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11. TITLE OF THE PROJECT  
Design and Development of a Speech Recognizer in the context of Tonal Languages of 
Arunachal Pradesh. 

 
12. OBEJECTIVES OF THE PROJECT  

a. Develop a speech recognition database for the tonal languages of Arunachal 
Pradesh.  

b. Characterize the acoustic-phonetic parameters of speech signal to identify their 
intra-phoneme and inter-phoneme discriminating capability with reference to the 
tonal languages.  

c. Identification of features that can be used as feature vector for a universal speech 
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d. Developing a prototype for universal speech recognition system using those feature 
vectors. 

 
13. WHETHER OBJECTIVES WERE ACHIEVED:  Yes  
 

• A speech database for the tonal language of Arunachal Pradesh has been developed 

• Characterization of the acoustic-phonetic features has been done and based on the 

analysis, a new feature set has been proposed.  

• A prototype for a speech recognition system has been developed for the tonal 

languages of Arunachal Pradesh that can efficiently recognize tonal and non-tonal 

words.  
 
 
14. ACHIEVEMENT OF THE PROJECT  
 

The languages of Arunachal Pradesh in North East India are low-resource tonal 

languages, making them unique from other languages such as English, Hindi, and Assamese. 

A tonal language is one in which the lexical tone has a significant impact on the meaning of 

the words. The research conducted as part of the project is the first of its kind. During the 

project's work, a speech recognition database for tonal languages was created, and commonly 

used speech parameterization techniques were tested for tonal recognition performance both 

statistically and using a speech recognizer. In addition, a new feature set has been proposed 

that may be used for tonal and non-tonal languages. The suggested feature set was tested, and 

a prototype for a speech recognition system was created using the proposed feature set as the 

parameterization technique and the Hidden Markov Model as the classifier. 
 

15. SUMMARY OF THE FINDINGS  
 
A speech recognition system for the tonal languages of Arunachal Pradesh has been 

developed during the project work. The languages of Arunachal Pradesh are low resource 

languages and primarily spoken languages. There is no scientific analysis of the language done 

prior to this study. In this work, we have developed an automatic speech recognition system 

for the tonal languages of Arunachal Pradesh. The languages can be broadly categorised into 

two categories – tonal and non-tonal. Tone plays a vital role in distinguishing among the 

syllables of a tonal language, whereas in non-tonal language, tone cannot change the lexical 

meaning of a syllable. English, Hindi, Assamese etc., are examples of non-tonal language and 

Chinese, Japanese, Apatani, Nyishi etc., are examples of tonal language. Due to the active 

participation of the tone-related information in determining the meaning of a syllable, the tonal 



speech recognition systems are different from non-tonal speech recognition. In this work, we 

have presented a detailed analysis of the performance of the most commonly used speech 

parameters for tonal speech recognition. Analysis of the features has been done using statistical 

evaluation metrics and Hidden Markov Model-based recognizer. The tonal phoneme 

recognition consists of two subtasks – base phoneme recognition and associate tone 

recognition. Considering the fact that some of the speech features are inherently good in 

discriminating among the base-phonemes and some other parameters are good in 

discriminating among the tones, different combinations of the speech features are evaluated for 

their tonal phoneme discrimination capability. A multi-window feature concatenation 

algorithm has been proposed and its performance is evaluated in the context of tonal speech 

recognition. A speech recognition database for the languages of Arunachal Pradesh has been 

developed for the study of the languages of Arunachal Pradesh and we named the database as 

Arunachali Tonal Speech Recognition Database Version -1 (ATSRD-V.1). A prototype for a 

speech recognition system has been developed for the tonal languages of Arunachal Pradesh 

that can efficiently recognize tonal and non-tonal words. Some of the major findings of the 

project are: 

• All the features, except the prosodic feature exhibit change in entropy due to the change 

in tone and base-phoneme together. However, the major  contributor to the change in 

entropy is the change in base-phoneme. Therefore, the change in tone without the change 

in base-phoneme remains undetected. 

• The prosodic features can capture the change in tone of the Tonal Base Unit (TBU). 

However, it fails to identify the change in base-syllable itself. 

• Combining the features from multiple sources can improve the performance of the tonal 

speech recognition system. 

• The features are broadly classified as segmental and supra-segmental features. The 

segmental features can be extracted with high resolution only from short  observation 

windows like MFCC, LPCC etc. whereas supra-segmental features like prosodic features 

can be captured efficiently from long observation window. Therefore, in order to combine 

the features when a common window size is considered, their combined feature set lose 

significant information. 

• The time-varying property of the speech signal contributes significantly in detection of 

the sound unit represented by the speech signal. When features from multiple windows 

size combined together, the temporal information of the smaller observation windows 



have to be preserved. 

• The Hidden Markov Model (HMM) based automatic speech recognition system models 

the speaker specific information in addition to the phonetic information. Therefore, 

when normalization techniques are used to minimize the intra-speaker and inter-speaker 

variability, there speech recognition performance improves. 

 

 

16. CONTRIBUTION TO THE SOCIETY  

It is the first scientific researches on dialects/languages of the tribals of Arunachal 

Pradesh. This work will help in conduct comparative studies with other languages of 

mongoloid stock of North East India and their counterpart in China, Korea, Japan etc. Further, 

the system developed during the project work recognize seamlessly both tonal and non-tonal 

words, which is still a major technological bottleneck for presently successful commercial 

speech recognition system. The system can be used as a Phoneme Recognizer, Speech to Text 

Converter etc. This work will serve as the foundation for further research into the 

languages/dialects of other ethnic groups in order to develop an automated speech-based 

system. 
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An Analysis of Phase-Based Speech
Features for Tonal Speech Recognition

Jyoti Mannala, Bomken Kamdak, and Utpal Bhattacharjee

Abstract Automatic speech recognition (ASR) technologies and systems have made
remarkable progress in the last decade. Now-a-days ASR based systems have been
successfully integrated in many commercial applications and they are giving highly
satisfactory results. However, speech recognition technologies as well as the systems
are still highly dependent on the language family for which it is developed and opti-
mized. The language dependency is a major hurdle in the development of universal
speech recognition system that can operate at any language conditions. The language
dependencies basically come from the parameterization of the speech signal itself.
Tonal languages are different category of language where the pitch information distin-
guishes one morpheme from the others. However, most of the feature extraction tech-
niques for ASR are optimized for English language where tone related information
is completely suppressed. In this paper we have investigated short-time phase-based
Modified Group Delay (MGD) features for parameterization of the speech signal for
recognition of the tonal vowels. The tonal vowels comprises of two categories of
vowels—vowels without any lexical tone and vowels with lexical tone. Therefore, a
feature vector which can recognize the tonal vowels can be considered as a speech
parameterization technique for both tonal as well as non-tonal language recognizer.
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1 Introduction

Natural languages are broadly classified into two categories—tonal and non-tonal
based on their dependency on lexical tone. In tonal language, the lexical tone plays
an important role in distinguishing the syllables otherwise similar whereas in non-
tonal language the lexical tone has no significant role in distinguishing the syllables.
English, Hindi, Assamese are the example of non-tonal language whereas Chinese,
Japanese, language of South East Asia, Sweden, Norway and Sub-Sahara Africa
are tonal languages [1]. Modern speech recognition research has a half century
long legacy. The technology and the systems developed speech recognition have
already registered significant progress and many systems are already commercial-
ized. However, those systems are optimized with non-tonal languages, particularly
for English language. As a result, when these systems are used for tonal speech
recognition their performance degrades considerably. Since the large sections of the
world population are speaker of tonal language, for the global acceptability of the
speech recognition technology and system, it must be efficient in recognizing in tonal
as well as non-tonal language.

One of the major reasons for the system developed for non-tonal language fail
to deliver consistent performance in tonal language is due to the non-consideration
of the lexical tone related information. Lexical tones are produced as a result of
excursion of the fundamental frequency and these informations are discarded in
non-tonal speech recognition system as a measure of performance optimization and
due to robustness issues as it contains very little useful information for non-tonal
speech recognition system.

In the recent years many attempts have been made for developing tonal speech
recognition system [2–4]. Such systems are developed considering the fact that a
tonal syllable has two components—phonetic and tone. The phonetic component
gives information about the base phonetic unit which is similar with non-tonal speech
and a tonal unit which gives information about the tone associated with that phonetic
unit. As a result, the tonal speech recognition system relies on two sets of features—
Spectral features like MFCC for base phonetic unit recognition and prosodic features
for associated lexical tone recognition. The scores obtained from both are combined
together to arrive at a decision on underlying syllabic unit. However, the prosodic
features are highly sensitive to ambient conditions. As a result, the tonal speech
recognition systems based on prosodic features are highly susceptible to ambient
conditions.

The speech recognition system relies on short-term spectral property of the speech
signal in order to exploit the short-term stationary property of the speech signal.
To extract the short-term property, Short Term Fourier Transform (STFT) is used.
STFT returns the short-term magnitude and phase spectral of the speech signal.
However, in most of the cases magnitude spectra is retain to extract spectral features
like Mel Frequency Cepstral Coefficient (MFCC) and phase spectral is completely
discarded due to the practical difficulty in phase wrapping [5, 6]. However, the
recent research has established the importance of phase spectra in speech processing
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applications like speech recognition, speaker recognition, emotion recognition and
speech enhancement [7].

In this paper we have analyzed the tonal phoneme discrimination capability of
phase-based features. The performances of phase-based features have been evaluated
for tonal phoneme discrimination.

2 Feature Vector for the Representation of Tonal Phonemes

The Fourier transform of a discrete time speech signal x(n) is given by.

X(ω) = |X(ω)|e jφ(ω) (1)

where |X(ω)| is the magnitude spectra and φ(ω) is the phase spectra of the speech
signal. There are number of speech processing difficulties in using the phase spectra
directly in Automatic Speech Recognition (ASR). Two most critical problems are—
firstly a phase spectrum is highly sensitive to the exact positioning of the short-time
analysis window. It has been observed that for a small shift in analysis window, the
phase spectrum changes dramatically [8]. Secondly, the phase spectrum values are
only computable within the range ±π , called principal phase spectrum. The value
changes abruptly due to the wrapping effect beyond this range. However, for better
representation of the phase spectra for automatic speech recognition, the spectra must
be unwrapped. The major problem with this unwrapping is that any multiple of 2π is
added to the phase spectra without changing the value of X(ω). Recent studies have
shown that phase spectrum can be used for speech applications and gives promising
results [9, 10]. Among the phase based features extraction techniques, Group Delay
Function (GDF) and All-pole Group Delay Function (APGD) are widely used. In
the present study we have used a modified version of GDF called Modified Group
Delay (MGD) function for extracting the phase based features due to their promising
performance in speech recognition [11].

The Group Delay Function is derived by taking the negative derivation of the
Fourier phase spectrum φ(ω), written as [12, 13]:

τ(ω) = −d(φ(ω))

d(ω)

= X R(ω)YR(ω) + X I (ω)YI (ω)

|X(ω)|2 (2)

the angular frequency ω is limited to (0,2 π ), Y (ω) is the magnitude of the Fourier
transform of the time-weighted version of the speech signal given by y(n) = nx(n).
The subscript R and I denotes the real and imaginary parts of the signals. The features
derived from GDF often leads to an erroneous representation near the point of discon-
tinuity. It is due to the denominator |X(ω)|2 which tends to 0 near the point of
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discontinuities. Therefore, the group delay function is modified, which is given as
[14]

τ(ω) = τp(ω)∣∣τp(ω)
∣∣ ∣∣τp(ω)

∣∣α (3)

where

τp(ω) = X R(ω)YR(ω) + X I (ω)YI (ω)

|S(ω)|2γ
(4)

where S(ω) is the cepstrally smoothed form of |X(ω)|. α and γ controls the range
dynamics of the modified group delay function. Here,

P(ω) = X R(ω)YR(ω) + X I (ω)YI (ω) (5)

is called the product spectra of the speech signal which includes both magnitude
and phase information [15].

3 Speech Database

In the present study, we have created a speech database of Apatani Language of
Arunachal Pradesh of North East India to analyze the performance of phase-based
features for tonal speech recognition in mismatched environmental conditions. The
Apatani language belongs to the Tani group of language. Tani languages constitute a
distinct subgroup within Tibeto-Burman group of languages [16]. The Tani languages
are found basically in the contiguous areas of Arunachal Pradesh. A small number
of Tani speakers are found in the contiguous area of Tibet and only the speakers
of Missing language are found in Assam [17]. The Apatani language has 06(six)
vowels and 17 (seventeen) consonants [18]. To record the database, 24 phonetically
rich isolated tonal words have been selected. The words are spoken by 20 different
speakers (13 males and 7 females). The recording has been done in a controlled
acoustical environment at 16 kHz sampling frequency and 16 bit mono format. A
headphone microphone has been used for recoding the database. The words are
selected in such a way that each tonal instance of the vowel has at least 5 instances
among the words. Since the tone associated with the vowel is sufficient to identify
the tone associated with the entire syllable [3, 19], therefore, in the present study
we have evaluated the phone discrimination capability and robustness issue of the
phase-based features with reference to their tonal vowel discrimination capability.
Each tonal instance of a vowel has been considered as different tonal vowel. For
example, the vowel [a:] have three associated tones—rising, falling and level. Thus
vowel [a:] gives raise to the tonal vowels ([a:] rising), ([a:] falling) and

(([a :] level). Considering the tonal instances as a separate vowel, we get sixteen
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Table 1 Apatani vowels and
their tonal instances

Vowel Tonal instances

Rising Level Falling

I

*

A:

E

O

� - -

tonal vowels in Apatani language. The vowels and their tonal instances are given
in Table 1. Since the vowel [�] has only one tone, it is not taken into consideration
while evaluating the performance of the feature vectors.

