoretical Mechanics-Schaum's Outline Series, McGraw Hills.
- 6. Classical Mechanics: H. Goldstein.

- 1. Ramsey: Dynamics part-II, CBS Publishers & Distributors Pvt. Ltd. (2005).
- 2. S. N. Gupta: Classical Dynamics, Cengage; 5 edition (17 December 2012).
- 3. A. R. Vasistha: Statics, Krishna Prakashan Media (P) Ltd.
- 4. L. N. Hand and J. Finch.: Analytical Mechanics, Cambridge University Press (1998).
- 5. N. C. Rana and P. S. Juag: Clasical Mechanics, Tata McGraw-Hill Education Pvt. Ltd.

FIRST SEMESTER

MAT-C-405: PROGRAMMING IN C

Full Marks: 100 Term end: 50 Internal: 20 Practical: 30 Credit: 04 Contact Hours: 40

- **Unit-I**Problem Solving Techniques: Algorithm, Flow-chart, Decision Table, Programming Languages, C, Basic features of C in programming, Data type and variables, Identifier, Expression and operations. Control statements: Do statement, While statement, For statement, Nested loops, If-then-else statement, Switch statement, Go to, and break and continue statement.

 Marks-20
- **Unit–II** Arrays and pointer in C, Structure and union in C, Storage mechanism for arrays and pointer in C, String and file handling in C programming language.

Marks-15

- Unit-III Use of function in C language. Parameter passing mechanism in C, Recursive function. Library function in C. Concept of preprocessing and preprocessor directives. Concept and use of macro.
 Marks-15
- Unit-IV (Practical) Computer programming in consonance with the materials covered in this courses.Marks-30

TEXT BOOKS:

- 1. B. S. Gottfried: Programming with C, Schaum's Outlines Series, Tata McGraw Hill.
- 2. E. Balaguruswamy: Programming in ANCI C, Tata McGraw Hill, New Delhi, 2001.
- 2. A. Kelley and Ira Pohl, A Book on C, Pearson Education Asia.

- 3. V. Rajaraman: Computer Programming in C, Prentice Hall India, 1994.
- 4. B. Kernighan and D. Ritche: The C Programming Language, Prentice Hall India, New Delhi, 2001.
- 5. Yashavant P. Kanetkar: Let us C, BPB Publishers, New Delhi, 2002.

SECOND SEMESTER MAT-C-411: COMPLEX ANALYSIS

Full Marks: 100 Term end: 80 Internal: 20 Credit: 05 Contact Hours: 50

Unit-I Complex Integration: Cauchy-Goursat theorem, Cauchy's integral formula, Higher order derivatives, Cauchy's inequalities, Morera's and Liovelle's theorem, Gauss's Mean value theorem, Maximum Modulus theorem.

Marks-15

- Unit-II Power Series, Uniform convergence of power series, Radius of convergence of power series, Taylor's and Laurent's theorem, Zero, Singularities, Poles, Properties of singularities, Removal singularities, singularities at infinity. Rational and Meromorphic function, the Argument principle, Rouche's theorem, Schwarz lemma.

 Marks-20
- Unit-III Residue, Calculation of Residues, Cauchy's Residue theorem, Evaluation of definite integrals, Special theorems used in evaluating integrals, Mittag-Leffer's theorem.

 Marks-15
- Unit-IV Mapping by elementary functions, Rotation, Translation, Mobius, Isogonal and Conformal transformations, Bilinear transformations, geometrical inversion, co-axial circles, Fixed points, Cross ratio, Inverse points and critical points, some special bilinear transformations e.g. real axis on itself, unit circle on itself, real axis on the unit circle.
 Marks-20
- **Unit-V** Applications: Various problems in physics viz-Heat Flow, Elasticity, Flow around an object, Electrostatic Fields. **Marks-10**

TEXT BOOK:

- 1. J. W. Brown and R. V. Churchil: Complex Variables and Applications, Tata McGraw Hill.
- 2. S. Ponnusamy and H. silverman: Complex Variables with applications, Birkhauser.
- 3. J. B. Conway: Function of Complex Variable, Springer-Verlag.
- 4. Emil G. Milewski: The Complex variables problem solver, Research and Education Association, New York.

- 1. L.V. Ahlfors: Complex Analysis, 3rd edition, Tata Mc.Graw Hill.
- 2. M.R. Spiegel: Complex variables; Schaum's Series, Tata McGraw Hill.

- 3. E.G. Phillips: Functions of a complex variable with applications. Oliver and Boyd.
- 4. J. H.Mathews and R.W. Howell: Complex Analysis for Mathematics and Engineering, 3^{rd} edition, Narosa.
- 5. E.B. Staff and A. D.Suider: Fundamenntals of Complex Analysis: for Mathematics, Science and Engineering, Prentice Hall of India.

SECOND SEMESTER MAT-C-412: LINEAR ALGEBRA

Full Marks: 100 Term end: 80 Internal: 20 Credit: 05

Contact Hours: 50

- Unit-I Eigenvalues and Eigenvectors, Characteristic and minimal polynomial, Cayley-Hamilton theorem, Real quadratic form, Matrix of a quadratic form, Criterion positive definiteness, Trace and transpose.

 Marks-16
- Unit–II Canonical forms, Invariant subspaces, Cyclic subspaces, Direct sum decomposition and Primary decomposition theorem. Marks-16
- Unit–III Dual basis, Dual spaces, Second dual spaces, Annihilators, Transposeof a linear mapping.

 Marks-16
- Unit-IV Inner product spaces, Adjoint operators, Normal, Unitary and Self-adjoint operators, Orthogonal bases, Gram-Schmidt process.

 Marks-16
- **Unit-V** Bilinear, Quadratic, Hermitian Forms, Definition and examples, The matrix of a bilinear form, Orthogonality, Classification of bilinear forms. **Marks-16**

TEXT BOOK:

- 1. K. Hoffman and R. Kunze: Linear Algebra, Prentice Hall Of India (1996).
- 2. Seymour Lipschutz: Theory and Problems of Linear Algebra, Tata McGraw Hill.

- 1. G. Schay: Introduction to Linear Algebra, Narosa (1997).
- 2. G. C. Cullen: Linear Algebra with Applications, 2nd Edition, Addison Wesley.
- 3. S. Axler: Linear Algebra Done Right, 2nd Edition, UTM, Springer (1997).
- 4. K. Janich: Linear Algebra, UTM, Springer (1994).
- 5. David C. Lang: Linear Algebra and its Applications, 3rd Edition, Pearson.

SECOND SEMESTER

MAT-C-413: DIFFERENTIAL EQUATION

- **Unit-I** Existence and Uniqueness theorem for the equations of the form $\frac{dy}{dx} = f(x,y)$; Picard's method of successive approximation, Statements of the existence theorems for a system of first order ordinary differential equations, Independence of solutions of linear differential equations, Wronskian.

 Marks-12
- Unit-II Linear partial differential equation of first order: Various forms of first order partial differential equations, Origin of partial differential equation of 1st order. Standard forms for solution of partial differential equations by using Lagrange's method. Non-linear partial differential equations: Use of standard forms for solution of non linear partial differential equations. Charpit's method.

