RGUCET 22 Common Entrance Test, 2022 Ph.D. IN BOTANY

1	In dehydratio	n schedule wh	at is the funct	ion of olive-oil?			
	a) Removing traces of water	b) Cleaning the specimen		d) Improving the contrast	В	Cleaning the specimen	
2	Out of the lis	sted chemicals	which are no	t a mountant?			
		b) 70% ethanol	c) Euparal	d) DPX	В	70% ethanol	
3	Why xylene is	used at the e	nd of dehydra	tion series?			
	a) to replace ethanol from the material and to dissolve the mountant	absolute	c) cleaning the specimen	d) improving colour	A	to replace ethanol from the material and to dissolve the mountant	
4	How the destaining is done while staining algae or fungi with cotton-blue?						
	specimen with	specimen with distilled	c) washing specimen with lectophenol	d) washing with ethanol	С	washing specimen with lectophenol	
5	How to dest		specimen (st	em/ root/ leaf) staining			
		b) clean with olive-oil	c) wash with same concentratio n of ethanol in which dye is dissolved	d) wash in water and dehydrate again	С	wash with same concentration of ethanol in which dye is dissolved	
6				its is not correct for acrylamide gel?			
	a) It is	b)	c) It	d) Its resolution is	d	Its resolution is	
	more fragile.	Separate very large molecules.	processing is faster.	superior.		superior.	

7	Which one	of the followi	ng will not b	e needed while		
	performing	Agarose gel	electrophore	sis for visualization of a		
	particular D	NA segment	?			
	a)	b)	c)	d) TBE buffer	b	Coomassie brilliant
	Glycerol	Coomassie	Ethidium			blue
		brilliant	bromide			
		blue				
8	If any two s	ingle number	rs are selecte	d and they are		
	multiplied,	then the prob	he last digit will be 1 is			
		·				
	a) 2/9	b) 4/81	c) 1/25	d) 4/25	b	4/81
9	One card is	drawn rando	ack of 52 cards, then			
	what is the	probability th	nat it is a King	g of Hearts or Queen of		
	Hearts?					
	a) 1/13	b) 1/104	c) 1/52	d) 1/26	d	1/26
10	How much	amount of Na	OH is requir	ed to make 50 ml		
	solution of	concentratio	n 0.25 molar	per litre?		
	a) 100 mg	b) 12.5 mg	c) 200 mg	d) 400 mg	С	200 mg
11	For transfer	ring DNA ont	o nylon men	nbrane, the Agarose gel	(v)	
	is pre-treat	ed first with I	HCl then NaO	H and finally with		
	buffered sa	lt solution (pl	H 7). Select fr	rom the following, the		
	most right r	eason(s) for	doing such p	re-treatment.		
	(i) The D	NA backbone	is broken at	depurinated sites.		
	(ii) The do		ed DNA mole	cules become single-		
			transferred	more efficiently onto		
	-	membrane. inds easily to	the nylon m	emhrane		
	(iv) DNA b	inus easily to	tile Hylon III	EIIIDI alle.	<u> </u>	

	a) i, ii and	b) i, iii and	c) i, ii	and	d) i, ii, i	ii and iv	d	i, ii	, iii and iv
	iii	iv	iv						
12	Mean devia	ition can be o	comput	ted fro	m				
	a)	b) median	c) Raı	nge	d) Varia	ance	d	Vai	riance
	arithmeti								
	c mean								
13	Sonication use	ed in rDNA exp	perimer	nts is th	e proces	s in which			
1.4	a) sound way are used for agitating the particles in the solutions	waves a used for the part	re placid icles in tions	waves used t the pa in the solution	coplacid articles ons	d) Infrasonicsound waves are used for placid the particles in the solutions		for a	nd waves are used gitating the icles in the solutions
14	14 In genetic engineering, elution means								
	a) Separation the DNA from centrifuge to after centrifugation	n of prote lbe from recomb	in	recom	ertion of abinant nto host	are cut out from		DNA bands are cut ou from the gel	
		e screening o		techn	ology, w	hite colonies			
	a) non-	b) cells		c) cells	with	d) cells that hav	e not	C	cells with
	transformed	containi	ng	recom	binant	taken up the pla	asmid	I	recombinant
	plasmids	empty p	lasmid	plasmi	ds	vector			plasmids
		vectors		contai	ning a				containing a new
				new in	isert				insert
	With a pure sa	ample of DNA, ·	, the ra	l tio of th	ne absorb	ances at 260 and	280		
	a) 1.8	b) 1		c) 0.9		d) 2		Α	1.8