All the experiments are carried out using this database. The vowels are segmented
from the isolated words for all its tonal instances. The segmentation has been done
using PRAAT software which is followed by subjective verification.

4 Experiment and Results

To evaluate the performance of the features for tonal phoneme discrimination capa-
bility, both statistical methods and Hidden Markov Model based recognizer have
been used.

Euclidean distances between the feature values extracted from each pair of tonal
phoneme have been computed. The Euclidean distance gives an indication of the
linear separation among the tonal vowels with reference to phase-based features.
Higher the value of Euclidean distance indicates better discrimination capability for
the feature vector.

Fisher’s Discrimination ration (F-ratio) [20] has been used as a quantitative
measure for the tonal phoneme discrimination capability of the phonemes. F-ratio is
defined as:

F = Variance of the tonal phoneme mean

Average intra − phoneme variance
for all phonemes

The above ratio can be computed as:
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F =
1
P

∑
i∈P

√
(μi − μ)2

1
P

∑
i∈P

(
1
T

∑
β∈T

√(∣∣∣x (i)
β − μβ,i

∣∣∣2
)) (7)

where μ is the average mean for all the tonal phonemes, μi is the average mean for
the base phoneme i , μβ,i is the average mean for phoneme i for tone β, x (i)

β indicates
an instance of the phoneme i for tone β. Higher the value of F-ratio indicates that
the feature is capable of discriminating among the tonal phonemes.

To evaluate the performance of the phase-based feature set in recognizing the tonal
phonemes, a Left-to-Right Hidden Markov Model (LRHMM) has been used. The
LRHMM is suitable for speech recognition due to its capability to model the time
varying property of the speech signal. The number of HMM states is determined
experimentally. In the present model, 6 (six) states have been used. Each state is
represented by a single Gaussian distribution function given by [21].

P
(
x |μ, σ 2

) = 1√
2πσ 2

exp

(−(x − μ)2

2σ 2

)
(8)

where x is the observation vector, μ is the Gaussian mean vector and σ 2 is the
variance. The forward–backward algorithm has been used for training the HMM
model. Clean speech signals have been used for training the models.

To extract the short-time MGD features the speech signal is first pre-emphasized
with emphasizing factor 0.97 and then framed by a Hamming windows of 30 ms
duration and 10 ms frame rate. The phase-based MGD features are extracted from
the windowed speech signal using the method described in the Sect. 2.

In the first set of experiments we have evaluated the phoneme discrimination
capability of the MGD features in the context of tonal vowel recognition. The feature
values are computed from each instance of the tonal vowels. For each tonal vowel, the
average value for each dimension of the feature vector has been computed ignoring
the outliers. The Euclidean distances have been computed between each tonal vowel
with all the other tonal vowels and their average has been taken. Table 2 gives the
average Euclidean distances of each tonal vowel from all the other tonal vowels.
Table 3 presents the average Euclidean distances among different categories of tonal
vowels.

From the above experiments it has been observed that phase-based MGD features
are suitable in discriminating the tonal vowels. They possess discrimination ability
even when the base phoneme of the tonal vowels is same and distinction among them
is due to underlying tone only or vice versa.

To assess the suitability of the MGD features for tonal vowel recognition, we
have computed the F-ratio values for the features. Higher the value of F-ratio among
different groups indicates better discrimination ability of the feature with respect to
that grouping factor. In the present study we have evaluated the computed F-ratio
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Table 2 Average euclidean distances of each tonal vowel from all the other vowels

Tonal Vowel Average
euclidean
distance from
the other tonal
vowels

Tonal vowel Average
euclidean
distance from
the other tonal
vowels

Tonal Vowel Average
euclidean
distance from
the other tonal
vowels

0.7513 0.9267 1.2091

0.7292 1.4317 1.1002

0.5993 1.9577 1.6260

0.9437 2.7468 1.3167

1.0653 1.1449 2.0015

Table 3 Average Euclidean distance among different categories of tonal vowels

Average Euclidean distance among the vowels with same base phoneme but different
tone

1.1496

Average Euclidean distance among the vowels with different base phoneme but same
tone

0.9698

Average distance from the vowels with different base phoneme and tone 1.3589

value with grouping factors—same base-phoneme, same tone and different base
phoneme and tone. The F-ratio values are listed in Table 4.

From the above experiments, it has been established that short-time phase based
feature MGD has the capability to identify the tonal vowels even when they are
distinct from each other only by tone or only by base-phoneme. This observation
assets the fact that short-time phase based MGD feature is a better alternative than
the combination of MFCC and Prosodic based features for tonal vowel recognition
which have been evaluated in our earlier works [22].

In the next set of experiments, we have evaluated the performance of MGD feature
for their tonal vowel recognition in terms of recognition accuracy of the HMM based
recognizer. The model has been trained using clean speech database. 60% of the tonal

Table 4 F-ratio values under different grouping factors

Average Euclidean distance among the vowels with same base phoneme but different
tone

3.5463

Average Euclidean distance among the vowels with different base phoneme but same
tone

3.8222

Average distance from the vowels with different base phoneme and tone 4.6514
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Table 5 Evaluation metric for the HMM based recognizer

Correctly recognized the tonal vowel 89.23%

Incorrectly recognized as a tonal vowel with same base phoneme but different tone 6.46%

Incorrectly recognized as a tonal vowel with same tone but different base phoneme 2.91%

Incorrectly recognized as a tonal vowel with different tone and different base phoneme 1.40%

instances of each vowel have been used for training and the remaining 40% for testing
the system. The performance of the MGD features have been evaluated in terms of
recognition accuracy, which is the percentage of times the recognizer has been able
to recognize the tonal vowel correctly. The error cases have been further in-depth
investigated to get an insight into the confusion created at modeling level. Table 5
presents an analysis of the performance of HMM based tonal vowel recognition.

From the experiments it has been observed that the short-term phase based MGD
feature vector is efficient in representing both tone variation as well as base-phoneme
variation in case of tonal vowels. Only in the case of 6.46% cases the recognizer has
been unable to recognize the tone variation of the same base-phone whereas in 2.91%
cases tone takes more dominants over base-phone for tonal vowel recognition. This
facts reassures the suitability of MGD feature for tonal vowel recognition in particular
and language recognition in general.

5 Conclusion

It this paper we have investigated the performance of MGD features for their tonal
vowels discrimination capability. It has been observed that phase-based MGD feature
extracted from different tonal vowels is statistically separate from each other in the
feature space even when they are different from each other only by tone or base-
phone. This fact has been established by statistical measures Euclidean distance and
F-ratio test. The performances of the features have been evaluated with a HMM based
recognizer in terms of recognition accuracy. In 89.23% cases, the tonal vowels are
recognized correctly by the HMM based recognizer trained and tested with MGD
features. In the present investigation, it has been observed that MGD features are
equally efficient in representing vowels with lexical tone (rising and falling) and
vowels without any lexical tone (level tone). This observation appeals more in-depth
investigation of the MGD feature for using it as a parameterization technique for
language independent ASR system.

Acknowledgements This work is supported by UGC major project grant MRP-MAJOR-COM-
2013-40580.
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Abstract:Performance of a speech recognition system is 

highly dependent on the operational environments. The 

mismatched ambient conditions have adverse impact on the 

performance of an Automatic Speech Recognition (ASR) system. 

The speech parameterization techniques for tonal speech 

recognition are different from those used for non-tonal speech 

recognition. It is due to the fact that tonal speech has two 

components – basic linguistic unit and tone. The basic linguistic 

unit with different tones convey different meanings. Therefore, 

the feature set used for tonal speech recognition must have the 

capability to representing both of them.  Tone is determined by the 

fundamental frequency of the speech signal which is highly 

sensitive to noise. Since at the time of parameterization of the 

non-tonal speech recognition systems, these highly noise-sensitive 

tone related information are discarded, the traditional noise 

elimination methods used for non-tonal speech recognition fail to 

deliver robust performance in tonal speech recognition. In the 

present study, we have analyze the performance of different 

commonly used feature sets for noisy tonal speech recognition. 

Hidden Markov Model (HMM) based speech recognizer has been 

used for performance evaluation. Noise elimination techniques 

sub-band spectral subtraction and Wiener filter have been used 

for noise reduction and their relative performance have been 

evaluated.  

 

Keywords :HMM, Noise elimination, Sub-band spectral 

subtraction, Tonal speech recognition, Wiener Filter 

I. INTRODUCTION 

Feature extraction is the front-end of any speech 

recognition system. The feature extraction for a speech 

recognition system is the process of reliable, compact and 

robust parameterization of the speech signal. The efficiency 

of the entire speech recognition system is highly dependent 

on proper parameterization of the speech signal. The feature 

vector extracted from the speech signal must have the 

capability to discriminating among different phonemes and 

must be robust to the environment and intra-speaker 

variability. The significance of cepstral features for speech 

recognition have been established by many researchers 

[1][2][3]. However, there are practical limitation in the use of 

cepstral features due to its sensitivity towards the background 

and channel noises [4].Mel frequency cepstral coefficients 

(MFCC) and linear predictor cepstral coefficients (LPCC) are 

two extensively used feature vector in speech science. MFCC 

feature is based on magnitude spectrum. A perceptually 

motivated frequency wrapping filter-bank is applied to the 

magnitude spectrum. The filters are evenly spaced on a 
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perceptually motivated frequency wrapping scale call 

Mel-scale, first suggested by Stevens and Volkman [5].  The 

log-energy of each filter output is computed and 

accumulated. Finally, Discrete Cosine Transformation 

(DCT) is applied to produce the Mel frequency cepstral 

coefficients [6]. In the present study, a filter bank of 24 

triangular filters spread across the whole frequency range 

from 0 to Nyquist frequency has been used. The first 

12-cepstral coefficients and log energy have been considered 

as the MFCC feature vector. Linear predictor cepstral 

coefficient (LPCC) is a feature vector based on Linear 

predictor coefficient (LPC). The LPC are obtained using a 

   -order All-pole approximation in the windowed 

waveform [7]. The autocorrelation method has been used to 

evaluate the linear predictor coefficients. The LPCC have 

been computed directly from LPC as [8]: 

   

 
 
 

 
    

 

 
              

   

   

 

 
            

   

     

  

…(1) 

 

wherep is the order of the predictor coefficients and n is the 

number of cepstal coefficients. In the present study, 10
th

 order 

LP analysis has been performed and 13 LPCC coefficients 

have been computed.  To capture the dynamic property of the 

speech signal, along with baseline MFCC and LPCC features 

their first and second order derivatives are also added. Thus 

we get a 39-dimensinal MFCC feature set and a 

39-dimensional LPCC feature set  

Prosody plays an important role in understanding the 

meaning of a conversation in human to human 

communications. Prosodic features of speech characterize the 

paralinguistic information of a conversation like speaker 

habits, discourse structure, speaker intension, emotion etc. In 

general, prosody means the organization of a sound. 

Normally, it is represented by fundamental frequency (   , 

energy and normalized duration of syllable. The prosodic 

features are very important to identify the tone associated 

with a syllable. In the present study, in order to use only 

frame-based features, fundamental frequency and energy 

have been considered for the representation of prosodic 

information. Fundamental frequency and frame energy are 

static features, calculated frame by frame. In order to include 

temporal information, their first (∆)- and second (∆∆)-order 

derivatives have been calculated and added to the feature set. 

Thus, we get a 6-dimensional prosodic feature vector for each 

frame. 
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 Left-to-Right Hidden Markov Model (LRHMM) has been 

used as baseline speech recognition system to recognize the 

tonal vowels of Apatani language of Arunachal Pradesh of 

North East India. The main reason for using LRHMM is that 

it can model the time varying property of the speech signal. A 

number of HMM states is determined empirically. In the 

present model, 6 (six) states have been used. Each state is 

represented by a single Gaussian distribution function given 

by [9] 

          
 

     
    

       

   
  

… (2) 

Where x is the observation vector,   is the Gaussian mean 

vector and    is the variance. To initialize the model, speech 

signal from known vowels have been divided into 6 equal 

parts and each part from left to right has been used to 

initialize a state. The forward-backward algorithm has been 

used for training the HMM model. Clean speech signals have 

been used for the training purpose. 

