1	Which country tournament?	will host t	orld Cup 2022			
	a) France	b) Qatar	c) Brazil	d) Japan	В	Qatar
2	Which country (ICC) World Cu	will host the 202	23 International	Cricket Council		
	a)England	b) Australia	c) India	d) South Africa	C	India
3	The capital city	of Ukraine is				
	a) Kyiv	b)Kharkiv	c) Odessa	d) Dnipro	А	Kyiv
4	In which year, a of India?	Arunachal Prad	esh became a f	full-fledged state		
	a)1985	b) 1986	c) 1987	d) 1988	C	1987
5	Where the Shiru	ii Lily grows?				
	a) Tripura	b) Mizoram	c) Manipur	d) Nagaland	В	Manipur
6	Select the wrong	gly spelt words				
	a) career	b) callous	c)calander	d) carriage	С	calander
7	Select the wrong	gly spelt word ir	the following	words.		
	a) expire	b) explicit	c) explode	d)exploite	D	exploite
8	In each of the fo word.	bllowing questio	ns, choose the c	correctly spelt		
	a)Bouquete	b) Bouquet	c)) Boquet	d)Bouquette	В	Bouquet
9	One who damag	es public prope	rty			
	a) Cynosure	b) Demagogue	c) Epicure	d) Vandal	D	Vandal
10	Find the Error S "He has made a No error (D)"	ection in the fol mistake (A)/ of	lowing sentence which (B) / I as	e m certain (C) /		
	a) A	b) B	c) C	d) D	D	No error
11	My sister's marr	iage passed	peacefully.			
	a) away	b) by	c) off	d) out	C	off

12	Health is too in	nportant to be						
	a) discarded	b) disposed	c) neglected	d) detested	C	neglected		
13	Tsunamis are no	ot caused by						
	a) Hurricanes	b)) Earthquakes	c)) Earthquakes	d) Volcanic eruptions	А	Hurricanes		
14	The hottest plan	et in the solar s	ystem?					
	a) Mercury	b) Venus	c) Mars	d) Jupiter	В	Venus		
15	Where was the	electricity suppl	y first introduce	ed in India –				
	a) Mumbai	b)) Dehradun	c) Darjeeling	d)) Chennai	С	Darjeeling		
16	Gravity setting	Gravity setting chambers are used in industries to remove						
	a) NO _x	b)SO _x	c) CO	d) suspended particulate matter	D	suspended particulate matter		
17	Friction can be	reduced by char						
	a) rolling to sliding	b) sliding to rolling	c) dynamic to static	d) potential energy to kinetic energy	В	sliding to rolling		
18	Garampani sanc	ctuary is located	at					
	a)Gangtok, Sikkim	b) Kohima, Nagaland	c)Diphu, Assam	d) Junagarh, Gujarat	С	Diphu, Assam		
19	Today is Varu will be twice Varun today?	in's birthday. as old as he w	One year from as 12 years ag	n today he go. How old is				
	a)20 years	b)21 years	c)22 years	d)25 years	D	25		
20	Joule is relate related to	d to Energy in ?	n the same wa	y as Pascal is				
	a)Purity	b)Density	c)Pressure	d)Volume	C	Pressure		
21	Museum is rel as Prison is re	lated to Curate	or in the same ?	way				
	a)Warden	b)Jailor	c)Monitor	d)Manager	В	Jailor		
22	A man has Rs. 4 five-rupee notes	480 in the denor and ten-rupee 1	ninations of one notes. The numb	e-rupee notes, ber of notes of				

	each denominati	each denomination is equal. What is the total number of notes				
	that he has ?	that he has ?				
	a) 45	b) 60	c) 75	d) 90	D	90
23	What is the prod	uct of all the nu	mbers in the dia	l of a		
	telephone?					
	a) 158480 b)159480 c)159990 d)None of					None of these
				these		
24	There are deer a	ind peacocks in	a zoo. By count	ing heads they		
	are 80. The num	ber of their legs	s is 200. How ma	any peacocks		
	are there?					
	a) 20	b) 30	c) 50	d) 60	D	60