17	A proper technic	proper technique for staining gymnosperm leaves employs						
10	a) safranin with a fast green counterstain Which is the most e	only	c) Fast g		d) Cotto		A	safranin with a fast green counterstain
	element?	melent detector	ioi quantativ	e anary:	818 01 1800	opes of all		
	a) MS	b) DAD		c) IR		d) None of them	Α	MS
19	·							
	a) Chromatography b) Soxhlet apparatus c) Clevenger d) Centrifugation apparatus			С	Clevenger apparatus			
20	20 Liquid containing suspension can better be purified by							
	a) Crystallography b) Filtration c) Decantation d) Centrifugation				D	Centrifugation		
21	Which of the follow	ing wavelength r	anges is asso	ociated	with VIS-	spectroscopy?		
	a) 400 – 800nm	b) 200 – 8	300nm	c) 200 -	– 300nm	d) 850 – 1400nm	Α	400 – 800nm
	22 Under which frequency range functional groups of compounds can be detected by infrared spectroscopy?							
	a) 1400 - 600cm ⁻¹	b) a) 600		c) a) 30 100cm		d) a) 100 - 20cm ⁻¹	Α	1400 - 600cm ⁻¹
	Which of the following is the disadvantage of Nitrogen, which can be used as carrier gas in gas chromatography?							
	a)Dangerous to b) I use sen	Reduced sitivity	c) Expensive		d) High (density	В	Reduced sensitivity

24	RP-HPLC method contains					
	a) Polar b) Non-polar stationary phase stationary phase with non-polar with polar mobile phase		d) Non-polar stationary phase with non-polar mobile phase	А	Polar stationary phase with non- polar mobile phase	
	At which wavelength would yo analysis of Flavonoids?					
	a) (400-600)nm b) (500 – 700)	nm c) 200 – 300 nm	d) None of them	С	200 – 300 nm	

26	Which organization	on recognize the Biod	iversity Hotspots?			
	a) WWF	b) IUCN	c) UNO	d) BSI	В	IUCN
27	Which Biodiversit	y Hotspot covers the	state of Nagaland?			
	a) Eastern Himalaya	b) Himalaya	c) Indo-Burma	d) Sundaland	С	Indo-Burma
28	Recognize the pla	ed as NTFP.				
	a) Leaf	b) Seed	c) Bark	d) Root	A	Leaf
29	How many Biodiv	y?				
	a) 12	b) 06	c) 04	d) 03	С	04
30		of the species whose at and has high demar		•		
	a) Aloe vera	b) Artemisia vulgaris	c) Rauvolfia serpentina	d) Curcuma amada	С	Rauvolfia serpentina
31	Para-rubber plant	is a native of which o	country?			
	a) India	b) Malaysia	c) Brazil	d) Nigeria	С	Brazil
32	With which termi	nized in science?				
	a) Species	b) Land-races	c) Varieties	d) crop-lines	В	Land-races
33	How many Megac					

	a) 17	b) 26	c) 11	d) 35	A	17
34	Indicate the state	from the list in which	there is no Ramsar S	Site.		
	a) Tripura	b) Assam	c) Arunachal Pradesh	d) Manipur	С	Arunachal Pradesh
35	Which one of the	algae listed below pr	oduce phycocyanin p	igment?		
	a) Spirogyra communis	b) Spirulina pratensis	c) Porphyridium cruentum	d) Dunaliella salina	В	Spirulina pratensis
36	Select the group of Arunachal Prades	of flowers that can be h.	developed as floricu	ltural crop in		
	a) Marigold varieties	b) Dahlia varieties	c) Orchids	d) Lilies	С	Orchids
37	Which plant do yo increasing demar	ou think can be promo	oted for yielding biof	uel and has highly		
	a) Sugar cane	b) Castor	c) Mustard	d) Cassava	A	Sugar cane
38	Recognize two hi	ghly endangered spec	ies of North-east Indi	ia.		
	i) Vanda caerulea	ii) Coptis teeta	iii) Dendrobium densiflorum	iv) Drosera peltata		
	a) i & ii	b) i & iii	c) ii & iv	d) i, ii & iii	A	i & ii
39	Indicate the spec	2.				
	a) Azadirachta indica	b) Melia azedarach	c) Cassia fistula	d) Solanum indicum	A	Azadirachta indica
40	Autecology deals	with				
	a) Ecology of species	b) Ecology of many species	c) Ecology of community	d) All the above	а	Ecology of species
41	Ecotype is a type are	of species in which	environmentally in	duced variations		
	a) Temporary	b) Genetically fixed	c) Genetically not related	d) None of the above	b	b) Genetically fixed
42	The pyramid of e	nergy in any ecosys	tem is			
	a) Always upright	b) Maybe upright or inverted	c) Always inverted	d) None of the above	а	a) Always upright
43	Biotic potential is	s counteracted by				
	a) Competition with other organisms	b) Producer is the Largest	c) Limitation of food supply	d) None of the above	d	d) None of the above