II. NOISE ELIMINATION METHODS  

The most commonly used de-noising techniques are 

based on either spectral subtraction or Weiner’s filter. These 

techniques are based on the assumption that the speech signal 

    and the additive noise     are uncorrelated with each 

other. Therefore, the equation for noisy speech signal      

can be represented as [10] 

 

                  … (3) 

 

The original signal can be estimated from the noisy speech 

signal by using Wiener filter as: 

 

                   … (4) 

 

Where     ,     ,       are the Wiener filter response 

function, noisy signal and  the estimated clean speech signal 

in frequency domain respectively. Wiener filter is an optimal 

filter that minimize the mean square error. The mean square 

error is represented by the function  

 

                
                              … (5) 

 

The      value is determined by minimizing the expectation 

of mean square error, which is obtained by taking first order 

derivative of the error function with respect to response 

function of the Weiner filter      and equating it to 0. The 

expectation of mean square error is given by  

 

                                        … (6) 

 

where     stands for expectation operation. Taking the 

derivatives of eq(6)  and equating it to 0, we get 

 

           

     
                                 

                               
… (7) 

where      and        are power spectra of noisy speech 

and cross power spectra between noisy speech signal and 

clean speech respectively.In case of no correlation between 

the speech signal      and the additive noise     , we get  

 

                                  

                                     

                    … (8) 

 

Similarly 

 

                      

                                      

                                 
...(9) 

 

Therefore, the Wiener filter can be represented by:  

 

     
     

           
 

…      
 
The signal-to-noise ratio is defined by 

 

    
     

     
 

… (11) 

 

Therefore, the impulse response of the Wiener filter can be 

represented in term of SNR as: 

 

        
 

   
 
  

       

… (12) 

In the present work, we have implemented the adaptive 

Wiener filter based on the model proposed by El-Fattah et 

al[11] for speech enhancement. The mean    and standard 

deviation   
 of the speech signal have been estimated.  It is 

assumed that the additive noise is of zero mean and 

variance  
 . The variance   

  has been estimated exploiting 

the silent period of the speech signal. Thus the power 

spectrum of noise has been estimated as  

 

        
        …(13) 

 

Considering a small segment of the speech signal, in which 

speech      is assumed to be stationary, the signal can be 

modelled as:  

 

          
      

… (14) 

where   and   
  mean and standard deviation of the speech 

signal for a small segment of the speech signal and      is 

unit variance noise. Therefore, for a small segment of the 

speech signal, the Wiener filter transfer function can be 

represented by: 

 

     
  

 

  
    

 
 

… (15) 

Since      is constant over this small segment of speech, 

the impulse response of the 

Wiener filter can be obtained 

by 



International Journal of Engineering and Advanced Technology (IJEAT) 

ISSN: 2249 – 8958, Volume-9 Issue-2, December, 2019 

 

3866 

Published By: 
Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: B4513129219/2019©BEIESP 

DOI: 10.35940/ijeat.B4513.129219 

 

     
  

 

  
    

 
     

… (16) 

The enhanced speech signal       for the local segment can 

be expressed as: 

                   
  

 

  
    

 
     

              
  

 

  
    

 
          

… (17) 

If    and   
  are updated for each segment, we can say 

            
  

 

  
       

 
             

… (18) 

when  
 is much larger than   

 , there will be no attenuation 

and the estimated speech signal       will be basically due to 

    . However, if   
  is smaller than  

 , there will be 

attenuation and the filtering will be done.The value of       

can be estimated from the      as: 

      
 

    
     

   

     

 

… (19) 

where       is the number of sample in the short segment 

used for estimation. Since   
    

 
   

 
,    

     may be 

estimated from      as: 

 

   
      

   
        

 

              
       

        
 
 

… (20) 

Where 

 

   
     

 

    
             

 
   

     

 

… (21) 

 Another method for de-noising uncorrelated additive noise 

is spectral subtraction. The power spectra of the corrupted 

speech signal can be approximated from eq. (3) as  

 

                        
… (22) 

 

where        and         are the magnitude spectra of clean 

and the noise respectively. Since the noise spectra cannot be 

obtained directly, an estimate      is obtained from the silent 

period [12]. The estimation of clean speech spectrum is 

obtained by  

 

       
 

                 
 
 

… (23) 

 

where  is the over subtraction factor, which is a function of 

SNR. This model is based on the assumption that the noise 

affects the speech signal uniformly. However in case of real 

world operational conditions, this assumption is not true. It 

has been observed that impact of noise is different for 

different frequency range. Kamath and Loizou [13] proposed 

a multiband model for spectral subtraction. The entire 

frequency range of the speech signal is divided into N 

non-overlapping sub-bands and band-specific subtraction 

factor is computed for each frequency band. The estimation 

for clean speech of the     band is obtained by  

 

       
 

                     
 
         

… (24) 

 

where   and    are beginning and ending frequency bins of 

the    frequency band and    is the tweaking factor for the 

   band. The band specific SNR is computed using the 

magnitude of the noisy spectra and estimated noise spectra as 

follows:  

              
         

  
  

         
   

  

  

… (25) 

Using the SNR value    is computed as: 

 

    

        

  
 

  
           

        

     

… (26) 

The negative value of the enhanced spectra is floored to the 

noisy spectra.  

III. SPEECH DATABASE  

A speech database of Apatani tonal words has been 

prepared to carry out the experiments.  The Apatani language 

of Arunachal Pradesh of North Eastern India is a tone 

language. A language is regarded as ‘Tone Language’ if the 

change in the tone of the word results in changing the 

meaning of the word [14].Apatani has two lexical tones 

raising (ˊ) and falling (ˋ) [15]. In addition to these two tones, 

Apatani has words without any associated tone, which are 

referred to as normal tone. Except the vowel [ə] all the other 

vowels have 3 tonal instances namely raising, falling and 

level. In case of vowel [ə] only level tone has been observed. 

In the evaluation of the speech recognition system for tonal 

speech recognition task, the vowel [ə] has not been taken into 

consideration. The database for the present research consist 

of 24 isolated tonal words spoken by 20 different speakers 

(13 males and 7 females).The words chosen for recording 

are:  

Table-1: Tonal words considered for recording 

 
Sl no. Apatani 

Tonal 

Words 

Meaning in 

English 

1 t   Bite  

2 t  Listen  

3 t   Drink 

4 kh   Cry 

5 khɛ To get angry 

6 kh   Remove 

7 c  Cut with scissor  

8 c   Bring together two 

things  

9 j   Be black  
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10 j   Roll 

11 j  Bind  

12   l   Salt 

13   lɔ Dry 

14 kɔrɔ Day before 
yesterday 

15 k  rɔ Fence  

16  p   Blossom 

17   p  Wrap Up 

18 k  Beg 

19 k   Spray  

20 k   Wave like 

movement 

21  n   Young Brother  

22  n  Uncle  

23 məd   Rain 

24 mədɔ Doing 

 

For any tone language, the basic building blocks are tonal 

syllables. A tonal syllable consist of two components – a 

syllabic sound unit and an associated lexical tone. If the tone 

is ignored, it is called base syllable. Each syllable consist of 

vowel and consonant sounds. Tone is realized in voiced 

segment, therefore, tonal base units (TBU) in most of the 

time are voiced vowels [16]. The tone associated with the 

vowels are sufficient to express the tone associated with the 

syllable. Therefore, in the present study we will evaluate 

robustness of a tonal speech recognition system in terms of its 

capability to recognize tonal vowel at different noise 

conditions. The words are recorded in a controlled acoustical 

environment at 16 KHz sampling frequency and 16 bit mono 

format. A headphone microphone has been used for recoding 

the database. Each speaker uttered the same words 5 times. 

From the recorded isolated words, a vowel database has been 

created by segmenting the vowels from the isolated words. 

The segmentation has been done by using PRAAT software 

which is followed by subjective verification. Thus we get at 

least 100 instances for each tonal vowel. The database has 

been divided into two parts – training set and testing set. The 

training set consist of 50 instances of each tonal vowel and 

the testing set consist of remaining 50 instances of each tonal 

vowel.  

From the clean database noisy versions of the database has 

been created by adding noise from the AURORA database 

[17]. The noises added to the database are babble, car, 

exhibition, restaurant, street, subway and train noises. The 

noises are added at -15dB, -10dB, -5dB, 0dB, 5dB, 10dB and 

15dB signal-to-noise ratio (SNR).  

IV. RESULTS AND DISCUSSION  

The speech has been analyzed using a Hamming windows 

of length 25 ms, frame rate 100 Hz and pre-emphasis factor 

of 0.97. MFCC, LPCC and prosodic features have been 

extracted from each frame. Now from the extracted features 

two tonal feature sets have been created by appending the 

prosodic features with MFCC and LPCC features separately. 

We call them MFCC tonal feature and LPCC tonal feature 

respectively.  

To study the suitability of the feature sets for tonal speech 

recognition their probability density function (PDF) 

characteristics have been analyzed. If the same vowel with 

different tone have different PDF characteristics for a 

particular feature set, then the feature set will be efficient in 

recognizing the tonal instances of the vowels. PDF 

characteristics of the MFCC and LPCC tonal feature sets are 

given in Fig-1 and Fig-2 respectively.  

From the Figures it has been observed that both MFCC and 

LPCC feature sets the peak of the distribution are at different 

positions. For the vowel [ɔ] the MFCC tonal feature has more 

tonal phoneme discrimination capability while for vowel [ ] 

the LPCC tonal feature exhibits more tone discrimination 

capability. In case of vowels [ɛ] and [ʊ], both MFCC and 

LPCC tonal features display tone discrimination capability. 

This observation justify the fact that tone discrimination 

capability of a feature set depends on the underlying vowels. 

  

 
Fig. 1 PDF characteristics of tonal vowels for MFCC 

tonal feature set  

To evaluate the efficiency of the feature set in recognizing 

the tonal vowels, a Hidden Markov Model based recognizer 

has been trained using the clean training set. The testing has 

been done using the testing set and the confusion matrices for 

recognition of the tonal vowels have been prepared. The 

confusion matrices for the MFCC and LPCC tonal feature 

sets based HMM recognizer for recognizing the tonal vowels 

have been given in Table – 2 and Table -3 respectively.  

 

Fig. 2 PDF characteristics of tonal vowels for LPCC tonal 

feature set 
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Table – 2: Confusion matrix for tonal phoneme 

recognition with tonal MFCC and HMM based 

recognizer (50 test for each tonal vowel) 

 [  :] [    ] [    ] 

[  :] 41 6 3 

[    ] 4 43 3 

[    ] 1 2 47 

 [  ] [   ] [   ] 

[  ] 43 7 0 

[   ] 6 44 0 

[   ] 0 0 50 

 [   ] [   ] [   ] 

[   ] 49 1 0 

[   ] 2 48 0 

[   ] 1 0 49 

 [   ] [   ] [   ] 

[   ] 48 1 1 

[   ] 0 48 2 

[   ] 1 1 48 

 [   ] [   ] [   ] 

[   ] 47 1 2 

[   ] 1 48 1 

[   ] 0 1 49 

 

Table 3: Confusion matrix for tonal phoneme recognition 

with tonal LPCC and HMM based recognizer (50 test for 

each tonal vowel) 

 [  :] [    ] [    ] 

[  :] 48 1 1 

[    ] 0 49 1 

[    ] 0 0 50 

 [  ] [   ] [   ] 

[  ] 39 8 3 

[   ] 5 40 5 

[   ] 2 2 46 

 [   ] [   ] [   ] 

[   ] 41 6 3 

[   ] 9 37 4 

[   ] 2 10 38 

 [   ] [   ] [   ] 

[   ] 47 0 3 

[   ] 1 49 0 

[   ] 0 2 48 

 [   ] [   ] [   ] 

[   ] 49 0 1 

[   ] 2 48 0 

[   ] 1 1 48 

 

From the above confusion matrices it has been observed 

that the tonal phoneme recognition accuracy depends on the 

feature set and the underlying vowel. The recognition 

accuracy of the HMM based recognizer in tonal phoneme 

discrimination using different feature sets have been 

summarized in table-4.  

Table -4: Recognition accuracy of the HMM based 

recognizer for tonal phoneme recognition for different 

feature sets 

Tonal Vowel  MFCC tonal 

Feature set 

(in %) 

LPCC tonal feature 

set  

(in %) 

[  :] 82 96 

[    ] 86  98 

[    ] 94 100 

[  ] 86  78 

[   ] 88 80 

[   ] 100 92 

[ɔ  ] 98 82 

[ ɔ ] 96 74 

[ ɔ ] 98 76 

[ɛ  ] 96 94 

[ ɛ ] 96 98 

[ ɛ ] 96 96 

[ʊ  ] 94 98 

[ ʊ ] 96 96 

[ ʊ ] 98 96 

Average 93.6 90.27 

 

In the next set of experiments, we have considered the 

noisy versions of the database and their performances have 

been evaluated using the same HMM model which is trained 

with clean speech. The recognition accuracy under different 

noise types and noise levels is given in table-5 and table-6. 