25	The region v	vhere the electrons	and holes diffused	across the junctio	n is called	
	(A) De pletion Junctio n	(B) Depletio n region	(C) Depletion space	(D) Depleti on boundary	Depletion region	В
26	Which of the	following metals for	ms an amalgam with	other metals?	·	<u>.</u>
	a) Tin	b) Mercury	c) Lead	d) Zinc	Mercury	В
27	How many t	erminals a MOSFET	has?			
	a) 3	b)5	c)4	d)6	4	С
28	In which reg	ions a MOSFET woi	rks as a 'Switch"			
	a)Saturatio n, Linear	b) Cut off, linear	 c) Saturation, Cut off 	d) Cutoff, Cutoff	Saturation, Cut off	С
29	BJT is a Device					
	a)Current controlled	b)voltage controlled	c)both	d)none	Current controlled	A
30	n- type semi	conductor is doped	l with			
	a)acceptor	b)doner	c)both	d)neutral	doner	В
31	Width of de	pletion region incre	ases in			
	a)Forward bias	b)reverse bias	c) in both bias	d)does not change	reverse bias	В
32	Electric pres	sure is also called			·	·
	a)Resistanc e	b)Power	c)Voltage	d)Energy	Voltage	C
33	Which of fol	lowing can be used	to measure absolu	te resistance		
	a)Lorentz	b)ReleighMehto	C)Ohm's Law	d)Wheatstone	Ohm's Law	D

	Method	d		Bridge Method			
34	Which is the	best conductor of	Electricity				
	a)Iron	b)Silver	c)Copper	d)Carbon	Silver	В	
35	A line which	cuts a pair of paral	lel lines is called				
	a)tangent	b)chord	c)transversal	d)intersector	intersector	С	
36	An angle wh	ose value is c	alled complete angl	le	•		
	a)180	b)240	c)360	d)none	360	С	
37	If a certain s of interest is	um of money can b	ecome 5 times of it	s principal in 10 ye	ears, then the rat	e	
	a)20%	b)30%	c)40%	d)50%	40%	С	
38	The areas of two similar triangles are 81 sq. cm and 49 sq. cm. Find the ratio of their corresponding heights						
	a)9:7	b)7:9	c)6:5	d)89:49	9:7	А	
39	What is the	What is the full form of FIFO					
	a)Fan-in	b)First in First	c)final-in Final-	d)None of	First in First	В	
	Fan-Out	out	out	these	out		
40	For superco	nductors, magnetic	susceptibility is				
	a)Zero	b)+1	c)Infinite	d)-1	-1	D	
41	The unit of r	adioactivity is					
	a)Curie	b)Becquerel	c)Henry	d)Both a and b	Both a and b	D	
42	Mesons are	elementary particle	es that consists of				
	a)Photons	b)Quarks	c)One quark and	d)Hadrons	One quark	С	
	and		one anti quark		and one anti		
	neurons				quark		
43	A resistor w	ith colour bands: re	d-red-red-gold, has	the value:		1_	
	a)22k 5%	B)2k2 5%	c)220R 5%	d)22R 5%	2k2 5%	В	
44	Name the th	ree leads of a BJT					
	a)Collector	b)Base Collector	c)Emitter	d)Collector	Collector Base	D	
	Bias	Case	Collector Blas	Base Emitter	Emitter		
45	The number	(104" on a canacit	or indicator				
45				d)both a and b	both a and b		
	a)0.10	0)1000	CITU	upoth a and b	a both a and b	יטן	