						_
44	Species that occubarriers are	ır in different geogr	aphical regions sepa	arated by special		
	a) Allopatric	b) Sympatric	c) Sibling	d) mutualistic	а	a) Allopatric
45	Ecosystems resis	t change because th	ney are in a state of	?		
	(a) Imbalance	(b) Homeostasis	(c) Shortage of components	(d) Deficiency of light	b	(b) Homeostasis
46	Energy storage at	t the consumer level	•			
	(a) Gross primary productivity	(b) Secondary productivity	(c) Net primary productivity	(d) Net productivity	b	(b) Secondary productivity
47	Primary producti	vity				
	(a) is equal to the standing crop of an ecosystem.		(c) is the rate of conversion of light to chemical energy in an ecosystem.		С	(c) is the rate of conversion of light to chemical energy in an ecosystem.
48	Mass of living m	natter at a trophic le	vel in an area at any	time is called?		
	(a) standing crop	(b) detritus	(c) humus	(d) standing state	a	(a) standing crop
49	What type of pyr	amid shows the bes	t efficiency of an ec	osystem?		
	(a) Pyramid of number	(b) Pyramid of biomass	(c) Pyramid of volume	(d) Pyramid of energy	b	(b) Pyramid of biomass
50	Intermediate comcalled?	nmunities between p	oioneer and climax c	ommunities are		
	(a) Seral community	(b) Biotic community	(c) Temporary community	(d) Ecosphere	a	(a) Seral community
51			ar energy falls on the gy by photosynthesi			
	(a) Less than 1%	(b) 2 – 10%	(c) 30%	(d) 50%	b	(b) 2 – 10%
52	What is the name	e of the species that	invade a bare area?			
	(a) keystone species	_	(c) pioneer species	(d) rare species	С	(c) pioneer species
53	What is the name	e of the species that	invade a bare area?			
	(a) keystone species	(b) extinct species	(c) pioneer species	(d) rare species	С	(c) pioneer species

54	Survivorship is	the converse of				
	(a) mortality	(b) Natality	(c) Survival rate	(d) Age specificity	a	(a) mortality
55	Rate of change	of population at time	t is represented by			
	(a) rN	(b) 1-N/K	(c) LnR ₀ /T	(d) K	a	(a) rN
56	Which of the fo than cyclic flow	llowing in an ecosys	tem exhibits one-wa	ay flow rather		
	(a) Potassium	(b) Carbon	(c) Free energy	(d) Nitrogen	С	(c) Free energy
57	7 The construction of ecological pyramids does not involve the use of?					
	(a) Number of individuals	(b) Rate of energy flow	(c) Fresh weight	(d) Dry weight	С	(c) Fresh weight
58	=	pecies called whose r ly and is decreasing (als is greatly		
	a) Endangered	b) Rare	c) Vulnerable	d) Indeterminate	c)	Vulnerable
59	•	nolecular, genetic, a nomic importance is	•	ersity for		
	a) Biopiracy	b) Biofuel	c) Bioprospecting	d) Biodiversity	c)	Bioprospectin g
60	In which year th	e convention on Biolo	gical diversity was sig	ned?		
	a) 1990	b) 1991	c)1992	d) 1993	c)	1992