 

Table – 5: The recognition accuracy of HMM and MFCC 

tonal feature based speech recognizer for recognizing 

noisy tonal vowels 

Noise Type  -15  

dB 

-10 

dB 

-5 

dB 

0  

dB 

5 

dB 

10 

dB 

15 

dB 

Babble  23.4 25.4 26.7 33.8 37.4 54.2 67.3 

Car 24.0 26.5 27.6 32.8 38.6 49.8 69.6 

Exhibition  22.6 28.6 29.1 33.1 40.7 52.8 73.3 

Restaurant  22.8 25.3 24.6 31.7 34.4 58.0 62.0 

Street  28.2 25.9 25.2 35.4 35.3 48.9 63.5 

Subway  24.6 29.5 28.8 38.6 40.3 52.3 72.6 

Train  25.8 28.2 26.1 37.2 37.8 52.6 68.0 
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Table – 6: The recognition accuracy of HMM and LPCC 

tonal feature based speech recognizer for recognizing 

noisy tonal vowels 

Noise Type  -15 dB -10 

dB 

-5 

dB 

0  

dB 

5 

dB 

10 

dB 

15 

dB 

Babble  21.1 22.4 23.8 29.9 33.2 48.0 59.7 

Car 23.3 20.7 24.2 27.1 32.9 41.8 58.8 

Exhibition  22.4 25.7 27.5 30.5 38.0 49.0 68.2 

Restaurant  19.8 21.3 21.0 26.9 29.3 49.3 52.7 

Street  24.8 25.4 23.4 33.8 33.3 46.4 60.0 

Subway  
21.2 23.6 23.9 31.5 33.1 42.8 59.6 

Train  23.0 22.3 21.9 30.3 31.3 43.2 56.1 

 

From the above results, it has been observed that the 

recognition accuracy of the HMM based recognizer degrades 

considerably when noise presents in the speech signal. The 

performance deterioration is different for different noise 

types.  

Further, it has been observed that MFCC tonal feature 

outperforms LPCC based tonal feature under all operational 

conditions. Therefore, MFCC tonal feature may be 

considered as better parameterization technique for tonal 

speech recognition under all operational conditions. 

Therefore, the performance of the de-noising techniques have 

been evaluated with MFCC tonal feature only. 

To de-noise the corrupted speech signal, we apply Wiener 

Filter and sub-band spectral subtraction methods separately 

and the performance haves been evaluated. The result of the 

experiments are given in table-7 and table-8. 

Table – 7: The recognition accuracy of HMM and MFCC 

tonal feature based speech recognizer for recognizing 

tonal vowels at different noise conditions with Wiener 

Filter de-noising technique  

Noise Type  -15  

dB 

-10 

dB 

-5 

dB 

0  

dB 

5 

dB 

10 

dB 

15 

dB 

Babble  
33.7 35.8 38.0 47.9 53.1 66.8 83.0 

Car 
41.9 37.2 43.5 48.9 59.1 61.9 87.7 

Exhibition  
35.8 41.2 44.0 48.9 60.8 71.3 89.6 

Restaurant  
31.7 34.0 33.7 43.0 46.9 65.6 70.3 

Street  
39.7 40.6 37.5 54.1 53.2 69.0 89.0 

Subway  37.2 41.5 42.1 55.4 58.3 60.5 84.3 

Train  41.3 40.1 39.5 54.6 56.3 62.6 81.5 

 

Table – 8: The recognition accuracy of HMM and MFCC 

tonal feature based speech recognizer for recognizing 

tonal vowels at different noise conditions with sub-band 

spectral subtraction de-noising technique  

Noise Type  -15  

dB 

-10 

dB 

-5 

dB 

0  

dB 

5 

dB 

10 

dB 

15 

dB 

Babble  29.7 30.8 33.2 41.5 46.2 76.9 95.5 

Car 39.8 28.4 37.3 39.6 49.3 75.2 95.9 

Exhibition  34.7 36.3 40.7 44.2 55.6 78.4 94.2 

Restaurant  27.1 28.0 28.2 35.7 39.1 78.8 84.4 

Street  34.2 39.0 34.2 50.6 49.2 74.2 96.1 

Subway  31.4 32.6 34.2 44.2 47.0 75.4 97.9 

Train  36.0 31.0 32.5 43.6 45.7 77.8 94.9 
 

From the above experiments it has been observed that the 

Wiener filter gives better performance in high noise 

condition whereas the sub-band spectral subtraction gives 

better performance at low noise condition. At 10dB and 15dB 

noise level, the sub-band spectral subtraction method 

outperforms the Wiener filter in noise compensation.  

In the next experiment, we have combined the sub-band 

spectral subtraction and Wiener filter method. The speech 

spectra first goes through a sub-band spectral subtraction 

method and then Wiener filter is applied. The result of the 

experiment is summarized in table-9. 

 

Table-9: The recognition accuracy of HMM and MFCC 

tonal feature based speech recognizer for recognizing 

tonal vowels at different noise conditions with sub-band 

spectral subtraction and Wiener filter de-noising 

techniques 

Noise Type  -15  

dB 

-10 

dB 

-5 

dB 

0  

dB 

5 

dB 

10 

dB 

15 

dB 

Babble  38.0 40.0 42.7 53.6 59.6 86.2 89.3 

Car 49.0 39.4 48.4 53.1 65.1 82.3 96.8 

Exhibition  42.3 46.5 50.8 55.8 69.9 89.8 94.0 

Restaurant  35.3 37.2 37.1 47.2 51.6 86.7 77.3 

Street  44.4 47.8 43.0 62.8 61.4 85.9 92.6 

Subway  41.2 44.5 45.8 59.8 63.2 81.5 94.6 

Train  46.4 42.7 43.2 58.9 61.2 84.2 91.2 

 

 From the above results it has been observed that under 

certain noise conditions one de-noising technique gives better 

performance over the other technique. However, when both 

the methods are combined together, it gives a consistently 

optimal performance under all operational conditions. 

V. CONCLUSION 

In this paper, the robustness issue of MFCC and LPCC 

features combined with prosodic features has been evaluated 

for tonal speech recognition. In case of tonal speech 

recognition only the spectral features like MFCC and LPCC 

are not sufficient as they does not conation tone related 

information. Therefore, prosodic features must have to be 

combined with them. Prosodic feature, which is determined 

by fundamental frequency and energy is highly sensitive to 

noise. Therefore, at noisy environmental conditions the 

performance of the speech recognition system degrades 

considerably. In the present study it has been observed that 

under controlled environmental conditions, both MFCC + 

Prosodic features and LPCC + prosodic features perform well 

in recognizing the tonal speech. However, with increasing 

level of noise, the performance degrades considerably. The 

degradation is more in case of LPCC + prosodic features 

compared to MFCC + prosodic features. Considering all 

operational conditions it has been observed that MFCC + 

prosodic feature is a better option for recognizing tonal 

speech. Two most commonly used de-noising techniques 

sub-band spectral subtraction 

and Wiener filter have been 

used for noise elimination in 
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the present work. It has been observed that Wiener filter 

perform significantly well in high noise conditions whereas 

sub-band spectral subtraction gives better performance in low 

noise condition. Combining both the methods, we have 

observed that the performance has consistently improves in all 

noise conditions. However, for some noise conditions, this 

performance is lower than the performance of individual 

techniques. Considering an optimal operational scenario, we 

have suggested that sub-spectral subtraction combined with 

Wiener filter is a viable noise reduction technique for tonal 

speech recognition.   
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Abstract: Recently Automatic Speech Recognition (ASR) has 

been successfully integrated in many commercial applications. 

These applications are performing significantly well in relatively 

controlled acoustical environments. However, the performance of 

an Automatic Speech Recognition system developed for non-tonal 

languages degrades considerably when tested for tonal languages. 

One of the main reason for this performance degradation is the 

non-consideration of tone related information in the feature set of 

the ASR systems developed for non-tonal languages. In this paper 

we have investigated the performance of commonly used feature 

for tonal speech recognition. A model has been proposed for 

extracting features for tonal speech recognition. A statistical 

analysis has been done to evaluate the performance of proposed 

feature set with reference to the Apatani language of Arunachal 

Pradesh of North-East India, which is a tonal language of 

Tibeto-Burman group of languages. 

Keywords: Feature Selection, LPCC, MFCC, Tonal Language, 

Prosodic Features, Speech Recognition 

I. INTRODUCTION 

Automatic speech recognition (ASR) research has made 

remarkable progress since its inception in the mid of 20th 

century making it a viable option for human-machine 

interaction. However, there are few issues which are still 

hindering its wide spread use in commercial applications. 

One such issue is the language dependency of the speech 

recognition systems. Based on the use of tone for 

discriminating phones, the languages may be divided into 

two broad categories - Tone language and Non-tone 

language. A language is regarded as `Tone Language' if the 

change in the tone of the word results in changing the 

meaning of the word [1].  The basis of tone is the pitch of the 

sound. Pitch is the perceived fundamental frequency or the 

rate of vibration of the vocal folds during the production of 

the sound. The most general definition of tone language was 

proposed by D.M. Beach in the year 1924 [2]. Beach defined 

tone language as a language that uses pitch constructively in 

any manner of its articulation. According to this definition all 

the languages are tone language since intonation in terms of 

pitch modulation is inherent to the articulation of any 

language. However, this definition fails to distinguish the 

languages where tone is used to distinguish words of different 

meaning otherwise phonetically alike. Tone or intonation is 

the musical modulation of the voice in speech and as such 

integral part of the speech production in any language [3]. 

According to C.M.Doke [4] tones may be classified into two  
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broad categories - characteristics tone and significance 

tone. Characteristic tone is the method of grouping of musical 

pitch which characterize a particular language, language 

group or language family. Significant tone on the other hand 

plays an active part in the grammatical significance of the 

language, may be a means of distinguishing words of 

different meaning otherwise phonetically alike. A generally 

accepted definition of tone language was proposed by K.Pink 

[5]. According to this definition, a tone language must have 

lexical constructive tone. In generative phonology, it means 

tone of a tonal phonemes are no way predictable, must have 

to specify in the lexicon of each morpheme [3]. For any tone 

language, the basic building block is tonal syllable. A tonal 

syllable consist of two components - a syllabic sound unit and 

an associated lexical tone. If the tone is ignored, it is called 

base syllable. Each syllable consist of vowel and consonant 

sounds. Tone is realized in voiced segment, therefore, tonal 

base units (TBU) in most of the time are voiced vowels [6]. 

Since tone associated with the vowels are sufficient to 

express the tone associated with the syllable, in the present 

study, only tonal vowels will be analysed to determine the 

tonal phoneme discrimination capability of the feature sets. 

Tone may be broadly classified into two categories -- Level 

tone and Contour tone. Level tones are the tones which 

remain constant throughout the TBU. Level tones are 

classified as High, Low and Middle. In construct, contour 

tones shows a clear shifting from one level to another within 

the syllabic boundary.  Contour tones may be classified into 

rising and falling. Woo [3] argued that contour tones can be 

considered as collection of multiple level tones. Her 

argument was supported by other scholar like Leben [7], 

Goldsmith [8] and Yip [1] with suitable evidence to justify 

the fact. However, many other scholars did not support that 

contour tone should be decomposed into level tones [6].  

A major section of world population spreading across 

south-east Asia, East Asia and Sub-Sahara Africa are 

speakers of tonal language [9]. In the present study, an 

attempt has been made to analyse the tonal phoneme 

discrimination capability of popular feature extraction 

techniques namely Mel frequency cepstral coefficient 

(MFCC), Linear predictor cepstral coefficient (LPCC) and 

prosodic features.  

Selection of suitable feature set is one of the most crucial 

design decision for the development of a speech based 

system. Speech signal not only conveys the linguistic 

information, but lots of other information like information 

about the speaker, gender, social and regional identity, health 

and emotional status etc. Different speech features represent 

different aspects of the speech signal. Moreover, the 

information present in different speech features are redundant 

and overlapping.  
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Therefore, it is difficult to identify and separate which 

aspect of the speech signal is represented by which feature.  

In speech research, very often features are selected on 

experimental basis, and sometimes using the mathematical 

approach like Principal component analysis (PCA).  

The Apatani language of Arunachal Pradesh of North East 

India is belongs to the Tani group of language. Tani 

languages constitute a distinct subgroup within 

Tibeto-Burman group of languages [10]. The other languages 

of the group are Adi, Bangni, Bokar, Bori, Damu, Gaol, Hill 

Miri, Milang, Na, Nyishi, Tagin, Tangam and yano. The Tani 

languages are found basically in the continuous areas from 

the Kamng river to the Siang river of Arunachal Pradesh. A 

small number of Tani speakers are found in the contiguous 

area of Tibet and only the speakers of Missing language are 

found in the Brahmaputra valley of Assam [11]. The Apatani 

language has 06(six) vowels and 17 (seventeen) consonants 

[12].  

The Table. 1 presents the Apatani vowels and Table. 2 

presents the Apatani consonants with their manner and 

position of articulation. 

Table1: Apatani vowels. 