46	A semiconduc	A semiconductor is formed by bonds.							
	a) Covalent	b) Electrovalent	c) Co-ordinate	d) None of the above	а	Covalent			
47	A semiconduc	tor has ter	perature coefficie	nt of resistance					
	a) Positive	b) Zero	c) Negative	d) None of the above	С	Negative			
48	The most com	monly used semic	onductor is		I				
	a) Germanium	b) Silicon	c) Carbon	d) Sulphur	b	Silicon			
49	When a penta	valent impurity is a	added to a pure sei	miconductor, it be	con	ies			
	a) An	b) An intrinsic	c) p-type	d)n-type	d	n-type			
	insulator	semiconductor	semiconductor	semiconductor		semiconductor			
50	The random n	notion of holes and	l free electrons due	e to thermal agitat	ion	is called			
	a) Diffusion	b) Pressure	c) Ionisation	d) None of the above	а	Diffusion			
51	In a pnp transistor, the current carriers are								
	a) acceptor ions	b) donor ions	c) free electrons	d) holes	d	holes			
52	In a transistor	, $I_c = 100 \text{ mA and } I_F$	= 100.2 mA. The v	alue of β is					
	a) 100	b) 50	c) about 1	d) 200	d	200			
53	The relation b	etween β and α is							
	a) $\beta = 1 / (1$	b) $\beta = (1 - \alpha) /$	c) $\beta = \alpha / (1 - \alpha)$	d) $\beta = \alpha / (1 + \alpha)$	С	$\beta = \alpha / (1 - \alpha)$			
	-α)	α))					
54	An oscillator c	converts							
	a) a.c. power	b)d. c. power	c) mechanical	d) none of the	b	d. c. power into			
	into d.c.	into a.c. power	power into a.c.	above		a.c. power			
	power		power						
55	In an LC transi	istor oscillator, the	active device is						
	a) LC tank circuit	b) Biasing circuit	c) Transistor	d) None of the above	С	Transistor			

56	Hartley oscillator is commonly used in							
	a) Radio	b) Radio	c) TV receivers	d) None of the	а	Radio receivers		
	receivers	transmitters		above				
57	In an AM wav	e useful power is c	arrier by					
	a) Carrier	b) Sidebands	c) Both sidebands and carrier	d) None of the above	b	Sidebands		
58	As the modula	ation level is increa	sed, the carrier po	wer				
	a) Is	b) Remains the	c) Is decreased	d) None of the	b	Remains the		
	increased	same		above		same		
59	In radio transmission, the medium of transmission is							
	a) Space	b) An antenna	c) Cable	d) None of the above	а	Space		
60	A switch has							
	a) One state	b) Two states	c) Three states	d) None of the above	b	Two states		
61	The universal gate is							
	a) NAND gate	b)AND gate	c)E-xor gate	d)OR gate	а	NAND gate		
62	In Boolean alg	gebra, the bar sign	(-) indicates					
	a) OR	b) AND	c) NOT	d) None of the	С	NOT operation		
	operation	operation	operation	above				
63	A decade cou	nter skips						
	a) binary	b) binary states	c) binary states	d) binary states	С	binary states		
	states 1000	0000 to 0011	1010 to 1111	1111 to higher		1010 to 1111		
	to 1111							
64	For the gate in A	n the given figure t ∞——	he output will be					
	a) 1	b)0	c)A	d) Ā	d	Ā		

65	The circuit in t	the given figure is a	a gate.					
	$\begin{array}{c} A \\ \hline V(0) \\ \hline V(1) \\ B \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline V \\ \hline \end{array} \\ \hline \end{array} \\ \hline V \\ \hline \end{array} \\ \hline \end{array} \\ \hline V \\ \hline \end{array} \\ \hline $ \\ \hline \bigg \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \hline \bigg \\ \hline \end{array} \\ \hline \\ \hline \bigg \\ \hline \end{array} \\ \hline \\ \hline \bigg \\ \hline \bigg \\ \hline \end{array} \\ \hline \bigg \\ \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\							
		•V _R						
	a) positive logic OR gate	b) negative logic OR gate	c) negative logic AND gate	d) positive logic AND gate	b	negative logic OR gate		
66	The basic stor	age element in a di	igital system is					
	a) flipflop	b) counter	c) multiplexer	d) encoder	а	flipflop		
67	A JFET is simila	ar in operation to	valve	I	<u> </u>			
	a) diode	b) pentode	c) triode	d) tetrode	b	pentode		
68	A moving-coil permanent-magnet instrument can be used as by using a low resistance shunt.							
	a) ammeter	b) voltmeter	c) flux-meter	d) ballistic galvanometer	а	ammeter		
69	In a 3-phase power measurement by two wattmeter method, the reading on one of the wattmeter is zero. The power factor of the load must be							
	a) unity	b) 0.5	c) 0.3	d) zero	b	0.5		
70	The best devic	ce to measure the t	true open circuit e.	m.f. of a battery is	;			
	a) D.C. voltmeter	b) ammeter and a known resistance	c) D.C. potentiometer	d) none of the above	С	D.C. potentiometer		
71	In liquid crysta	al displays, the liqu	id crystal exhibits p	properties of				
	a) Liquid	b) Solids	c) Gases	d) Both(a) and (b)	d	Both(a) and (b)		
72	Find the Eigen $A = \begin{bmatrix} 1 & 8 \\ 2 & 1 \end{bmatrix}$	values for the follo	owing 2×2 matrix.					
	a) -3	b) 2	c) 6	d) 4	а	-3		
73	If f(t) = 1, ther	its Laplace Transfo	orm is given by?					