 Marks- 20
- Unit-III Partial differential equations (PDE) of second order with constant and variable coefficients, classification of PDE of order two, Different Canonical Forms.
 Marks- 16
- **Unit–IV** Strum-Liouville Problems, Orthogonality of characteristic functions, Expansion of a function in Series of Orthonormal Functions. **Marks-16**
- **Unit-V** Boundary Value Problems: Separation of Variables; Heat Equation, Wave Equation, Laplace Equation; Solution of different BVP's. **Marks-16**

TEXT BOOKS:

- 1. S. L. Ross: Differential Equations, III Edition, John Wiley & Sons, Inc.
- 2. Ian Snedden: Elements of partial differential equations. Tata McGraw Hill.
- 3. M. D. Raisinghannia: Advanced Differential Equations S. Chand. & Co. Ltd.

- 1. E. L. Ince: Orinary Differential Equations, Dover Publication Inc. (1956).
- 2. W. Boyce and R. Diprima: Elementary Differential Equations and Boundary Value Problems, III Edition, New York (1977).
- 3. E. A. Coddington: An Introduction of to Ordinary Differential Equations, II Edition, Prentice Hall of India Pvt. Ltd., Delhi (1974).
- 4. Frank Ayres Jr: Theory and Problems of Differential Equations. Schaum's Outline Series. Tata McGraw Hill

SECOND SEMESTER MAT-C-414: TOPOLOGY

Full Marks: 100 Term end: 80 Internal: 20 Credit: 05 Contact Hours: 50

- Unit-I Definition of topological space, Neighbourhood, Interior point, Interior, Closure and closure point, Limit point, Derived sets, Bases, Sub bases, First and second countable space, Relative topology, Continuity, Uniform continuity with examples, Weak topology, Quotient space and product space.
 Marks- 16
- Unit-II Compactness, Basic properties of compactness, Tychconoff's theorem,
 Locally compact space, Lindelof space, Sequentially and countably
 compact, Lebesgue covering lemma, Ascoli's theorem.

 Marks-16
- Unit-III Separations axioms, T₀, T₁-space, Hausdroff space, Regular space,
 Normal space, Completely regular space, Urysohn's lemma, Tietze extension theorem, Urysohn's metrization's theorem.
 Marks-16
- Unit-IV Connectedness, Totally disconnected, Locally connected, Components, locally and path connectedness.Marks-16
- Unit-V Nets and filters, Convergence in terms of nets and filters, Ultrafilters and compactness, Para compactness, Characterization in regular spaces, Metrization based on paracompactness.
 Marks-16

TEXT BOOKS:

- 1. J. R. Munkers, Topology a First Course, Prentice Hall of India, 1998
- 2. G. F. Simmons, Introduction to topology and Modern Anlysis, Tata McGraw Hills, 1990.
- 3. Sheldon W. Davis, Topology, Tata McGraw-Hiil, 2006.

- 1. J. L. Kelley, General Topology, Springer-Verlag (1995).
- 2. K. D. Joshi, Introduction to General Topology, Wiley Eastern Ltd. (1993).
- 3. Colin Adams and Robert Fran Zosa, Introduction to topology Pure and Applied, Pearson, 2009.
- 4. M. A. Armstrong, Basic Topology, Springer (2004).
- 5. Wilson A. Sctherrland, Introduction to Metric and Topological Spaces, 2nd Ed Oxford University Press.
- 6. Nicolas Bourbaki, Topological Vector spaces, Springer Publ.
- 7. Geraled B. Folland, Real Analysis, Modern Techniques and Their Applications 2^{nd} Ed, John Wiley & Sons Inc.
- 8. Jewgmei H. Dshalalow, Real Analysis, An Introduction to the Theory of real functions and Integration, Chapman and Hall/ CRC.

SECOND SEMESTER MAT-C-415: NUMERICAL COMPUTATIONS

Full Marks: 100 Term end: 60 Internal: 20 Practical: 20 Credit: 05 Contact Hours: 50

- Unit-I Non-linear equations: Bisection method, Newton-Raphson method and its variants, Fixed-point iterations, Secant and Regula-Falsi method, Bairstow Method, Convergence analysis.
 Marks-15
- **Unit-II** Systems of linear equations: Gauss elimination, Pivoting, Stability of Gaussian elimination, LU decomposition, Cholesky factorization, Gausidel iteration, Ill-conditioning and condition number. **Marks-15**
- Unit-III The Eigenvalue problem: Power method, Householder method, Rayleigh quotient, Inverse iteration, Reduction to tridiagonal form (Hessenberg technique), QR method.

 Marks-15
- Unit-IV Approximation of functions: Polynomial interpolation, Hermite interpolation, Interpolation by splines, Least squares curve fitting. Numerical differentiation, Numerical Integration, Extrapolation techniques.
 Marks-15
- Unit-V Practical: Computer programming in consonance with the materials covered in these courses.

 Marks- 20

TEXT BOOKS:

- 1. S.D. Conte and Cde Boor: Elementary Numerical Analysis. Tata McGraw Hill.
- 2. M. K. Jain, S.R.K. Iyengar and R. K. Jain: Numerical Methods for Scientific and Engineering Computation, New Age International (P) Limited, Publishers (1995).
- 3. V. Rajaraman: Computer oriented Numerical Methods, Prentice Hall India

- 1. K.E. Atkinson: Introduction to Numerical Analysis, 2nd edition, John Wiley (1989).
- 2. M.T. Health: Scientific computing: An introductory survey, McGraw Hill (2002).
- 3. C.F. Gerald and P.O Wheatley: Applied Numerical Analysis, 5th edition, Addison Wesley (1994).
- 4. B.S. Grewal: Numerical methods in Engineering and Science with programs in FORTRAN 77, C and C++, Khanna Publishers, 2002.
- 5. C.E. Froberg: Introduction to Numerical Analysis: 2nd Edition Wesley.
- 6. R.L. Burden, J.D. Fairs: Numerical Analysis, Brooks/Cole.
- 7. J.J. Akai: Applied Numerical Methods for Engineers, John Wiley and Sons.
- 8. M.B. Allen III, E.L. Isaacson: Numerical Analysis for Applied Science, John Wiley.

THIRD SEMESTER MAT-C-501: FLUID MECHANICS - I

Full Marks: 100 Term end: 80 Internal: 20 Credit: 05 Contact Hours: 50

- **Unit-I**Tensor: Transformation of laws of covariant, covariant derivatives and contravariant tensors, Mixed tensors, rank of tensors, symmetric and anti symmetric tensors, Algebraic operations on tensors.

 Marks-16
- **Unit–II** Different kinds of fluids, Material, local and convective derivatives, Equation of continuity, Rotational and Irrotational motion, Stream and Path lines, Boundary conditions, Boundary surface.

 Marks-12
- **Unit-III** Equation of motion of inviscid fluids: Euler's equation of motion, Bernoulli's equation, Conservative field of forces, Cauchy's integral, and Helmholtz equation, D' Alembert's Paradox.