Tongue 

Height  

Tongue position 

Front central Back 

High ɪ  ʊ 

Mid ɛ ə ɔ 

Low ɑ: 

Table 2: Apatani consonants with their manner and 

place of articulation 

Manner of 

Articulation  

Place of Articulation 

Labia

l 

Alveola

r 

Palata

l 

Vela

r 

Glotta

l 

Stop p, b t, d ʧ, ʤ k, g  

Nasals m n  ŋ  

Fricative  s  kʰ h 

Flap    r   

Approximat

e 

 ɭ ȷ   

II. THE SPEECH FEATURES  

Speech is the output of a vocal tract system excited by an 

excitation source signal. Characteristics of both the vocal 

tract response and excitation source signal vary with time to 

produce different sounds. At the time of speech production, 

human beings impose duration and intonational pattern on 

top of the vocal tract response to convey the intended 

message [13]. Speech signal not only conveys the linguistic 

information but lots of other information like information 

about the speaker, gender, social and regional identity, health 

and emotional status etc. The first step of automatic speech 

recognition system is to form a compact representation of the 

speech signal emphasizing phonetic information of the signal 

over other information. Choosing suitable features for 

developing a speech based system is one of the most crucial 

design decision for speech based system development. The 

speech features can be categorize into three categories -- 

Excitation source features, vocal tract features and prosodic 

features.  

Speech features extracted from excitation source signal is 

called source features. Excitation source signal is obtained by 

discarding the vocal tract information from the speech signal. 

This is achieved by first predicting the vocal tract information 

using linear predictor filter coefficients extracted from the 

speech signal and then separating it by using inverse 

transformation. The resulting signal is called linear predictor 

residual signal [14]. The features extracted from LP residual 

signal is called excitation source features or source features. 

A sound unit is characterized by a sequence of shapes 

assumed by the vocal tract during production of the sound. 

The vocal tract system can be considered as a cascade of 

cavities of varying cross sectional areas. During speech 

production, the vocal tract act as a resonator and emphasizes 

certain frequency components depending on the shape of the 

oral cavity. The information about the sequence of shapes of 

vocal tract that produce the sound unit is captured by vocal 

tract features also called system or spectral features. The 

vocal tract characteristics can be approximately modelled by 

spectral features like linear predictor coefficients (LPC) and 

ceptral coefficients (CC) [13]. Prosody plays a key role in the 

perception of human speech. The information contained in 

prosodic features is partly different from the information 

contained in source and spectral features. Therefore, more 

and more researchers from the speech recognition area are 

showing interests in prosodic features. Generally, prosody 

means "the structure that organizes sound". Pitch (tone), 

Energy (loudness) and normalized duration (rhythm) are the 

main components of prosody for a speaker. Prosody can vary 

from speaker to speaker and relies on long-term information 

of speech.  

Very often, prosodic features are extracted with larger 

frame size than acoustical features as prosodic features exist 

over a long speech segment such as syllables. The pitch and 

energy contours change slowly compared to the spectrum, 

which implies that the variation can be captured over a long 

speech segment [15].  

The source, system and prosodic features are distinct from 

each other in speech production, feature extraction and 

perception point of view. They are mostly non-overlapping in 

nature and represent different aspects of the speech 

production system. The basic objective of ASR system is to 

recognize the phonetic content of the speech signal 

discarding other irrelevant information.  

Most of the state-of-the-art ASR systems are developed using 

only system or spectral features as these features are concern 

with the shape of the vocal tract during production of 

different sound units, which in turn reveals the information 

about the sound unit produced. However, in case of tonal 

speech recognition, speech unit having the same phonetic 

structure but of different tones convey different meaning. 

Therefore, the system feature itself is not sufficient for the 

recognition of the tonal speech. To enhance the performance 

of tonal speech recognition system, the prosodic information, 

which represents the tonal characteristics of the speech must 

have to be incorporated in the feature set. The major 

challenge in incorporating prosodic features with the spectral 

features comes from the extraction process itself.  
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The spectral features are short-term features. The change 

pattern of the spectral features can be recorded with high 

resolution if the observation window size is 15~25 

microseconds.  

However, due to the slow-varying nature of the prosodic 

features, in this observation window the changes in the 

prosodic features of the speech signal cannot be captured. To 

overcome the problem, fusion of the features extracted from 

this two domains has been carried out. In speech processing, 

two commonly used methods of fusion are - feature-level 

fusion and score-level fusion. In feature-level fusion, 

prosodic features like pitch and temporal energy were 

computed frame by frame and they are appended to the  

spectral features. To capture the dynamic property of the 

features, their first-order and second-order derivatives are 

also added. However, vital information which can be 

observed only in long-duration observation window are 

missed out in this approach. In the second approach, the 

spectral and prosodic features are extracted from the tonal 

base unit (TBU) using separate observation window. The 

spectral features are then feed to a classifier that computes a 

class label for the base acoustical unit of the TBU and the 

prosodic features are feed to a classifier that computes a class 

label for the tone associate with the TBU. One of the major 

problem with this approach is that correlation between the 

spectral and prosodic features are completely ignored at 

classifier level.  

In this paper we have proposed a hybrid method where the 

features are extracted with different observation windows 

and then combined together to take a decision on class 

boundary of the TBU.  

III. PROPOSED METHOD   

The block diagram of the proposed model is given in Fig. 

1. The pre-emphasized speech signal is first blocked into 

frame of 100 ms duration with 50% overlapping. From each 

block, two types of features have been extracted -- spectral 

features and prosodic features. The spectral features 

considered in the present study are Mel Frequency Cepstral 

Coefficients (MFCC) and Linear Predictor Cepstral 

Coefficients (LPCC).  To extract the spectral features, each 

speech frame of 100 ms has been re-framed into frame of size 

20 ms with 50% overlapping. The spectral features namely 

MFCC and LPCC have been extracted from each 20 ms 

frame separately. In the present study we have proposed a 

modified k-mean clustering algorithm which preserve the 

temporal information of the speech feature. We are calling it 

temporal k-mean (TKM) algorithm. The algorithm is given 

below:   

 
Fig. 1. Block diagram of the hybrid feature extraction 

system 

Temporal K-Mean (TKM) Algorithm  

 

1. Compute the initial value for the ith cluster centroid as 

follows:  

    
 

 
   

   

         

 

 … (1) 

 

where   
 

 
, N and k are the total number of frames and 

number of clusters respectively,    is the value of the jth 

coefficient of the feature and     is the initial value of the  ith 

cluster for jth coefficient    
 

2. Use a data structure for the centroid as (centroid_values, 

proximity_index), the proximity_index referred to the central 
location of each cluster derived in the  time scale. 

3. For each frame j repeat step 4 to 6  

4. Select the two nearby clusters m and k for jth frame based 

on proximity index. The cluster with two consecutive 

proximity index m and k are nearby clusters to j if   

            … (2) 
 

5. Compute the distance of the jth frame from this two cluster 

centroids.  

6. Assign the frame to the nearby cluster and update its 

cluster centroid.  

The algorithm has been applied separately to both MFCC and 

LPCC features and reduced feature sets have been extracted 

which represents the spectral characteristic of the speech 

signal for the entire 100 ms duration. These features are 

combined with prosodic features extracted from the 100 ms 

frame considering it as a single unit. 
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 The prosodic features extracted are maximum, minimum and 

average values of F0 and Energy computed over the entire 

100 ms period. These prosodic features are combined with 

MFCC and LPCC features separately and two different sets 

of features have been computed. Each feature set is evaluated 

for their relative performance in tonal speech recognition.  

IV. EXPERIMENTAL SETUP  

In the present study, each tonal instance of a vowel has 

been considered as different tonal vowel. For example, the 

vowel [ :] has three associated tones -- rising, falling and 

level. Thus vowel   :] gives raise to the tonal vowels [    ] 
(   ] rising), [    ] ((  :] falling) and [   :]  ((  :]   level). We 

referred to these vowels as tonal vowels. Considering the 

tonal instances as a separate vowel, we get sixteen tonal 

vowels in Apatani language. The vowels are given in Table. 

3. Since the vowel [ə] has only one tone, it is not taken into 

consideration while evaluating the performance of the feature 

vectors.  

A speech database of Apatani tonal words has been 

prepared to carry out the experiments.  The database consist 

of 12 isolated tonal words spoken by 20 different speakers 

(13 males and 7 females). The recording has been done in a 

controlled acoustical environment at 16 KHz sampling 

frequency and 16 bit mono format. A headphone microphone 

has been used for recoding the database. The words are 

selected in such a way that each tonal instance of the vowel 

has at least 5 instances among the words. Thus, for each tonal 

vowel, we have minimum 100 instance recorded from 20 

speakers.  

Table. 3. Apatani Tonal vowels. 

[   :] Vowel ɑ: with level tone  

[    ] Vowel ɑ: with rising tone 

[    ] Vowel ɑ: with falling tone 

[   ] Vowel ɪ with level tone  

[   ] Vowel ɪ with rising tone 

[   ] Vowel ɪ with falling tone 

[    ] Vowel ɔ with level tone  

[   ] Vowel ɔ with rising tone 

[   ] Vowel ɔ with falling tone 

[    ] Vowel ɛ with level tone  

[   ] Vowel ɛ with rising tone 

[   ] Vowel ɛ with falling tone 

[    ] Vowel ʊ with level tone  

[   ] Vowel ʊ with rising tone 

[   ] Vowel ʊ with falling tone 

[    ] Vowel ə with level tone  

A feature would be effective in discriminating between 

different tonal vowels if the distribution of different tonal 

vowels are concentrated at widely different location in the 

parameter space although they are different from each other 

only in associated tone[16]. A good measure of effectiveness 

would be the ratio of inter-vowel to intra-vowel (within the 

class) variance for the tonal vowels, referred to as F-ratio, 

which is defined as  

 

  
                          

                                   
 

… (3) 

To compute the overall F-ratio values across all class. The 

equation is:  

  

 
 

         
   

 
 

   
 
   

 

… (4) 

Where N is the number of tonal vowels,    is the mean of a 

particular coefficient of the feature vector for ith tonal vowel, 

   is the overall mean value for that coefficient of the feature 

vector for all the tonal vowels.   , within a tonal vowel 

variance is given by  

   
 

  

         

  

   

 

… (5) 

where     is the value of the coefficient for jth observation of 

the ith tonal vowel and    is the number of observations for 

ith tonal vowel. Higher F-ratio value for a coefficient 

indicates that it can be used for good classification  

Another metric used for measuring the performance of 

features in discriminating among the tonal instances of a 

vowel is the Kullback-Leibler distance (KLD). The KLD 

provides a natural distance between a probability distribution 

and a target probability distribution. KL distances have been 

measure among features extracted from the tonal vowel and 

their average has been taken. If the distance is higher, the 

feature has better tonal phoneme discrimination capability.  

V. RESULTS AND DISCUSSIONS 

All the experiments were carried out using the database 

described in Section - IV. The vowels are segmented from the 

isolated words for all its tonal instances. The segmentation 

has been done using PRAAT software which is followed by 

subjective verification. The speech signal is first segmented 

into frame of 100 ms with 50% overlapping. We will refer to 

this as 1st level frame. Each 1st level frame is now passed 

through two parallel system. The 1st system extracts the 

spectral features –MFCC and LPCC separately. To extract 

the spectral features, whose characteristics are correctly 

visible only in short duration frame, we have re-framed the 

1st level frame into frame of size 20 ms with 50% 

overlapping. We refer to this as 2nd level frame. The MFCC 

and LPCC features are extracted from each 2nd level frame. 

The MFCC feature has been computed using a 21-channel 

filter bank resulting in a 13-dimensional cepstral features 

consisting of    to     coefficients. The LPCC has been 

computed using a 10th dimensional predictor signal 

aggregated to a 13-dimenaional cepstral coefficients. Now, 

the MFCC and LPCC features are clustered into 3 clusters 

using temporal k-mean algorithm. The cluster centroids are 

clubbed together and we get a 39-dimentional MFCC and 

39-dimensional LPCC feature vector for the 1st level frame 

of the speech signal. These two set of features are then 

combined with the prosodic features separately 

 The prosodic features – 

maximum, minimum and 

average F0 and Energy are 
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computed from each 1st level frame directly. Thus, we get 

two sets of 45-dimensional feature vectors (39 spectral 

features and 6 prosodic features) for each 1st level frame. We 

will refer to this features as High-level MFCC and High-level 

LPCC features respectively.  

To perform a comparative study of the proposed feature set, 

we have extracted baseline MFCC and LPCC features from 

the speech signal with 20 ms frame size and 50% overlapping 

considering the same experimental setup as described above. 

To capture the dynamic property of the speech signal, the 1st 

order and second order derivatives of the coefficients are also 

added. Thus we get a 39-dimensional MFCC feature vector 

and 39-dimensional LPCC feature vector. The result of the 

experiment carried out is given in the Table. 4. 

Table. 4. Average F-ratio and KL Distance for the 

features. 