	a) s	b) 1/s	c) 1	d) Does not	b	1/s		
				exist				
74	Let A and B be two events such that $P(A) = 1/5$ While $P(A \text{ or } B) = 1/2$. Let $P(B) = P$. For							
	what values o	f P are A and B ind	ependent?					
	a) 1⁄10 and	b) 3/10 and 4/5	c) 3⁄8 only	d) 3⁄10	С	3/8 only		
	3/10							
75	Consider a dic	e with the propert	y that that probabi	lity of a face with I	n do	ots showing up is		
	proportional t	o n. The probabilit	y of face showing 4	l dots is?				
	a) 1/7	b) 5/42	c) 1/21	d) 4/21	d	4/21		

76	The equation of the pla	ane through the points	s (1,-1,2) , (1,1,-2)a	und (-1,1,2) is		
	a)x+3y+2z-2=0	b)x-y+2z-2=0	c) $2x+2y+z-2=0$	d)x+y-z-2=0	c)	2x+2y+z
						-2=0
77	If 2 and 4 are the eiger	n values of square mat	rix A then the Eige	en values of A ^T are		
	a) 0.5, 0.25	b) 2, 4	c) 4, 16	d) 3, 2	b)	2,4
78	If A is skew-Hermitian	n, then (iA) is	1	I		
	a) Skew-symmetric	b) Symmetric	c) Hermitian	d)	c)	Hermitia
				Skew-Hermitian		n
79	When a LED has 2 V a	and produces 4				
	mW of optical power.					
	power is:-					
	a)3%	b)4%	c)5%	d)2%	d)	2%
80	Number of electron-ho	ble pairs generated div	rided by the numbe	er of photons is:-		
	a) Dark current	b) Quantum	c) Photo	d) Quantum	b)	Quantum
		efficiency	sensitivity	response		efficienc
						у
81	If the refractive index	of a media is 1.5, the	velocity of light in	the medium is:-		
	a) 3×10 ⁸ m/s	b) 1.5×10 ⁸ m/s	c) 1×10^8 m/s	d) 2×10 ⁸ m/s	d)	2×10^8 m/s
82	Electrical Zero Positio	n (EZP) in Linear Van	riable Differential	Transformer		
_	(LVDT) is:-					
	a) Position of	b) Position of	c) Position of	d) Position of ac	c)	Position