 Marks-20
- Unit-IV Motion in two dimension: Stream function, Complex potential, Source, Sink, Doublet, Complex potential and images with respect to straight line and Circle, Milne Circle theorem, Blasius theorem.
 Marks16
- Unit-V
 Vorticity vector, vortex line, Vortex tube, Rectilinear Vortices, Derivation of velocity potential and complex potential due to a vortex filament, Kirchhoff Vortex theorem.
 Marks-16

TEXT BOOKS

- 1. L. P. Echenhart: Riemann Geometry, AMS Chelsea Publishing.
- 2. C. E. Weatherburn: An introduction to Riemannian Geometry & Tensor Calculus, Cambridge University Press (1950).
- 3. M. D. Raisinghania: Fluid Dynamics, S. Chand and Co. Ltd.
- 4. S. W. Yuan: Foundation to Fluid Mechanics, Prentice-Hall, Englewood Cliffs, NJ (1967).

- 1. J. L. Bansal: Viscous Fluid Dynamics Oxford and IBH Publishing Co. Calcutta.
- 2. W. H. Besant and A.S. Ramsay: A treatise on Hydrodynamics Part-II, CBS Publishers, Delhi.
- 3. G. K. Batchelor: An Introduction to Fluid Dynamics, Cambridge University Press (1970).
- 4. M. Ray and Sharma: A text book of Fluid -Dynamics, S Chand & Co Ltd.

THIRD SEMESTER MAT-C-502: FUNCTIONAL ANALYSIS

Full Marks: 100 Term end: 80 Internal: 20 Credit: 05 Contact Hours: 50

- Unit-I Normed linear spaces, Banach spaces and examples. Quotient space.
 Continuous functions and bounded linear operators. Finite dimensional normed linear spaces. Equivalent norms. Riesz Lemma.
 Marks-16
- Unit-II Fundamental Theorems: Hahn-Banach theorem, Open mapping theorem,
 Closed graph theorem, Uniform boundedness theorem. Adjoint operator.
 Weak and Weak*- convergence in Banach spaces.

 Marks-16
- Unit-III Hilbert space and basic properties. Schwarz inequality. Orthogonal complements. Orthogonal sets. Bessel's inequality. Conjugate space. Riesz representation theorem.
 Marks-16
- Unit-IV Definition and examples of Banach algebra. Complex homomorphisms. Basic properties of Spectra. Gelfand spectral radius formula; Gelfand-Mazur theorem; Group of invertible elements.
 Marks-16
- **Unit-V**Maximal ideals and Homomorphism, semi-simple Banach algebra. Gelfand transform. Involution. C*- algebras, functional calculus in C* -algebras, Gelfand-Nerimark Theorem, Application to non commutative Banach algebras, positive functionals.

 Marks-16

TEXT BOOKS

- 1. W. Rudin: Functional Analysis: Tata McGraw Hill (1991).
- 2. R. G. Douglas: Banach Algebra Techniques in Operator Theory, Academic Press (1972).
- 3. G. F. Simmons: Introduction to Topology and Modern Analysis; McGraw Hills (1963).

- 1. B.V. Limaye: Functional analysis; New Age International Ltd. (1996).
- 2. K. Yosida: Functional Analysis; Springer (1995).
- 3. J.B. Conway: A Course in Functional Analysis; Springer (2006)
- 4. Robert E. Magginson: An Introduction to Banach Space Theory; Springer.

THIRD SEMESTER MAT-E-503: MATHEMATICAL METHODS

Full Marks: 100 Term end: 60 Internal: 20 Practical: 20 Credit: 05 Contact Hours: 50

- Variation of a functional, Admissible function, Euler-Lagrange equation,
 Necessary and sufficient conditions for extremum, Variational methods,
 Isoperimetric problems and applications.

 Marks- 15
- Unit-II Linear integral equation of the first and second kind of Fredholm and Volterra types, Solutions with separable Kernels, Characteristic numbers and Eigen values, Eigen functions, Resolvent Kernel.
 Marks- 15
- Unit-III IVP: Difference equations, Truncation Error, Convergence, Stability, Euler, Backward and Mid-point Method, RK method.Marks- 15
- Unit-IV BVP: Taylor's Series Method, Secant Method, Newton-Raphson Method, Finite Difference Method, Tridiagonal System Marks- 15
- Unit-V (Practical) Computer programming in consonance with the materials covered in this courses.Marks- 20

Software Support: MATLAB and MATHEMATICA.

TEXT BOOKS:

- 1. M.R. Spiegel: Theory and problems of Laplace Transform; Schaum's Series, Tata McGraw
- 2. Courant Hilbert: Methods of Calculus of Variations, Vol. II, Interscience Publishers. New York.
- 3. M. D. Raisinghania: Integral Equations, S. Chand and Co.
- 4. A.S. Gupta: Calculus of Variation. Prentice Hall of India.
- 5. M. K. Jain, S. R. K. Iyenger & R. K. Jain: Numerical Methods for Scientific and Engineering Computation, New Age International Publishers (2012).
- 6. M. K. Jain: Numerical Solution of Differential Equations, John Wiley & Sons (16 May 1984).

- 1. Francis B. Hildebrand: Calculus of Variation, Prentice-Hall Inc.
- 2. R.P. Kanwal: Linear Integral Equations. Theory and Techniques. Academic press, New York.
- 3. R. P. Kanwal: Linear Integral Equation, ACADEMIC PRESS, New York and London (1971).
- 4. Li. G. Chanbers: Integral Equation, International text book company Ltd, 1976.

THIRD SEMESTER MAT-E-504: MATHEMATICAL PROGRAMMING

Full Marks: 100 Term end: 60 Internal: 20 Practical: 20 Credit: 05 Contact Hours: 50

- **Unit-I** Simplex method, two-phase method, Big-M method, Revised simplex method, solution of linear programming problem by revised simplex method. **Marks-12**
- Unit-II Duality, Fundamental theorem of duality, Dual simplex method, comparison of solution of primal and its dual.

 Marks-12
- Unit-III Transportation problems, North-West corner rule, Vogel's approximation method, Optimality test, Assignment problems.

 Marks-12
- **Unit–IV** Game theory: Two Person Zero Sum Game, Max-mini and Minimax Principles, Mix Strategies, Graphical and General Solutions of Games.

Marks-12

- Unit V Inventory Control: Deterministic inventory problems with no shortages,
 Deterministic inventory problems with shortages, EOQ problems with price
 breaks, Multi-item Deterministic problems.

 Marks-12
- Unit-VI (Practical) Computer programming in consonance with the materials covered in this courses.Marks- 20

Software Support: MATLAB and MATHEMATICA.

TEXT BOOKS:

- 1. R. Fletcher: Optimization, Academic Press, (1969).
- 2. Kanti Swarup, P.K. Gupta and Mon Mohan: Operation Research, Sultan Chand & Sons.
- 3. S. I. Gauss: Linear programming, Tata McGraw Hill.

- 1. Mittal and Sethi: Linear Programming; Pragati Prakashan.
- 2. F. S. Hillier and G.J. Lieberman: Introduction to Operation Research: (6th edition) McGraw Hill. International edition: Industrial Engineering Series (1995).
- 3. D. G. Luenberger: Introduction to Linear and Non linear Programming, Addison Wesley (1973).
- 4. N. S. Kambo: Mathematical Programming Techniques, East West Press (1997).

THIRD SEMESTER

MAT-E-505: CONTINUUM MECHANICS

Full Marks: 100 Term end: 80 Internal: 20 Credit: 05 Contact Hours: 50

- Unit-I Analysis of stress: The continuum concept, Homogeneity, Isotropy, Mass Density, Force and moment of equilibrium, Stress transformation laws, Stress quadric of Cauchy, Principal stresses, stress invariants, Stress ellipsoid.