Feature vector F-ratio KL Distance 

Baseline MFCC + ∆ + ∆∆ 2.0136 0.4404 

Baseline LPCC + ∆ + ∆∆ 2.5569 0.6956 

High-Level MFCC 5.3350 0.8727 

High-Level LPCC 4.3350 0.8754 

From the above experiments it have been observed that as 

a result of adding prosodic features along with the MFCC and 

LPCC features, the overall tonal phoneme discrimination 

capability increases considerably compared to baseline 

MFCC and LPCC features.  

In the second set of experiments, we have computed the 

intra-tone phoneme discrimination capability of the proposed 

feature set. We have computed the F-ratio value considering 

all the phonemes of a particular tone (level, rising or falling) 

intra-class. Similarly, KL-distance has been measures only 

with other vowels of the same tone. The result is summarized 

in Table. 5. 

Table. 5. Average F-ratio and KL Distance for the 

features for intra-tone phoneme discrimination 

capability 

Feature vector F-ratio KL Distance 

Baseline MFCC + ∆ + ∆∆ 3.0731 0.4721 

Baseline LPCC + ∆ + ∆∆ 3.7763 0.3846 

High-Level MFCC 4.2870 0.4258 

High-Level LPCC 4.4580 0.3516   

From the above results it has been observed that the proposed 

features have better intra-tone phone discrimination 

capability. This observation justify the fact that these features 

can be used for both tonal and non-tonal speech recognizer.  

In the third set of experiments, we have evaluated the 

performance of features for their inter-tone discrimination 

capability. In this experiment, we have computed F-ratio 

value considering all the instances of a tonal vowel as 

intra-class and other tonal instances of the same vowel as 

inter-class. Further, KL-distances have been measures among 

the tonal instances of the same base vowel only. The results 

of the experiments are given in Table. 6.  

 

 

 

Feature vector F-ratio KL Distance 

Baseline MFCC + ∆ + ∆∆ 0.7365 0.0538 

Baseline LPCC + ∆ + ∆∆ 0.8383 0.293 

High-Level MFCC 4.7813 0.5754 

High-Level LPCC 3.9852 0.2958   

From the above results it has been observed that the proposed 

features are performing significantly well in inter-tone 

discrimination of the phoneme when the base phoneme is the 

same and different tonal instances are distinct from each 

other only due to change in tone. In this scenario the baseline 

MFCC and LPCC features are completely failed to 

discrimination among the phonemes. 

VI. CONCLUSION 

This paper presents a feature set for tonal speech 

recognition. The spectral and prosodic features are combined 

together using a late fusion technique to produce a feature set 

for the classifier. The proposed feature extraction technique 

has been evaluated for tonal phoneme discrimination task. It 

has been observed that the proposed feature set is performing 

significantly well in tonal as well as tone-independent 

evaluation scenario. Therefore, the proposed feature set can 

be used as a universal feature vector for both tonal and 

non-tonal speech recognition systems which is a long 

standing need for global acceptability of automatic speech 

recognition system. 
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Abstract—Speech recognition is a well know problem in the
area of speech science and machine learning. Lots of progress
have already been made in this direction. However, there are
some areas which need in-depth study. One such issue associated
with the global acceptability of speech recognition system. Speech
recognition system and technology developed for a particular
linguistic group fails to deliver when tested with another com-
pletely distinct linguistic group. In the present study, attempt
has been made to characterize the features used in speech
recognition system to identify their intra-phoneme and inter-
phoneme discriminating capability with reference to the tonal
languages. The objective of the study is to identify features that
can be used for both tonal and non-tonal speech recognition.

Index Terms—Feature Analysis, Tonal Language, Speech
Recognition, Statistical Evaluation

I. INTRODUCTION

In the recent years, significant progress has been made in
speech recognition technology, making it a strong modality
for human-machine interaction. The current use of speech
recognition technology in some commercial appliances is
just tip of the iceberg and its full power and potential is
yet to explore. However, to realize such a potential, speech
recognition technology must be able to deliver nearly human-
like recognition performance in all operational conditions.
Many leading researcher in the field understand the fragile
nature of the current speech recognition systems [1]. The
above observation triggers the need for in-depth study of all
aspects of speech recognition technology to identify areas that
need improvement.

Language portability is a major aspect for global accept-
ability of speech recognition system. A system developed for
a particular language should be susceptible to any another
language with minimal set of training data. However, it has
been observed that the technology and systems which have
been developed for non-tonal languages such as Indo-Aryan
languages perform very poorly for the recognition of tonal
languages. A language is said to be tonal if words with same
phonetic contents but different lexical tone patterns convey
different meaning. Tone information is generated by excursion
of the fundamental frequency. As the lexical tones do not
contain any meaningful information for non-tonal languages,
the feature extraction process of speech recognition systems

This work has been supported by UGC Major Project Grant MRP-MAJOR-
COMP-2013-40580, Ministry of HRD, Government of India.

developed for non-tonal languages discard those information.
As a result, the systems which are very efficient in recognizing
non-tonal languages fail to perform satisfactorily for tonal
languages. A major section of world population spreading
across south-east Asia, East Asia and Sub-Sahara Africa are
speaker of tonal language [2]. In the present study, statistical
analysis of five most commonly used features namely - Mel
Frequency Cepstral Coefficients (MFCC), Linear Frequency
Cepstral Coefficients (LFCC), Linear Predictor Cepstral Co-
efficients (LPCC), Reflection Coefficients (RC) and Log Area
Ratio (LAR) has been done for their relative effectiveness in
tonal speech recognition.

In the last three decades, many attempts have been made
for the development of speech recognition system for tonal
languages. A popular method for recognizing tonal language
is the two step method [3], first to recognize the based syllable
by its phonetic contents. In the second step, recognize the tone
of the syllable by classifying the pitch contour of that syllable
using discriminating rules. Recognition of tonal syllable is
a combination of the recognition of base syllable and the
associated tone. The above method works well in isolated-
syllable speech recognition but difficult to handle continu-
ous speech. To overcome the problems of two step method,
one step method has been developed consideration disyllable
approach [4]. In this approach, each syllable is decomposed
into two demi-syllables. The first demi-syllable contain tone-
independent phone information. The second demi-syllable
called toneme, carries the tone information of the whole
syllable. In this approach, the demi-syllable with different
toneme are considered as different phonemes. This approach
work fine with tonal language with small set of tones asso-
ciate with the phonemes. However, for languages with large
number of tones associated with each phoneme, the number
of phonemes increases exponentially. As a result, the search
space for the recognizer increases and the entire recognition
task is slow down. In another approach, which is based on
the observation that pitch information of the main vowel is
sufficient to determine the tone of the whole syllable [5]. Using
this approach, number of phonemes can be drastically reduced.
In addition, phonemes from this method are close to the Indo-
Aryan languages.

To analyse the relative performance of different speech
features in recognition of tonal and non-tonal phonemes,



three statistical evaluation methods have been used. They are,
probability density function (PDF) characteristics, Analysis
of variance (F-ratio) and Kullback-Leibler divergence. Data
distribution of a class close to the normal distribution leads to
better classification [6]. Probability density functions (PDF) of
a feature vector have been estimated for different phonemes
as well as different tonal instances of each phoneme to
evaluate their relative effectiveness in discriminating among
the phonemes and discriminating among the tonal instances
of the same phoneme. A feature will perform well if the the
peaks of the distributions are different for various phonemes
even when they are different from each other only because of
of tone. Both mean and variance of a feature is important
from the point of view of its discriminating power in a
particular application. A feature set with higher F-ratio value
will produce better recognition accuracy [7]. The F-ratio value
for each coefficient of a feature vector has been evaluated
separately and the average has been taken as F-ratio for that
feature. To measure the quantity of deviation in the distribution
of feature vector under different tones, Kullback-Leibler diver-
gence (KLD) is used. KLD is defined as the relative entropy
of two density functions. The relative entropy between two
distributions is null if the distributions are identical. Thus,
the divergence between two distributions indicate how distinct
they are. In the present study, a coefficient with higher KLD
value among different tones will have better tonal-syllable
discriminating capability.

II. SPECTRAL FEATURES

Feature is the compact representation of the acoustic proper-
ties of a speech signal. The commonly used features for speech
recognition are Mel Frequency Cepstral Features (MFCC),
Linear Frequency Cepstral Features (LFCC), Linear Prediction
Cepstral Features (LPCC) and a set of reflection coefficients
(RC). Davis and Mermelstein [8] classify the features into
two categories - frequency based features and linear predictor
spectrum based features. The frequency based features are
extracted directly from the frequency domain representation
of the speech signal. MFCC and LFCC are in the first
category. The second group includes linear predictor cepstral
coefficient (LPCC) derived from linear predictor coefficients
(LPC), reflection coefficients (RC) and log-area ratio (LAR).

MFCC are obtained from a spectrum filtered by mel scale
[9]. MFCC are the most widely used features for speech
and speaker recognition. It is based on human perception of
critical bandwidths. It is based on the observation that high
frequencies are captured by humans ear with less precision
in comparison to low frequencies. Therefore, it gives linear
frequency resolution up to 1000 Hz and logarithmic resolution
at higher frequencies. MFCC are computed from the filter-
bank output as [10]

MFCCi =

N∑
k=1

Xk

[
i(k −

(
1

2

)
π

N

]
i = 1, 2, 3...M (1)

where M is the number of cepstal coefficients, Xk, k =
1, 2, ., N represents the log energy output of the kth filter bank.
N is the number of triangular filters in the filter bank.

LFCCs are computed from the log-magnitude spectra of the
speech signal as

LFCCi =

N−1∑
k=0

Yk

(
πik

K

)
, i = 1, 2, ....M (2)

where K is the number of log-magnitude DFT coefficients Yk.
Linear predictor based features has wide application in the

area of speech science [11]. In linear predictor method, the
current sample is estimated from the past p samples using a
linear predictor

x̂[n] =

p∑
k=1

akx[n− k] (3)

where x̂[n] is the nth predicted sample of the speech signal,
ak represents the kth predictor coefficient and p is the order
of the linear predictor. The LPCC were obtained from the pth

order LP coefficients directly as [12]

LPCCi = lg(G), i = 0

= ai +

i−1∑
k=0

(
k

i

)
LPCCi.ak, i = 1, 2, ...p

=

i−1∑
k=i−p

(
k

i

)
LPCCk.ai−k, i > p (4)

where LPCCk is the kth linear predictor cepstral coefficient.
The reflection coefficient (RC) were obtained by a transfor-

mation of the LP coefficients. It is equivalent to matching the
inverse of the LP spectrum with a transfer function spectrum
that corresponds to an acoustic tube consisting of p sections
of various cross section areas [13]. The change in cross-
sectional area of the tube boundaries can be represented by
p+1 reflection coefficients. If the volume velocity of air flow
at the glottis vg and at the lips is vl, then the transfer function
is [13]

vl
vg

=

0.5 (1 + rg)
p∏
k=1

(1 + rk)

1−
p∑
k=1

akz−k
(5)

where ak are predictor coefficients, rg reflection coefficient at
glottis and rk is the kth reflection coefficient. If the value of rg
is known or assumed then the rest of the reflection coefficients
can be calculated from ak. It is assumed that rg = 1.

Log-area ratio coefficients are the natural logarithm of the
ratio of the areas of adjacent sections of a lossless tube
equivalent to the vocal tract. It is possible to estimate the ratio
of adjacent sections, though the absolute values of those areas
could not be computed. The Log-area ratios can be found from
the reflection coefficients as

gk = ln

(
1− rk
1 + rk

)
(6)



where gk is the LAR and rk is the corresponding reflection
coefficient.

Furui [14] observed that combination of instantaneous and
dynamic features of the speech spectrum increases the recog-
nition accuracy of the speech recognition system. To capture
the dynamic features of the speech spectrum, the first order
and second order derivatives for each feature vector has been
calculated and combined with the respective feature.

III. SPEECH DATABASE

A speech database for the Apatani language of Arunachal
Pradesh of India has been collected for tonal speech recog-
nition. Apatani belongs to Sino-Tibetan group of languages.
Apatani has 6 vowels and 17 consonants [15]. The vowels and
the consonants are listed in the table given below:

TABLE I: Vowels and Consonants of Apatani Language

Category List of Phonemes
Vowel a, i, u, ü, e, o
Consonants k, kh, g, ï, c, j, t, d, l, n, p, b, m, y, l, s, h

The Apatani language has two lexical tones: raising and
falling. The tones are associated with all the six vowels. In
addition, Apatani language has words without any change in
lexical tone, which is considered as level tone. A database
of 58 isolated Apatani words has been created. Each word is
uttered by 20 speakers (12 male and 8 female). The words
are selected in such a way that they include each vowel for
its all three tonal instances. Recording has been done at 16
KHz sampling frequency at mono channel format with 16 bit
resolution in a controlled environment.