61	The sister ch	The sister chromatids are held together by a protein complex called						
	a) Securin	b) Cohesin	c) Adhesin	d) Histones	b	Cohesin		
62	Sporophore is							
	a) Equisetum	b) Azolla	c)Marselia	d) Adiantum	С	Marselia		
63	During meiotic prophase I, tight clustering of telomeres happens during which of the following stages?							
	a) Leptotene	b) Zygotene	c) Pachytene	d) Diplotene	b	Zygotene		
64	In which stage of meiosis I, chromosomes compaction is relatively more?							

	a) Zygotene	b) Pachytene	c) Diplotene	d) Diakinesis	d	Diakinesis		
65		ss of nuclear lamir	na is		ı			
	a) 1-2	b) 10-20	c) 1-10	d) 1-2	b	10-20		
	nanometer	nanometer	micrometer	micrometer		nanometer		
66	Which of the	e following humar	chromosomes do no	t contain of rRN	A go	enes?		
	a) 13	b) 14	c) 15	d) 16	d	16		
67	In plant nucl	eolus, mature ribo	osomal precursor par	ticles are found i	n			
	a) Fibrillar	b) Granular	c) Dense fibrillar	d) Nucleolar	С	Dense fibrillar		
	centre	component	component	Vacuoles		component		
68	Select the co	orrect sequence in	which sugars residue	es are added dur	ing	N-Linked		
	Glycosylatio	n of a polypeptide	<u>.</u>					
	a) N-	b) N-	c) Mannose,	d) Mannose,	b	N-		
	acetylgluso	acetylglusosam	Glucose, N-	N-		acetylglusosa		
	samine,	ine, Mannose,	acetylglusosamine	acetylglusosa		mine,		
	Glucose,	Glucose		min, Glucose		Mannose,		
	Mannose					Glucose		
69	69 The first sugar in O-linked glycosylation is added to a polypeptide by							
	glycoslytran	sferasein the Endo	oplasmic Reticulum. T	his addition hap	per	is to the		
	hydroxyl gro	up on the side ch	ain of the following a	mino acids excep	t			
		•						
	a) lysine	b)	c) threonine	d) serine	а	Lysine		
		hydroxylysine						
70	Which amin	o acid of histone p	proteins plays a major	role in binding t	o tl	he DNA?		
	a) Arginine	b) Histidine	c) Lysine	d) Asparagine	а	Arginine		
71	Which of the	following equation	ons between Linking	number (L). Twis	t (T) and Writhe		
		• .	supercoiled DNA?		- (,		
	a)L=100,	b) L=110,	c) L=95.5, T= 100	d) L=95,	С	L=95.5, T= 100		
	T=95.5 and	T=100 and W	and W = (-)4.5	T=100.1 and		and W = (-)4.5		
	W=4.5	=10	()	W =(-) 5.1		()		
	W-4.5 -10							
72	Which histo		ns the maximum num	ber of target am	ino	acids that can		
72	be subjected	ne protein contair	ns the maximum num nical modifications lea	_				
72	be subjected structure?	ne protein contair d to covalent chen	nical modifications lea	ading to a change	e in	chromatin		
72	be subjected	ne protein contair		_				

73	Which one of the following would have the highest Cot value?								
	a) Unique	b) Slightly	c) Moderately	d) Highly	a	Unique			
	sequence	repetitive	repetitive	repetitive		sequence			
		sequence	sequence	sequence					
74	A tool helpful in Homology and similarity search is								
	a) BLAST	b) EMBOSS	c) ROBETTA	d)	а	BLAST			
				AUTODOCK					
75	A stepwise method for solving computational problem is known as								
	a)	b) Flowchart	c) Procedure	d) Sequential	а	Algorithm			
	Algorithm			design					

76	Penicillin produ	ction requires	·			
	1 *	· ·	c) Aerobic fermentation only	0., /		Aerobic fermentation only
77	Most acetic acio	d is produced by _		•		
	a) Methanol	b) Methane	c) Methanol	d) Ethanol	Α	Methanol
	carbonylation	carbonylation	carboxylation	carbonylation		carbonylation
78	Conversion of su	gar to alcohol in yea	ast fermentation is o	atalysed by which e	enzym	ie?
	a) Ptyalin	b) Zymase	c) Diastase	d) Renin	В	Zymase
79	Smoked meats presence of	are associated wit	th an increased risl	k for certain cance	rs du	e to the
	a) Deposited	b) Deposited	c)	d) Deposited	D	deposited
	PhIP	Aflatoxin	Tetracholordibenz	formaldehyde		formaldehyde
			o-p-dioxin			
80		·	ation is an inert cryo	genic fluid with a te	mper	ature of
	a) – 196 °C	b) – 320 °C	c) – 180 °C	d) – 150 °C	A	– 196 °C