 Marks-20
- Unit-II Deformation and Strain: Continuum Configuration, Deformation and flow concepts, Lagrangian and Eulerian descriptions, Deformation and displacement gradients, Deformation tensors, Finite strain tensors, Small deformation theory, Relative displacement, Linear rotation tensor, Rotation vector, Stretch ratio, Finite strain interpretation, Principal strains, Strain invariants, Cubical Dilatation.

 Marks-20
- Unit-III Motions and Flow: Material derivative, Velocity, Acceleration, Instantaneous velocity, field, Path lines and stream lines steady motion, Rate of deformation tensor, Velocity tensors and their physical interpretation.
 Marks- 10
- Unit-IV Fundamental laws of Continuum Mechanics: Conservation of mass,
 Continuity equation, Linear momentum principle, Equation of motion,
 Equilibrium equations, Moment of momentum principle, Conservation of energy, Energy Equation.

 Marks- 10
- Unit-V Linear Elasticity: Generalized Hook's law, Strain energy function, Isotropy,
 Anisotropy, Elastic symmetry, Isotropic media, Elastic constants, Navier-Cauchy equations and Beltrami Michell equations.
 Marks-20

TEXT BOOKS:

1. George E Mase : Continuum Mechanics- Schaum's outlines series, Tata McGraw-Hill, Publishing Company limited, New Delhi

- 1. Rabindranath Chatterjee: Mathematical theory of Continuum Mechanics-, Narosa Publishing House, New Delhi.
- 2. D.S. Chandrasekharariah and Loknath Debnath: Continuum Mechanics-, Academic Press, New York.

THIRD SEMESTER

MAT-E-506: MATHEMATICAL STATISTICS

Full Marks: 100 Term end: 80 Internal: 20 Credit: 05 Contact Hours: 50

- Unit-I Probability: Mathematical and statistical definition, axiomatic approach, sample space, probability as a set function, additional and multiplication theorem on probability, conditional probability, repeated trials, Baye's theorem, random variable and distribution function.
 Marks-16
- Unit-II Mathematical expectation, expectation of sum and product of random variables, variance Tshebysheff lemma, weak law of large numbers, Bernoulli's theorem, moment generating function, characteristic function, central limit theorem.
 Marks-16
- Unit-III Probability distribution: Binomial distribution, Negative binomial distribution, Poisson distribution, normal distribution, hyper geometric distribution, Beta, Gamma distribution.

 Marks-16
- Unit-IV Regression, Correlation: Correlation-simple, multiple and partial, regression and the theory of least squares, Cauchy-Schwarz's inequality and limits of correlation coefficient, Multiple regression using matrix.
 Marks-16
- **Unit-V** Sampling distribution and test of significance: Sampling distributions; mean and standard error, level of significance, confidence intervals, test of significance, test using Fisher's Z- transformation, t, χ^2 and F distributions, Analysis of Variance (ANOVA) and Multivariate analysis of variance (MANOVA). **Marks-16**

TEXTS BOOKS:

- 1. Gupta and Kapoor: Fundamentals of Statistics, S. Sand. And Co. Ltd.
- 2. Gun, Gupta and Das Gupta: An outline of Statistics Volume I, S. Sand. And Co. Ltd.
- 3. P. Mukhapadhya: Mathematical Statistics, S. Sand. And Co. Ltd

TEXTS BOOKS:

- 4. Gupta and Kapoor: Fundamentals of Statistics, S. Sand. And Co. Ltd.
- 5. Gun, Gupta and Das Gupta: An outline of Statistics Volume I, S. Sand. And Co. Ltd.
- 6. P. Mukhapadhya: Mathematical Statistics, S. Sand. And Co. Ltd

THIRD SEMESTER MAT-E-507: DIFFERENTIAL GEOMETRY

Full Marks: 100 Term end: 80 Internal: 20 Credit: 05 Contact Hours: 50

- Unit-I Curves in space; Arc length, Order of contact, Tangent, Normal, Binormal, Osculating plane, Serrent-Frenet formulae, Curvature and torsion. Marks-15
- Unit-II Curves in space(Continued); Osculating circle and osculating sphere, Helix,
 Bertand curves, Spherical indicatrix, Evolute and envolute, Behaviour of a
 curve in the neighbourhood of a point.

 Marks-15
- Unit-III Concept of a surface, Envelope and developable surface, Parametric curves, Family of the surfaces, Edge of regression, Ruled surfaces, Central points.

 Marks-15
- Unit-IV Fundamental forms and curvature of surfaces; First fundamental form, Second fundamental form of the surfaces of revolution, Weingarten's equations, Direction coefficients, Family of curves.

 Marks-15
- Unit-V Local non-intrinsic properties of a surface, Normal curvature, Principal directions, Principal curvatures, Minimal surface, Lines of curvature, Rodrigues and Monge's theorem, Euler's theorem, Joachimisthal's theorem, Dupin's indicatrix, Third fundamental form.

 Marks-20

TEXT BOOKS

- 1. T. J. Willmore: Differential Geometry.
- 2. *C. E. Weathrburn: Differential Geometry of three dimensions.*
- 3. R.S. Millman and G. D. Parket: Elements of Differential Geometry.
- *A. Goctz: Introduction to Differential Geometry.*

THIRD SEMESTER MAT-O-508A: INTRODUCTION TO MATHEMATICS EDUCATION

Term end: 50 Project: 30 Internal: 20 Credit: 04 Contact Hours: 40

Objective: To make students aware of Mathematics Education & its importance to society.

Unit-I Foundation of Mathematics Education:

Marks-15

History of Mathematics with reference to Indian Mathematics, Modern Views of Mathematics, The concept of the importance of Mathematics Education in today's complex society, Methods used for Teaching Mathematics at elementary and secondary level.

Unit-II Technology in Mathematics Teaching and Learning: Marks-15

Use of Technology in Teaching and Learning Mathematics, Construction of Mathematical ideas through Technology, Mathematics on World Wide Web (WWW): Technology Principle and Standards, Role of IT in Mathematics Learning, Preliminary idea about Mathematical Software like SPSS, MATLAB etc. Use of Spreadsheets (MS Excel) in geometry and Algebra.

Unit–III Statistical Tools Used in Social Science Research through SPSS: Marks-20

Research issues: Research questions and Null hypotheses. Questionnaires, Sampling, Data Collection, Data Analysis and Interpretation of Data.

Uses of SPSS in Research: Inputting Data, Reliability and Validity of Data, Descriptive Statistics, Variance, Standard Error, Correlation analysis. Regression Analysis, T-test: Paired t- test, Chi-Square Test, Analysis of Variance (ANOVA).

Unit-IV Project-cum-Survey Report in consonance with the course covered by this course.

Marks-30

TEXT BOOKS:

Unit-I:

- 1. L. Mishra: Teaching of Mathematics (2008), A.P.H. Publishing Corporation, New Delhi.
- 2. Meaning in Mathematics, July 14, 2011, John Polkinghorne, Oxford University Press.
- **3.** *C. S. Seshadri:* Studies in the History of Indian Mathematics (Culture and History of Indian Mathematics), *15 Aug 2010, Hindustan Book Agency*.