IV. EXPERIMENT AND RESULTS

All the experiments were carried out using the database
described in Section III. The vowels are segmented from the
isolated words for all its tonal instances. For each speaker
there are 4 occurrences of each vowel for each tonal instance.
Thus there are 12 occurrences of a vowel for each speaker
containing all the tones associated with it. The segmentation
has been done using PRAAT software which is followed
by subjective verification. In the present study, each tonal
instance of a vowel has been considered as a separate vowel.
That is, with vowel /a/, there are three instances /ā/ with
level tone, /á/ with raising tone and /à/ with falling tone.
Therefore, we consider them as three different phonemes. Each
feature has been evaluated for their inter phoneme variability
to intra-phoneme variability considering those tonal instance as
separate phoneme. Higher inter-phoneme variability indicate
better discrimination capability for the feature vector.

Statistical modelling techniques such as HMM used Gaus-
sian probability density function to represent the area in the
feature space occupied by a particular phoneme class. The
Gaussian PDFs are characterized by their mean vector and
a covariance matrix estimated during training. For different
phoneme, the mean and variance are different. Speech features

will perform well if these two properties have different values
for different phonemes. For tonal phoneme representation,
two phonemes only distinct by tone should also have the
different mean and variance. A feature set with a sharper
probability density characteristic produces better recognition
accuracy [16].
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Fig. 1: Probability density function for the 1st coefficient of
the features

Fig. 1 represents the probability density characteristics of
the first coefficient of all the five feature vectors. It has
been observed that the PDF characteristics resemble Gaussian
distribution for all the features. Further, for different tonal
instances of the vowels, the the peaks are at different positions
for all the features except for MFCC coefficient. Therefore,
the features may be utilized for the representation of tonal
phonemes with good discriminating capability among different
tonal versions of the same phoneme.

Fishers Discrimination ration (F-ratio) [5] has been used
as a quantitative method for evaluation the discriminating
capability among different tonal versions of the phonemes.
F-ratio has been defined as

F =
Variance of the tonal phoneme mean

Average intra-phoneme variance for all tones
(7)

The above ratio can be represented as

F =

1
P

∑
i∈P

√
|µi − µ̄|2

1
P

∑
i∈P

(
1
T

∑
β∈T

√∣∣∣x(i)β − µβ,i∣∣∣2
) (8)

where µ̄ is the average mean for all the phonemes across all
tones. µi is the average mean of phoneme i across all tones.



µβ,i is the mean value of phoneme i for tone β. x(i)β indicate
the instance of a phoneme i with β tone. P is the number of
phonemes and T is the total number of tones associated with
the phoneme i.

The F-ratio has been calculated for all the five speech
features to evaluation their inter-phoneme to intra-phoneme
variation with change in associated tone of the phoneme.
Table. II shows the average F-ratio value for different features
under different tonal conditions.

TABLE II: Average F-ratio value for the features

Feature Type F-ratio
MFCC 0.1129

LFCC 0.0812

LPCC 0.0895

RC 0.0590

LAR 0.0538

KL-Distance has been measured among different tonal
instances of the same phoneme. Vowel /a/, which has three
tonal instances level tone instance /ā/, raising tone instance
/á/ and falling tone instance /à/. KLD of a feature vector
extracted from all three instances have been measure and their
average has been taken. The average of these distances has
been presented in the Table given below.

TABLE III: Average KL Distance among the different tonal
instances of the same phoneme

Feature
Type

Phonemes Average
/a/ /i/ /ü/ /u/ /e/ /o/

MFCC 1.3255 0.5363 0.8796 2.0798 0.7303 1.4909 1.1737

LFCC 0.6294 0.3294 0.4507 1.4293 0.4364 1.3750 0.7750

LPCC 0.9432 0.5652 1.1641 1.4092 1.1046 1.9635 1.1916

RC 0.5422 0.3359 0.5881 1.0390 0.7417 1.4349 0.7803

LAR 0.1743 0.0898 0.1651 0.4582 0.4502 0.8455 0.3639

The Table III shows that all the features exhibit change in
entropy with change in tone. Thus they are capable of captur-
ing the changes due to change in tone. However, MFCC and
LPCC can discrimination among the different tonal instances
of the same phoneme more prominently compare to other
features. Further, some of the phonemes have inherently better
tone discrimination capability compare to others. It has been
observed that vowel /u/ and /o/ have better tone discriminating
capability compared to other vowels.

V. CONCLUSION

In the present study, two different yardsticks have been
used to measure the effectiveness of a feature vector in
discriminating the tonal phonemes. F-ratio value is an indicator
of tonal phoneme discrimination capability of a feature while
considering all other variabilities. KLD have been computed
for each tonal instances of a vowel. It gives an indicator of
change in entropy of a feature extracted from a vowel due

to change in associated tone. Since both the measures are
different and complementary to each other, a feature selection
algorithm, which will use the information from both the
sources will provide better feature set for tonal as well as non-
tonal phoneme recognition. Further, the probability density
characteristic shows that all the features exhibit Gaussian
distribution for all tonal instances and their peaks are dis-
tinguishable except MFCC. This observation suggests that if
Gaussian based speech recognizer with MFCC feature perform
poorly in recognizing tonal phonemes. However, MFCC shows
significant entry change with change in associated tone of a
phoneme. Further, F-ratio value of MFCC is also high. This
observation suggest that MFCC captures the change in tone
effectively. However, to utilize that property, non-Gaussian
classifier must have to be used. This observation suggests
that the perforation of a speech recognition system for tonal
phoneme recognition depends on choice of feature as well as
the classifier.
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1. Introduction  

 
Automatic Speech Recognition is a computer programme that detects the linguistic 

information encoded in a speech signal. Speech recognition research needs inputs from diverse 

disciplines like Phonetics, Linguistics, Physics, Computer Science, Psychology, Pattern 

recognition, Communication and information, Signal processing, etc., [1]. Pioneering work in 

the area of automatic speech recognition was reported in the 1950s.  Various researchers in 

1950 attempted to explain the theory and fundamental ideas of acoustic phonetics. As a result, 

attempts were made for the development of the first generation of ASR systems. An ASR 

System at Bell Laboratories for speaker-dependent isolated digits identification was developed 

in 1952. [2]. At the RCA Laboratories, a system to recognize ten (10) distinct syllables in 10 

monosyllabic words for a particular speaker was attempted in 1956 [3]. In 1959, Fry and Denes 

had tried to develop a system to recognize phonemes of four vowels and nine consonants at 

University College in England [4, 5]. At MIT Lincoln Laboratories in 1959, a speaker-

independent system to identify 10 vowels was developed [6].  

On different fundamental ideas in speech recognition, various research works had been 

performed in the 1960s. Nakata and Suzuki of the Radio Research Lab, Tokyo, described the 

development of a Japanese hardware vowel recognizer system during this period [7]. In 1962,  

Sakai, along with Doshita of Kyoto University developed a recognizer of hardware phonemes. 

In 1963, at NEC Laboratories, Nagata and co-workers developed hardware to recognize digits 

[8]. Three research projects that were also started in the same decade played a significant role 

in the development of speech recognition research. Martin and his colleagues of RCA 

laboratories began the first project [9]. Vintsyuk in the Soviet Union started the second project 

[10]. Reddy performed the third project on continuous speech recognition [11].  

In the 1970s decade, ASR research has made significant progress, especially in isolated 

word recognition. Some of the notable works in this period were the works done by Zagoruyko 

& Velichko in Russia [12], Chiba &Sakoe in Japan [13] & in the United States by Itakura [14]. 

IBM started research work on Large Vocabulary speech recognition during that period [15, 16, 

17]. With a sequence of ASR experiments, AT&T Bell Laboratories started research on 

speaker-independent speech recognition systems in the second half of the 1970s [18]. 

In the 1980s, research work on connected word recognition was started [19, 20, 21, 22]. In 

the research field of speech, statistical modeling methods like Hidden Markov Model (HMM) 

were introduced during that period [23, 24]. Another contemporary development during that 
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period was the sponsorship of the Defense Advanced Research Projects Agency (DARPA) for 

Continuous and Large Vocabulary speech recognition. Speech research laboratories at CMU 

[25], BBN [26], Lincoln Labs [27], SRI [28], MIT [29], and AT & T Bells Labs [30] were 

among the few major Research laboratories sponsored by DARPA during that period. 

Maximum Mutual Information (MMI) criterion was introduced in that period. The central 

concept of MMI training is using most of the mutual information between the sound 

observations and their corresponding words [31]. The neural network was introduced for 

speech recognition applications during the later 1980s [32, 33]. 

In the 1990s, several new pattern recognition approaches were introduced. During that 

period, the traditional pattern recognition problem was transformed into an optimization 

problem based on minimizing the empirical recognition error [34]. As a result, the distribution 

functions for the speech signal could not be accurately chosen or defined, rendering the Bayes 

decision theory used in the traditional pattern recognition problem inapplicable. Several 

learning methods have been introduced, such as discriminative training and kernel-based 

methods. The Minimum Classification Error (MCE) criterion was proposed for discriminative 

training to optimize recognizer parameters to minimise error rate [35]. The Generalized 

Probabilistic Descent (GPD) training algorithm was also discussed to approximate the error 

rate for optimization. Both the MMI and MCE outperform the maximum likelihood (ML)-

based approach in speech recognition performance [36]. 

In the 2000s, Variational Bayesian (VB) estimation and clustering techniques were 

introduced, which is based on the posterior distribution of parameters [37]. Giuseppe Richardi 

[38] has proposed an active learning algorithm for ASR to minimize human supervision in 

training acoustic and language models and maximize ASR performance. In 2005, research 

works were carried out for improving the performance of the Large Vocabulary Continuous 

Speech Recognition (LVCSR) system [39]. In 2007, utilizing a database of large-scale 

spontaneous speech known as the "Corpus of Spontaneous Japanese (CSJ)," an investigation 

of the differences in acoustic features of spontaneous speech with the acoustic features of 

reading speech was presented [40]. Sadaoki Furui [41] had performed research works on 

speech recognition methods where adaptation of speech variation was implemented using many 

models that are trained based on clustering techniques. Rajesh M. Hegde et al. [42] proposed 

the group delay function (GDF) as an alternative method in 2007 to process the Fourier 

transform phase to extract speech features directly from the speech signals. De-Wachter et al. 

[43] used a straightforward template matching method to overcome the time dependencies 

problems in speech recognition. In the case of speech recognition, Xinwei Li et al. [44] had 
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presented a new optimization method termed semidefinite programming (SDP) to solve the 

large margin estimation (LME) problem of continuous density HMM (CDHMM). Jeih-Weih 

et al. [45] introduced three new temporal filtering approaches based on constrained versions of 

linear discriminant analysis (LDA), principal component analysis (PCA), and minimal class 

distance (MCD), in which the statistics of the modulation spectra of the speech features are 

used. In 2009, G.Zweig et al. [46] proposed a framework for LVCSR called a segmental 

conditional random field framework. In 2009, the Open Source Speech Recognition toolbox 

from RWTH Aachen University was made public [47].  Deep Belief Networks (DBNs) were 

proposed in 2010 for phone recognition, with only frame-level information being employed in 

the training phase [48]. Subspace Gaussian mixture models (GMMs) was proposed for speech 

recognition in 2010 [49]. The IBM Attila speech recognition toolkit was described by H.Soltau 

et al. [50]. In 2011, the Kaldi speech recognition toolkit, a free and open-source toolkit for 

speech recognition,  was published by D.Povey et al. [51]. In 2011, J.F.Gemmeke et al. [52] 

proposed exemplar-based sparse representations to improve the noise robustness of speech 

recognition systems by modelling noisy speech signals with a sparse linear mixture of speech 

and noise exemplars. Context-Dependent Deep Neural Network (CDDNN) HMM was applied 

around 2011 for speech transcription [53]. Deep Neural Networks (DNNs) were considered in 

2012 as an alternative to the GMM-HMM approach for acoustic modelling in speech 

recognition systems [54]. Around 2012, a context-dependent model was proposed for large 

vocabulary speech recognition (LVSR) purpose where a pre-trained DNN HMM was used to 

train the DNN. Convolutional Neural Network (CNN) was used for automatic speech 

recognition in a hybrid architecture of CNN and HMM. 

Recently Automatic Speech Recognition (ASR) has been successfully integrated into many 

commercial applications. These applications are performing significantly well in relatively 

controlled acoustical environments. However, the performance of an Automatic Speech 

Recognition system developed for non-tonal languages degrades considerably when tested for 

tonal languages. One of the main reasons for this performance degradation is the non-

consideration of tone related information in the feature set of the ASR systems developed for 

non-tonal languages. In this project we are trying to develop an ASR system that work 

efficiently for both tonal and non-tonal languages. Language portability is a major aspect for 

global acceptability of speech recognition system. A system developed for a particular 

language should be susceptible to any another language with minimal set of training data. 

However, it has been observed that the technology and systems which have been developed for 

non-tonal languages such as Indo-Aryan languages perform very poorly for the recognition of 
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tonal languages. A language is said to be tonal if words with same phonetic contents but 

different lexical tone patterns convey different meaning. Tone information is generated by 

excursion of the fundamental frequency. As the lexical tones do not contain any meaningful 

information for non-tonal languages, the feature extraction process of speech recognition 

systems developed for non-tonal languages discard those information. As a result, the systems 

which are very efficient in recognizing non-tonal languages fail to perform satisfactorily for 

tonal languages. A major section of world population spreading across South-East Asia, East 

Asia and Sub-Sahara Africa are speaker of tonal language [55]. In the last three decades, many 

attempts have been made for the development of speech recognition system for tonal 

languages. A popular method for recognizing tonal language is the two step method [56], first 

to recognize the based syllable by its phonetic contents. In the second step, recognize the tone 

of the syllable by classifying the pitch contour of that syllable using discriminating rules. 