	primary winding coil	secondary	core	input voltage		of core
		winding coil		terminal		
83	One Hartley oscillator	circuit has two induct	tors of 0.5 mH and	each is tuned to		
	resonate with a capacit	tor which can be varie	ed from 100 pF to 5	00 pF, the upper		
	and lower frequencies	of oscillation are, resp	pectively: -			
	a) 712 kHz, 225 kHz	b) 503 kHz, 318	c) 503 kHz,	d) 712 kHz, 318	c)	503 kHz,
		kHz	225 kHz	kHz		225 kHz
84	In PCM system, if the	quantization levels ar	e increased from 3	to 9, the relative		
	bandwidth requiremen					
	a) be doubled	b) be tripled	c) remain same	d) become four	a)	be
				times		doubled
85	A system has three sta	ge cascaded amplifier	each stage having	a power gain of		
	10 dB and noise figure	of 6 dB. The overall	noise figure is:-			
	a)1	b)0	c)10	d)20	a)	1
86	A 2 MHz carrier is am	plitude modulated by	a 500 Hz modulati	ng signal to a		
	depth of 60%. If the ur	ower of the				
	modulated signal is:-					
	a) 1 kW	b) 2.17 kW	c)4.45kW	d) 22 kW	b)	2.17 kW
	24 shares la ser ta ha t	·	DCM If the second	1:	, 	
87	24 channels are to be t	r of quantization law	g PCM. If the samp	rad handwidth of		
	PCM is:	er of quantization leve	15 15 120, the requi			
	a) 240 KHz	b) 1.68 MHz	a) 81.6 KHz	d) 3 072 MHz	b)	1.68
	a) 240 KHZ	<i>b)</i> 1.08 WHIZ	c) 81.0 KHZ	u) 5.072 WHIZ	0)	1.00 MH7
00	If the flux density in a	certain magnetic mat	arial is 0.25 T and t	the area of the		IVITIZ
00	material is 25 mm^2 Th	e magnetic flux throu	ugh material is: -	the area of the		
	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	b) 2.5 uWb	c) 0.5 μ Wb	d) 25 uWb	2)	6.25
	a) 0.25 µw0	<i>b)</i> 2.5 μ w b	c) 0.5 µwb	u) 25 μ₩0	a)	0.25 uWb
	A microprocessor with	a 16 bit addraga bug	is used in a linear r	namory solation		μνυ
89	configuration with 4 m	a no-on address ous	vimum addrassable			
	a)64k			d)16k	d)	161/2
	a)04K	UJOK	C)4K	u)IUK	u)	IUK
90	When we use RRC ins	truction once in 8085	, the number is			
	a) multiplied by 2	b) divided by 2	c) Multiplied	d) Divided by 4	b)	divided
			by 4			by 2

91	In a digital system, if ($(211)_{x} = (152)_{8}$, then t	the value of base x	is					
	a)7	b)5	c)6	d)9	a)	7			
92	How many AND gates	s are required to realize	ze Y = CD + EF + G						
	a)3	b)4	c)2	d)5	c)	2			
93	A dc supply voltage ha	as a no load voltage o	f 30 V, and a full-l	oad voltage of 25					
	V at a full-load curren	t of 1 A. Its output res	sistance is						
	a) 5 Ω	b) 30 Ω	c) 25 Ω	d) 20 Ω	c)	25 Ω			
94	If the differential volta	ge gain and common	mode gain of a dif	ferential amplifier					
	are 48 dB and 2dB respectively. Then the common mode rejection ratio is:-								
	a)25 dB	b)23 dB	c) 46 dB	d) 50 dB	c)	46 dB			
95	A feedback amplifier l	has an open loop gain	of -100. If 4 % of	the output is fed					
	back in a degenerative	back in a degenerative loop, what is the closed loop gain of the amplifier?							
	a)-25	b)-33.3	c)-20	d)25	c)	-20			
96	A Zener regulator has	an input voltage from	n 15 to 20 V and a l	oad current 5 to					
	20 mA. If the Zener voltage is 6.8 V, the maximum value of a series resistor is:-								
	a)660 Ω	b)320 Ω	c)570 Ω	d)410 Ω	d)	410 Ω			
97	In an amplifier with no	egative feedback, the	bandwidth is:-						
	a)increased by a	b)decreased by	c)increased by	d)decreased by a	a)	increased			
	factor of $(1 + A\beta)$	afactor of	a factor of	factor of		by a			
		$(1 + A\beta)$	Aβ	Aβ		factor of			
						$(1 + A\beta)$			
98	In the circuit shown in	the figure, Vs is		•					
		5.60							
	§2Ω \$10 c	\$ 512	-0						
	4A ()	- 	s						
			-0						
	a)2.35V	b) 3.5V	c) 4.7V	d) 6.5V	c)	4.7V			
90	In the circuit shown in	the figure. the currer	$\frac{1}{10000000000000000000000000000000000$	esistor is					
33									

	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
	a)1.81A	b)2.96A	c)3.35A	d)4.23A	a)	1.81A
100	In the circuit shown in figure, the current in the 2 Ω resistor is					
	$\begin{array}{c} 20 \text{ A} \\ 2\Omega \text{ A} \\ 4\Omega \\ 4\Omega \\ 6\Omega \\ 0 \end{array}$					
	a) 5.25A	b) 4.75A	c) 6.25A	d)11.67A	d)	11.67A