Unit-II:

1. P. Kupar & K. Nissinen: Background factors behind mathematics achievement in Finnish education context. Available on line

- http://www.iea.nl/fileadmin/user_upload/IRC/IRC_2013/Papers/IRC-2013_Kupari_Nissinen.pdf
- 2. Abedi, Jamal: Lord, Carol. and Hofstetter, Carolyn. (1998): IMPACT OF SELECTED BACKGROUND VARIABLES ON STUDENTS' NAEP MATH PERFORMANCE. Available online https://www.cse.ucla.edu/products/reports/TECH478.pdf
- 3. A. Cuoco, E. P. Goldenberg & J. Mark: Habits of mind; an organizing principle for mathematics curriculum. (E. A. Maher, Ed.) Journal of Mathematical Behavior, 15, 375-402 (1996).
- 4. NCERT.(2005).National Curriculum Framework, New Delhi.

Unit-III:

- 1. Technology in Teaching and Learning Mathematics. Available online www.nctm.org/.../**Technology-in-Teaching-and-Learning-Mathematics**
- 2. Role of Technology in Teaching-learning Mathematics. Available on line http://www.ncert.nic.in/pdf_files/use%20of%20technology%20in%20%20teac hing%20-learning%20mathematics%20-pratimanayak.pdf
- 3. Kiran Pandya, SmrutiBulsari, Sanjay Sinha; SPSS in Simple Steps, Willey India
- 4. ASTHANA: Statistics for Social Sciences (With SPSS Applications)
- 5. Aljandali, Abdulkader: Quantitative Analysis and IBM® SPSS® Statistics- A Guide for Business and Finance; Springer
- 6. James O. Aldrich: Using IBM® SPSS® Statistics: An Interactive Hands-On Approach;
- 7. Alan C. Elliott: IBM SPSS by Example: A Practical Guide to Statistical Data Analysis

- 1. Dr. Anice James and Dr. P. S. Balasubramanium: Teaching of Mathematics, Neel Kamal Pub. Pvt. Ltd.
- 2. Kulbir Singh Sidhu, The Teaching of mathematics, Sterling Publishers Pvt. Ltd.
- 3. Dr. Anice James and Dr. JeyanhiAlwan, Skills and Strategies of Technology, Neel Kamal Pub. Pvt. Ltd.

THIRD SEMESTER MAT-O-508B: COMPUTER FUNDAMENTALS

Full Marks: 100 Term end: 50 Internal: 20 Practical: 30 Credit: 05

Contact Hours: 50

Objective: The objective of the course is to introduce students to fundamentals of Computer and its importance in day to day life.

Unit—I History and classification of Computers: Fundamental of Computer system:

Data types, number system, complements; floating point representation,
normalized floating point representation, fixed point representation,
arithmetic computations. Basic part of Computers- Input/ output, CPU,
memory technology; their working and characteristic, virtual memory,
peripheral device I/O interface, I/O bus, modes of data transfer. Marks-10

Unit—II Logical gates, Boolean algebra, truth tables, logic diagrams, logical expressions/functions, Demorgan's theorem, Karnaugh maps, sum of product and product of sum, combinational circuits, integrated circuits, adders, multiplexers, flip-flops: RS, D, JK, Master-Slave, registers and counters, RAM and ROM.

Marks-20

Unit-III Ms Word, Ms Excel, Ms Power Point, Ms Publisher. Marks-20

Unit-IV Practical in consonance with the materials covered by these courses.

Marks-30

TEXT BOOKS

- 1. Morris M. Mano: Computer System Architecture,.
- 2. V. Rajaraman: Fundamental of computers.
- 3. John P. Hayes: Computer Architecture and Organization.
- 4. Thomas C. Bartee: Digital Computer Fundamentals:

FOURTH SEMESTER MAT-C-511: Fluid Mechanics - II

Full Marks: 100 Term end: 80 Internal: 20 Credit: 05 Contact Hours: 50

Unit –I Newton's Law of Viscosity, Navier-Stokes equations of motion, Energy equation for viscous fluid, and Energy dissipation due to viscosity.

Marks-16

- **Unit –II** Dynamical similarity, Dimensional analysis, Buckingham- π -theorem, and its applications, Non-dimensional parameters and their importance. **Marks-12**
- Unit -III Exact solution of Navier Strokes Equation: Steady laminar Flow between plates, plane Poiseuille flow, Flow through a circular pipe, Laminar flow between two coaxial circular cylinders, Laminar flow between two concentric rotating cylinders.
 Marks-16
- **Unit –IV** Prandtl's boundary layer theory and its importance, Boundary layer thickness, displacement thickness, Momentum thickness, Energy thickness, Drag and Lift, Boundary layer equations in two dimensional flows, The Blasius solution, Boundary layer flow over a Wedge.

Marks-20

Unit –V Thermal boundary layer equation in two dimensional flow, Effect of Prandtl number in a boundary layer due to forced convection on a flat plate (Only for $Pr = 1, Pr = 0, Pr \rightarrow \infty$). **Marks-16**

TEXT BOOKS:

- 1. H. Schilchting: Boundary Layer Theory. McGraw Hill Book Co., New York.
- 2. M. D. Raisinghania: Fluid Dynamics, S. Chand and Co. Ltd.
- 3. Frank Chorlton: Text book of Fluid Dynamics, C.B.S Publishers, Delhi.

- 5. J. L. Bansal: Viscous Fluid Dynamics Oxford and IBH Publishing Co. Calcutta.
- 6. W. H. Besant and A.S. Ramsay: A treatise on Hydrodynamics Part-II, CBS Publishers, Delhi.
- 7. G. K. Batchelor: An Introduction to Fluid Dynamics, Cambridge University Press (1970).

FOURTH SEMESTER MAT-C-512: GRAPH THEORY

Full Marks: 100 Term end: 80 Internal: 20 Credit: 05 Contact Hours: 50

- Unit-I Graphs, Vertex and Degree, Sub graphs, Walks, paths and circuits, Digraphs,
 Connected graphs, Paths connected, disconnected graphs and components;
 Vertex Degrees and graphic sequences, Bipartite graphs, Operations on graphs.

 Marks-16
- Unit-II Cut points, bridges and blocks, Weighted graphs, Block graphs and cut point graphs, Trees, Binary Trees, spanning trees, spanning trees in a weighted graph.
 Marks-16
- Unit-III Eulerian and Hamiltonian graphs, Line graphs. Factorizations:
 1- Factorizations, 2 Factorization, Covering and critical points. Marks- 16
- Unit-IV Planner graphs, Outer planer graphs, Euler's polyhedron Formula, Kuratowski's Theorem, The chromatic number. Five color theorem, Four color Conjecture.
 Marks-16
- Unit-V Matrix representation of graphs: Adjacency matrix, incidence matrix, Circuit matrix. Fundamental Circuit matrix and rank. Application to a switching Network. Cut set Matrix.
 Marks- 16

TEXT BOOKS

- 1. N. Deo: Graph Theory with applications to Engineering and Computer Science; PHI.
- 2. Harary: Graph Theory; Narosa Pub. House.
- 3. D.B. West: Introduction to Graph Theory (2nd ed.) Narosa Pub House, New Delhi.