81	The most primitive among the fungal groups are the

	a) Oomycetes	b) Myxomycetes	c) Zygomycetes	d) Chytridiomycetes	b	Myxomycetes
82	Nucleosome m	odel is a characteristic	feature of	·		
	a) Prokaryotes	b) Eukaryotes	c) Some Prokaryotes	d) Some Eukaryotes	b	Eukaryotes
83	In bacterial flage	lla, the motility is gene	rated from			
	a) The Filament	b) The Hook	c) The Basal body	d) Motor protein	С	The Basal body
84	Club root disease in Crucifers is caused by a member of					
	a) Oomycetes	b) Myxomycetes	c) Ascomycetes	d) Zygomycetes	b	Myxomycetes
85	The first organisr	n to have its entire ger	nome sequenced is _	·		
	a) Tetrahymena thermophila	b) Sachharomyces cerevisiae	c) Merchantia polymorpha	d) Escherichia coli	b	Sachharomyces cerevisiae

86	Fragile X syndrome is associated with						
	a) a triplet	b) a triplet	c) a triplet	d) a triplet (CAG)	Α	a triplet (CGG)	
	(CGG) repeat	(AGG) repeat	(CCG) repeat	repeat expansion		repeat expansion	
	expansion	expansion	expansion				
87	Spontaneous ch	anges in base st	tructure can cau	ise mutations if they oc	ccur	immediately prior	
	to DNA replicat	tion					
	a) Tautomeric	b) Aberrant	c)	d) Toxic metabolic	Α	Tautomeric shifts	
	shifts	segregation	Depurination	products			
88	Nitrogen mustare	d is	·				
	a) a base	b) an alkylating	c) a	d) an intercalating	В	an Alkylating agent	
	analog	agent	deaminating agent	agent			
89	89 Testing methods that can determine if an agent is a mutagen						
	a) ELISA test	b) EIA test	c) Ames test	d)ELISPOT test	С	Ames test	
90	90 The phrase edible vaccine was first used by						
	a) Charles	b) Edward	c) Robert Koch	d) Louis Pasteur	Α	Charles Arntzen	
	Arntzen	Jenner					
91	Who amongst the f						
	regarded as the "Fa	ather of					
	Bryology"?						

	a) Prof. S.R. Kashyap	b) Prof. K.C. Mehta	c) Johann Hedwig	d) Edward Klekowski	С	Johann Hedwig
92	The simplest spo	rophyte is found in				
	a) Funaria	b) Riccia	c) Sphaeroatrpus	d) Marchantia	В	Riccia
93	Stele of rachis in	Dryopteris is				
	a) Protostele	b) Dictyostele	c) Siphonostele	d) Plectostele	С	Siphonostele
94	To which one of Williamsonia bel	_				
	a)Cycadales	b) Coniferales	c) Bennittitales	d) None of them	С	Bennittitales
95	Most gymnos	advanced perm belongs to				
	a) Cycadales	b)Coniferales	c)Gnetales	d) Cycadofillicales	С	Gnetales
96	6 Tallest known gymnosperm is					
	a) Pinus	b) Ginkgo	c) Sequoia	d) Ephedra	С	Sequoia
97	In Spectrometers	, each ions hits a				
	a) Ionizer	b) Fraction collector	c) Detector	d) None of them	С	Detector
98	Insoluble fine particles can be removed better in					
	a) Chromatography	b) Filtration	c) Decantation	d) Centrifugation	D	Centrifugation
99	The molecules of NADH &FADH2 & formed during a cycle of β —Oxidation of fatty acid is					
	a) 1FADH2 & 1NADH	b) 2FADH2 & 2NADH	c) 1FADH2 & 2NADH	d) 1FADH2 & 3NADH	А	1FADH2 & 1NADH
100	100Which of the following is an unsaturated essential fatty acid?			ı		
	a) Palmitic acid	b) Oleic acid	c)Linoleic acid	d) Stearic acid	С	Linoleic acid