- 1. Gary Chartranel and Ring Zhang: Introduction to Graph Theory; Tata McGraw Hill Ed.
- 2. K. R. Parthasarthy: Basic Graph Theory, Tata Mac Graw Hill (1994).
- 3. R. J. Wilson: Introduction to Graph Theory (4 ed.) Pearson Education Singapore (2003).

FOURTH SEMESTER MAT-E-513: WAVELETS AND APPLICATIONS

Full Marks: 100 Term end: 80 Internal: 20 Credit: 05

Contact Hours: 50

- **Unit-I** Fourier Analysis: Fourier transforms in $L^1(R)$, Basic properties of Fourier transforms, Fourier transforms in $L^2(R)$, Poisson's Summation formula, The Shannon sampling theorem and Gibbs's phenomenon, Heisenberg's uncertainty principle. **Marks-16**
- Unit-II Definition and examples of wavelets, Continuous wavelet transforms, Basic Properties of Wavelet transforms, continuous wavelet transform and Holder continuity.
 Marks-16
- Unit-III the Discrete wavelet transforms, Frames and Frame Operators, Orthonormal Wavelets.
 Marks-16
- **Unit–IV**Multiresolution Analysis: Definition of Multiresolution Analysis and Examples, Properties of scaling functions and Orthonormal wavelet Bases. **Marks-16**
- Unit-V Construction of wavelets, cardinal B-splines, Franklin wavelet, Battle-Lemarie wavelet, Daubechies' wavelets.Marks-16

TEXT BOOKS:

- 1. Lokenath Debnath: Wavelet Transforms and Their Applications, Birkhaus
- 2. Ingrid Daubechies: Ten lectures on wavelets, SIAM: Society for Industrial and Applied Mathematics

- 1. A. Boggess, and F. J. Narcowich: A First Course in Wavelets with Fourier Analysis, Wiley; 2 edition (September 8, 2009).
- 2. C.K. Chui: An Introduction to Wavelets, Academic Press.
- 3. Eugenio Hernandez, Guido L. Weiss: A first Course on Wavelets, CRC Press.
- 4. David F. Walnut: An Introduction to Wavelet Analysis, Birkhauser.
- 5. P. Wojtaszczyk: A Mathematical Introduction to Wavelet, CRC Press.

FOURTH SEMESTER MAT-E-514: FUZZY SET THEORY AND APPLICATIONS

Full Marks: 100 Term end: 80 Internal: 20 Credit: 05 Contact Hours: 50

- Unit-I Internal arithmetic, Multi-level interval numbers. Fuzzy Sets: Basic definitions, α level sets, Basic operations on Fuzzy sets, Types of fuzzy sets, Extension principle for fuzzy sets, t- norms; t- conorms, Fuzzy numbers, Arithmetic with Fuzzy numbers.
 Marks: 16
- Unit-II Fuzzy relations: Basic properties of fuzzy relations, Fuzzy relations and approximate reasoning, Properties of the Min-Max composition, Fuzzy relation equations, Fuzzy graphs; special fuzzy relations. Fuzzy functions on fuzzy sets.
 Marks: 16
- Unit–III Probability theory: Fuzzy measures, Evidence theory, Belief measure, Plausibility measure and necessity, Measures, Possibility distribution, Possibility theory, Probability of Fuzzy events, Possibility theory versus probability theory.
 Marks:16
- Unit-IV An overview of classical logic, Maltivalued logics, Linguistic variables,
 Linguistic modifiers, Truth, Propositions of fuzzy logic, Fuzzy quantifiers.
 Approximate reasoning, Fuzzy implications.

 Marks:16
- **Unit-V** Fuzzy decision making, multi criteria decision making, Multi stage decision making, Fuzzy ranking methods, Fuzzy controllers, Defuzzification.

Marks:16

TEXT BOOKS

- 1. George J. Klir and Bo Yuan: Fuzzy Sets and Fuzzy Logic Theory and Applications: PHI (1997).
- 2. H. J. Zimmermann: Fuzzy Set Theory and its Applications: 2ed, Kluwer Academic Publishers (1996).
- 3. George Bojadzieve and Maria Bozadzieve: Fuzzy Sets, Fuzzy Logic Applications: World Scientific (1995).

- 1. L. H. Tsoukalas and R.E. Uhring: Fuzzy and Neural Approaches in Engineering; John Wiley and Sons (1997).
- 2. H. T. Nguyen, N.R. Prasad, C.L. Walker and E.A. Walker: A First Crouse in Fuzzy and Neural Controls; Champan and Hall/ CRC Press, Taylor and Francis Group (2003).
- 3. J. Harris: Fuzzy Logic Application in Engineering Science; Springer (2006).

FOURTH SEMESTER

MAT-E-515: OPERATION RESEARCH

Full Marks: 100 Term end: 80 Internal: 20 Credit: 05 Contact Hours: 50

- Unit-I Non-linear Programming: General Non-Linear Programming Problem, Constrained Optimization with Equality Constraints, Constrained Optimization with Inequality Constraints, Kuhn-Tucker Conditions for General NLPP with m(<n) Constraints, Quadratic Programming, Wolfe's Modified Simplex Method, Beale's Method.
 Marks-16
- **Unit–II** Dynamic Programming: The recursive Equation Approach, Characteristics of Dynamic Programming, Dynamic Programming Algorithm, Solution of Discrete D.P.P., Solution of L.P.P. by Dynamic Programming. **Marks-16**
- **Unit–III** Queueing Theory: Queueing System, Elements of Queueing System, Operating Characteristics of Queueing System, Probability Distributions in Queueing System, Classification of Queueing Models, $(M/M/1, \infty/FIFO)$, (M/M/1, C/FIFO), $(M/M/N, \infty/FIFO)$ (M/M/1, GD/FIFO), Definition of Transient and Steady States, Poisson Queueing System.

 Marks-20
- **Unit–IV** Network Scheduling by PERT/CPM: Network and Basic Components, Logical Sequencing, Rules of Network Construction, Critical Path Analysis, Probability Considerations in PERT, Distinction between PERT and CPM.

Marks-12

Unit-V Information Theory: A Measure of Information, Entropy- The Expected Information, Entropy as a Measure of Uncertainty, Some Properties of Entropy Function, The Communication System, Channel Probabilities, Joint and Conditional Entropies, Mutual Information, Encoding.
Marks-12

TEXT BOOKS:

- 1. Kanti Swarup, P. K. Gupta and Mon Mohan: Operations Research, Sultan Chand & Sons.
- 2. Hamdy A. Taha: Operations Research: An Introduction, Pearson.

- 1. F. S. Hillier and G.J. Lieberman: Introduction to Operation Research: (6th edition) McGraw Hill. International edition: Industrial Engineering Series (1995).
- 2. R. Fletcher: Optimization, Academic Press (1969).
- 3. D. G. Luenberger: Introduction to Linear and Non linear Programming, Addison Wesley (1973).
- 4. N. S. Kambo, Mathematical Programming Techniques, East West Press (1997).
- 5. M. S. Bazarra and C. M. Shetty: Nonlinear Programming Theory and Algorithms, Wiley (1979).

FOURTH SEMESTER MAT-E-516: MEASURE THEORY

Unit-I Algebras and sigma – algebras, measures, measurable space, outer measures, measurable sets, Lebesque measure and its properties, non-measurable sets.

Marks-10

- Unit-II Measurable functions and their properties, Egoroff's theorem. Marks-10
- Unit-III Lebesgue integration; simple functions, integral of bounded functions over a finite measure, bounded convergence theorem, integral of non negative functions, Fatou's Lemma, monotone convergence theorem, the general Lebesgue integral, Lebesgue convergence theorem.

 Marks-20
- **Unit-IV** Signed measures, Hahn and Jordan Decompositions, absolute continuity, Radon Nikodyn theorem, derivatives of signed measures. L_p spaces and their dual. **Marks-20**
- Unit-V Product measures, construction, Fubini's theorem and its applications. Finite and infinite dimensional product spaces.
 Locally compact spaces, regular measures. Haar measure.
 Marks-20

TEXT BOOKS

- 1. P.R. Halmos: Measure Theory; D. Van Nostrand Company; 1962
- 2. D.L. Cohn: Measure Theory, Birkhauser, 1994
- 3. G. De Barra: Measure Theory and Integration; New Age International, 1981.

REFERENCE BOOKS

1. H.L. Royden: Real Analysis, PHI.

FOURTH SEMESTER MAT-E-517: SPACE DYNAMICS

Full Marks: 100 Term end: 80 Internal: 20 Credit: 05 Contact Hours: 50

- Unit-I Basic formulae of a spherical triangle The Two-body problem: The motion of the centre of mass, The relative motion. Kepler's equation. Solution by Hamilton Jacobi theory. The Determination of Orbits: Laplace and Gauss Methods.
 Marks-16
- Unit-II The Three Body problem: general three Body Problem. Restricted Three Body Problem. Jacobi integral. Curves of zero velocity. Stationary solutions and their stability. The n-body problem: The motion of the centre of Mass. Classical integrals.

 Marks-16
- Unit-III Perturbation: Equation of motion under perturbative force and the results of the perturbed elements. Osculating orbit, perturbing forces. Secular and Periodic perturbations.
 Marks-12
- Unit-IV Flight Mechanics: rocket performance in Vacuum, vertically ascending paths. Gravity twin trajectories. Multi-stage rocket in a vacuum. Definitions pertinent to single stage rocket, performance limitations of single stage rockets. Definitions pertinent to multi stage rockets. Analysis of multi-stage rockets neglecting gravity. Analysis of multi-stage rockets including gravity.

Marks-20

Unit-V Rocket performance with Aerodynamic forces. Short-range non-lifting missiles. Ascent of a sounding rocket, some approximate performance of rocket powered ait-craft.
Marks-16

Text Books

- 1. J.M.A. Dandy: Fundamentals of Celestial Mechanics; The Macmillan Company (1962).
- 2. E. Finlay Freudlich: Celestial Mechanics; The Macmillan Company (1958).
- 3. Ralph Deutsch: Orbital Dynamics of Space Vehicles; Prentice Hall INC. Engle Wood Cliff. New Jersey (1963).

Reference Books

- 1. Theodre E. Sterne: An Introduction of Celestial Mechanics; Intersciences Publishers. INC (1960).
- 2. Angelo Miele: Flight Mechanics Vol-I: Theory of Flight Paths; Addition Wiley Publishing Company INC (1962).

FOURTH SEMESTER *MAT-E-518: ALGEBRAIC TOPOLOGY*

Full Marks: 100 Term end: 80 Internal: 20 Credit: 05 Contact Hours: 50

- **Unit-I** Fundamental Group, Homotopy of maps between topological spaces, Homotopy equivalence, Contractable and Simply. Connected spaces, Fundamental Groups of S^1 and $S^1 \times S^1$.

 Marks- 15
- **Unit–II** Calculation of Fundamental Groups of S^n , n>1 using Van–Kampen's theorem, Brouwer Fixed Point theorem, Fundamental theorem of Algebra, Vector fields on planar sets, Frobenius theorem for 3×3 matrices. **Marks-20**
- **Unit–III** Covering spaces, Unique Path Lifting theorem. Covering Homotopy theorems, Group of covering transformations, Criterion of lifting maps in terms of Fundamental Groups, Universal covering and its existence, spherical cases of manifolds and topological groups.

 Marks 20
- Unit-IV Singular Homology, Reduced Homology, Eilenberg- Steenrod axioms of Homology (no proof for homotopy invariance axiom, excision axiom and exact sequence axiom) and their application, Relation between Fundamental Group and First homology Group.

 Marks-15
- **Unit-V** Calculation of Homology Groups of S^n , Brouwer Fixed Point theorem for $f: \Gamma^n \to \Gamma^n$, Application to Spheres, Vector Fields. **Marks-10**

TEXT BOOKS:

- 1. M. Greenberg and J. R. Harper: Algebraic Topology: A first course, Addision Wesley Publishing Co.
- 2. W. S. Massey: Algebraic Topology: An Introduction, Harcourt, Brace and World Inc.

REFERENCE BOOK:

1. Allen Hatcher: Algebraic Topology

FOURTH SEMESTERMAT-E-519: STOCHASTIC PROCESSES

Full Marks: 100 Term end: 80 Internal: 20 Credit: 05 Contact Hours: 50

- Unit-I Generating Functions, Laplace Transformations, Stochastic Process:
 Introduction, specification of Stochastic Processes, Recurrent Events, Random walk models: gambler's ruin model, Markov Chain.
 Marks 16
- **Unit-II** Markov Processes in continuous time: introduction, Poisson process, Simple birth process, Simple death process, the simple birth and death process.

Marks 16

- Unit-III The Polya process, Brownian Motion Process. Weiner Process, Introduction to Epidemic Processes: simple epidemics, general epidemics. Marks 16
- Unit-IV Introduction to Rennewal Processes, Renewal equation, Renewal theorems,
 Delayed and Equilibrium renewal process. Introduction to discrete Branching
 processes: Galton-Watson branching process.

 Marks 16
- **Unit-V** Queueing process: Basic characteristics of queueing system, different performance measures. Steady state solution of Markovian queueing models: M/M/1, M/M/C. Introduction to diffusion processes: Diffusion limit of random walk, diffusion limit to a discrete branching process. **Marks 16**

TEXT BOOKS:

- 1. Norman T.J. Bailey: The elements of Stochastic Processes- with applications to the natural sciences. John Wiley & Sons, New York (1990).
- 2. J. Medhi.: Stochastic Processes. Wiley Eastern Ltd. New Delhi (1994).

- 1. W. Feller: An Introduction to Probability Theory and its Applications. Vol. I, John Wiley, New York (1968).
- 2. S. M. Ross: Stochastic Process, Wiley, New York (1983).

FOURTH SEMESTER

MAT-E-520: Rings and Modules

Full Marks: 100 Term end: 80 Internal: 20 Credit: 05 Contact Hours: 50

Unit-I Preliminaries on rings and ideals; Primeness; Local and Semi Local Rings; Artiinian and Noetherian Rings; Nil Radical and Jacobson Radical.

Marks: 20

- **Unit-II** Modules (Definition and Examples), Direct Sums, Free Modules. **Marks-10**
- **Unit–III** Quotient Modules, Homomorphisms, Simple Modules, Modules over PID's. **Marks-10**
- Unit-IV Finitely Generated Modules; Exact Sequences; Chain Conditions; Ascending Chain Conditions on Modules; Maximal Condition; Noetherian Modules; Descending Chain Condition; Minimal Condition, Artinian Modules; their properties.

 Marks: 20
- Unit-V Essential Extensions; Injective Hulls; Semisimple Modules; The Singular Submodules.

 Marks: 20

TEXT BOOKS

- 1. M.F. Atiyah and I.G. Macdonald: Introduction to Commutative Algebra; Addition Wesley (2000).
- 2. C. Musili, Introduction to Rings and Modules, Narosa Publishing House, New Deelhi (1999).
- 3. K.R. Goodearl Rings and Modules, Marcel Dekker Inc, New York (1976).

- 1. M. Reid: Undergraduate Commutative Algebra; London, Math. Soc. (1995).
- 2. S. Lang: Algebra: Addison-Wesley Publishing Company, London (2000).
- 3. H. Matsumura: Commutative Algebra; Benjamin/ Cummings Pub. Company (1980).
- 4. A.W. Chatters and C.R. Hajarnavis: An Introduction Course in Commutative Algebra; Oxford University Press (1998).
- 5. David Eisenbud: Commutative Algebra; Springer (1960).
- 6. C. Musili, Introduction to Rings and Modules, Narosa Publishing House, New Deelhi (1999).

FOURTH SEMESTER MAT-E-521: ADVANCED FUNCTIONAL ANALYSIS

Full Marks: 100 Term end: 80 Internal: 20 Credit: 05 Contact Hours: 50

- Unit—I Topological vector space, separation properties, boundedness and continuity, seminorms and local convexity, Quotient spaces. Weak topology of a topological vector space, weak*-topology of a dual space, Banach-Alaoglu theorem, Krein-Milman theorem, Milman theorem.

 Marks-16
- **Unit-II** Uniform, strong and weak convergences. Compact linear operators on normed linear spaces; the separability of the Range and spectral properties of a compact operator; operator equations involving compact operators.

Marks-16

Unit-III Bounded operators on Hilbert spaces; spectral properties of bounded self adjoint linear operators; positive operators and their square root; projection operators; spectral representation of a bounded self adjoint linear operator.

Marks-16

- Unit-IV Spectral measure; spectral theorem for bounded normal operators.

 Functional calculus and spectral mapping theorem for analytic functions;

 Riesz decomposition theorem. Numerical range of an operator; spectral radius; subnormal and hyponormal operators; partial isometries; polar decomposition.

 Marks-16
- Unit-V Unbounded linear operators and their Hilbert adjoint operators; symmetric and self adjoint linear operators; spectral properties of self adjoint linear operators; closable operators and their closures; spectral representation of unitary and self adjoint linear operators; multiplication operator and differentiation operator.

 Marks-16

TEXT BOOKS:

- 1. Kreyszig, Erwin, Introductory functional analysis with applications, John Wiley and Sons (1978).
- 2. Rudin, W., Functional Analysis, McGRAW-Hill (1991).
- 3. Douglas, R.G., Banach Algebra Techniques in Operator Theory, Academic Press (1972).

REFERENCES:

- 1. P. R. Halmos: Introduction to Hilbert spaces and theory of spectral multiplicity, Chelsea Publishing Co., New York (1957).
- 2. G. Bachman and L. Narici: Functional Analysis, Academic Press, New York (1966).
- 3. J. B. Conway: A course in Functional Analysis, Springer Verlag, New York (1985).
- 4. Peter A. Fillmore: Notes on operator theory, Van Nostrand Reinhold Company, New York (1970).
- 5. Mischa Cotlar and Roberto Cignoli, An Introduction to Functional Analysis, North-Holland Publ. Company
- 6. Ruth F. Curtain and A.J. Pritchard, Functional Analysis in Modern Applied Mathematics, Academic Press, London (1977).
- 7. Terry J. Morrison, Functional Analysis: An Introduction to Banach space theory, John Wiley and Sons Publ.
- 8. Charles Swartz, An Introduction to Functional Analysis, Marcel Dekker Inc.

FOURTH SEMESTERMAT-E-522: THEORY OF DISTRIBUTION AND SOBOLEV SPACES

Full Marks: 100 Term end: 80 Internal: 20 Credit: 05

Contact Hours: 50

Unit-I Test Function and distribution: Definition, operations with distributions, convolution of distributions, Fourier transform of tempered distributions.

Marks-16

Unit-II Sobolev spaces: Definition and properties, extension theorem, imbedding and completeness theorem, fractional order Sobolev spaces, trace theory.

Marks-16

Unit-III Distributions in Locally convex spaces and distributions on Manifolds.

Marks-16

- **Unit-IV** Application to Elliptic Problems: Weak solution of elliptic boundary value problem (BVP),regularity of weak solutions, maximum principle, eigenvalue problems, fixed point theorems and their application in semilinear elliptic BVP.

 Marks-16
- Unit-V Some techniques from nonlinear analysis: Banach, Brouwer, Schauder and Schaeffer fixed point theorems, The Galerkin methods, Monotone Iterations, Variational Methods, Pohozaev's Indentity.
 Marks-16

TEXT BOOKS:

- 1. S. Kesavan: Topics in Functional Analysis and Applications, Wiley Eastern Ltd., New Delhi (1989).
- 2. R. S. Pathak: A Course in Distribution Theory and Applications, Narosa Publications (2009).
- 3. R.A. Adams: Sobolev Spaces, Academic Press (1975).

REFERENCES:

- 1. J.T. Oden and J. N. Reddy: An Introduction to Mathematical Theory of Finite Elements, Wiley Interscience (1976).
- 2. Brennan, K. E. and Scott., R.., The Mathematical Theory of Finite Element Methods Springer-Verlag, Berlin (1994).
- 3. Elliot H. Lieb and Michel. Loss: Analysis, Narosa Publishing House, New Delhi (1997).
- 4. Robert S. Strihartz: A guide to Distribution Theory and Fourier Transforms, (Studies in Advanced Mathematics), CRC Press, USA (1994).

FOURTH SEMESTER MAT-E-523: BIOMECHANICS

Full Marks: 100 Term end: 80 Internal: 20 Credit: 05

Contact Hours: 50

- Unit-I Biomechanics, Method of approach, Tools of investigation, Stresses and rates of strain, Constitutive equations, Newtonian viscous fluid, Hookean elastic solid, Visco elasticity, Biological transport process, Basic momentum, Heat and mass transport concepts.

 Marks-22
- Unit-II Conservation laws; mass conservation, Momentum conservation, Energy conservation.

 Marks-12
- Unit–III Biofluid dynamics concept, Transport phenomena and the cardiovascular system.

 Marks-12
- Unit-IV Biofluid mechanics of organ systems, The lungs, The Kidneys and the lever.

 Marks-12
- **Unit-V** Micro-circulation, Pressure distribution in micro vessels, Pressure in the intesstitial space, Velocity distribution in micro vessels, The velocity-Hemotocrit relationship, mechanics of flow at very low Reynold numbers.

Marks-22

TEXT BOOKS

- 1. Y. C. Fung: Biomechanics, Springer-verlag.
- 2. Clement Kluinstreuer: Biofluid Dynamics Taylor and Francis.
- 3. S.A.Levin: Frontier in Mathematical Biology.
- 4. Ricciardi: Biomathematics.