Recognition of tonal syllable is a combination of the recognition of base syllable and the 

associated tone. The above method works well in isolated syllable speech recognition but 

difficult to handle continuous speech. To overcome the problems of two step method, one step 

method has been developed considering disyllable approach [57]. In this approach, each 

syllable is decomposed into two demi-syllables. The first demi-syllable contain tone 

independent phone information. The second demi-syllable called toneme, carries the tone 

information of the whole syllable. In this approach, the demi-syllable with different toneme are 

considered as different phonemes. This approach works fine with tonal language with small set 

of tones associate with the phonemes. However, for languages with large number of tones 

associated with each phoneme, the number of phonemes increases exponentially. As a result, 

the search space for the recognizer increases and the entire recognition task is slowed down. 

Another approach is based on the observation that pitch information of the main vowel is 

sufficient to determine the tone of the whole syllable [58]. The number of phonemes can be 

significantly reduced using this method. Furthermore, since the phonemes generated by this 

technique are similar to those found in Indo-Aryan languages, this approach might be used as 

a feature vector in a universal speech recognition system that recognizes both tonal and non-

tonal languages. 
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2. Objective:  

a. Develop a speech recognition database for the tonal languages of Arunachal 

Pradesh.  

b. Characterize the acoustic-phonetic parameters of speech signal to identify their 

intra-phoneme and inter-phoneme discriminating capability with reference to the 

tonal languages.  

c. Identification of features that can be used as feature vector for a universal speech 

recognizer that can recognize both tonal as well non-tonal speech efficiently. 

d. Developing a prototype for universal speech recognition system using those feature 

vectors. 

 

3. Material and Methods  

3.1 Development of a Speech Database for Tonal Language of Arunachal Pradesh   

A speech database for Automatic Speech Recognition research with reference to the tonal 

language has been developed using the Apatani language of Arunachal Pradesh. Arunachal 

Pradesh of North East India is one of the linguistically richest and most diverse regions in all of 

Asia, being home to at least thirty and possibly as many as fifty distinct languages in addition 

to innumerable dialects and subdialects thereof. The vast majority of languages indigenous to 

modern-day Arunachal Pradesh belong to the Tibeto-Burman language family. The majority of 

these in turn belong to a single branch of Tibeto-Burman, namely Tani. Almost all Tani 

languages are indigenous to central Arunachal Pradesh, while a handful of Tani languages are 

also spoken in Tibet. Tani languages are noticeably characterized by an overall relative 

uniformity, suggesting relatively recent origin and dispersal within their present-day area of 

concentration. Most Tani languages are mutually intelligible with at least one other Tani 

language, meaning that the area constitutes a dialect chain. In addition to these non-Indo-

European languages, the Indo-European languages Assamese, Bengali, English, Nepali and 

especially Hindi are making strong inroads into Arunachal Pradesh primarily as a result of the 

primary education system in which classes are initially taught by immigrant teachers from 

Hindi-speaking parts of northern India. Because of the linguistic diversity of the region, English 

is the only official language recognized in the state [59, 60]. 

Automatic speech recognition research has made remarkable progress since its inception 
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in the mid of 20th century making it a viable option for human-machine interaction. However, 

there are few issues which are still hindering its wide spread use in commercial applications. 

One such issue is the language dependency of the speech recognition systems. Based on the use 

of tone for discriminating phones, the languages may be divided into two broad categories –

Tone language and Non-tone language. A language is regarded as ‘Tone Language’ if the 

change in the tone of the word results in changing the meaning of the word [61].  The basis of 

tone is the pitch of the sound. Pitch is the perceived fundamental frequency or the rate of 

vibration of the vocal folds during the production of the sound. The most general definition of 

tone language was proposed by D.M. Beach in the year 1924 [62]. Beach defined tone language 

as a language that uses pitch constructively in any manner of its articulation. According to this 

definition all the languages are tone language since intonation in terms of pitch modulation is 

inherent to the articulation of any language. However, this definition fails to distinguish the 

languages where tone is used to distinguish words of different meaning otherwise phonetically 

alike. Tone or intonation is the musical modulation of the voice in speech and as such integral 

part of the speech production in any language [63]. According to C.M.Doke [64] tones may be 

classified into two broad categories – characteristics tone and significance tone. Characteristic 

tone is the method of grouping of musical pitch which characterize a particular language, 

language group of language family. Significant tone on the other hand plays an active part in 

the grammatical significance of the language, may be a means of distinguishing words of 

different meaning otherwise phonetically alike. A generally accepted definition of tone language 

was proposed by K.Pink [65]. According to this definition, a tone language must have lexical 

constructive tone. In generative phonology, it means tone of a tonal phonemes are no way 

predictable, must have to specify in the lexicon of each morpheme.  

For any tone language, the basic building block is tonal syllable. A tonal syllable consist 

of two components – a syllabic sound unit and an associated lexical tone. If the tone is ignored, 

it is called base syllable. Each syllable consist of vowel and consonant sounds. Tone is realized 

in voiced segment, therefore, tonal base units (TBU) in most of the time are voiced vowels [6]. 

Since tone associated with the vowels are sufficient to express the tone associated with the 

syllable, in the present study, only tonal vowels will be analysed to determine the tonal phoneme 

discrimination capability of the feature sets.  

Tone may be broadly classified into two categories – Level tone and Contour tone. Level 

tones are the tones which remain constant throughout the TBU. Level tones are classified as 

High, Low and Middle. In construct, contour tones shows a clear shifting from one level to 

another within the syllabic boundary.  Contour tones may be classified into rising and falling. 
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Woo [64] argued that contour tones can be considered as collection of multiple level tones. Her 

argument was supported by other scholar like Leben [66], Goldsmith[67] and Yip [61] with 

suitable evidence to justify the fact.  

The Apatani language of Arunachal Pradesh of North East India is belongs to the Tani 

group of language [55]. Tani languages constitute a distinct subgroup within Tibeto-Burman 

group of languages [59, 60]. The other languages of the group are Adi, Bangni, Bokar, Bori, 

Damu, Gaol, Hill Miri, Milang, Na, Nyishi, Tagin, Tangam and yano [69]. The Tani languages 

are found basically in the continuous areas from the Kamng river to the Siang river of Arunachal 

Pradesh. A small number of Tani speakers are found in the contiguous area of Tibet and only 

the speakers of Missing language are found in the Brahmaputra valley of Assam. The Apatani 

language has 06(six) vowels and 19 (nineteen) consonants. Post and Kanne [60] presents a list 

of Apatani phonemes which is given in Table -1and Table -2. 

Table.1: Apatani vowels 
Tongue 

Height  

Tongue position 

Front central Back 

High ɪ  ʊ 

Mid ɛ ə ɔ 

Low ɑ: 

 

Table. 2: Apatani consonants with their manner and position of articulation 
Manner of 

Articulation  

Place of Articulation 

Labial Alveolar Palatal Velar Glottal 

Stop p, b t, d ʧ, ʤ k, g  

Nasals m n  ŋ  

Fricative  s  kʰ h 

Flap    r   

Approximate  ɭ ȷ   

 

Apatani is a tone language. Apatani tones are represented in two levels – morpheme 

level and word level. Apatani morphemes may be specified for one of the two lexical tones – 

High and Low. Since the Apatani morphemes are bound and unpronounceable, these underlying 

tones are in principle inaudible. They are assigned high and low on the basis of their refluxes at 

word level. Morphologically simplex monosyllabic words with single high root are realized with 

high level tone and low root is realized with falling-to-low tone respectively. Most of the 

Apatani words are morphologically complex and mostly dimorphic and disyllabic. The complex 

disyllabic word has one of the following contour tones –high-level, high-to-low falling and low-
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to-high rising [67]. In determining the meaning of a word, instead of precise pitch height, the 

overall structure of the pitch contour – level, rising and falling plays the decisive role. In the 

present study, we have classified the Apatani tones as – level, rising and falling. It has been 

observed that except the short vowel [ə], all the other vowels are associated with these three 

tones. Only level tone has been observed in case of vowel [ə]. 

The Apatani language has six different types of accents. To capture all the accents, we 

have visited six Apatani villages which are known for using those different types of Apatani 

accents. The villages visited during the study are: 

I) Hari 

II) Hong 

III) Hija 

IV) Bulla 

V) Mudang  

VI) Tage 

 

A speech database is prepared for Apatani language. The database comprises 18 isolated 

tonal words spoken by 50 different speakers (33 male and 17 female). Apatani language has two 

lexical tones raising (ˊ) and falling (ˋ) [9]. The one which does not contain either of these two 

tones are referred to as level tone. As there is slight different in the accent of each speakers from 

different villages so equal number of speakers are chosen from each village. Following are the 

particular isolated words which are chosen for recording. The words are selected in consultation 

with Phonetic experts to capture all the tonal and non-tonal instances of each vowel is given in 

table 3.  
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Table. 3: Apatani Words selected for Recording 

Sl no. Apatani Tonal Words Meaning in English 

1 /alá/ Soup 

2 /àlà/ Hand 

3 /ala/ Coming 

4 /tàpe/ Pumpkin 

5 /tape/ Leech 

6 /ámi/ Cat 

7 /àmì/ Tail 

8 /amì/ Eye 

9 /álò/ Put to Dry 

10 /àló/ Bone 

11 /àlò/ Salt 

12 /àlo/ Day 

13 /alò/ Drop 

14 /apú/ Blossom 

15 /ápu/ Wrap Up 

16 /àpu/ Arrow 

17 /müdó/ Rain 

18 /müdo/ Doing 

 

To collect the recorded speech data, we prepared a room that is nearly soundproof and 

to further reduce the reverberation, we have layered the walls and windows with thick curtains. 

Each speaker is asked to utter the same word three (03) times. The recording specification for 

the database is given below: 
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Table.4: Recording specification for the Speech Recognition Database 

 

Number of Speakers 50 (Male=33, Female=17) 

Number of sessions 01 

Number of words  18 

Number of instances for 

same word for the same 

speaker  

03 

Data types Speech 

Sampling rate 16 KHz 

Sampling format Mono-channel, 16 bits resolution 

Microphones 

[1]. Table Microphone (AHUJA ACM-66) 

connected to workstation (PC) Z440. 

[2]. Digital Recorder (Zoom H1 Handy 

digital recorder).  

Acoustic environment Controlled environment 

Languages Apatani with six different accents  

 

 We named the database as Arunachali Tonal Speech Recognition Database Version -1 

(ATSRD-V.1). 

 

 

3.2 Subjective Evaluation of the database 

 

 A human perceptual test was conducted to determine the validity of the database, 

precisely to determine if a specific word kept in the database to represent a particular tone 

conveys that tone or not. For each recorded speech file, a serial number has been assigned to 

hide the actual identity of the file from the listener. Each file has been played to 15 persons 

who belong to Apatani tribes of Arunachali Pradesh. Five (05) of them are phonetic experts 

and the remaining are naïve speakers of Apatani language. Only those files identified correctly 

by more than 60% listeners have been considered for further processing. It has been observed 

that some of the listeners have an inherent problem in recognizing some of the tones. Therefore, 
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if a listener recognizes more than 50% of a particular tone incorrectly, their response for that 

tone was not taken into account. 

 

3.3  Analysis of Features  

Feature is the compact representation of the acoustic properties manifested in the speech 

signal [67]. Choosing suitable features for developing any of the speech systems is a crucial 

design decision. The features are to be chosen to represent the required information for the 

functioning of the proposed system. Different speech features represents different information 

of the speech signal in a highly overlapping manner. Therefore, for the development of a speech 

based system, the features are selected experimentally in most of the cases. In some of the 

cases, the features are also selected using mathematical approach like principal component 

analysis (PCA) [68]. The speech features may be broadly classified into the following 

categories – (i) Excitation source features (ii) Spectral features and (iii) Prosodic features. 

Speech features extracted from excitation source signal is called source features. 

Excitation source signal is obtained by discarding the vocal tract information from the speech 

signal. This is achieved by first predicting the vocal tract information using linear predictor 

filter coefficients extracted from the speech signal and then separating it by using inverse 

transformation. The resulting signal is called linear predictor residual signal [69]. The features 

extracted from LP residual signal is called excitation source features or source features. The 

state-of-the-art phone recognition systems are developed only with vocal tract information. 

However, a sound unit is produced as a result of active involvement of excitation source and 

vocal tract. Just the shape of the vocal tract is not sufficient enough for the characterization of 

a sound unit. The bilabial plosive consonants b and p are produced by the same manner and 

place of articulation. The different between these two sounds is coming as a result of difference 

in their excitation type. The consonant b is voiced and p is unvoiced. Similarly, for all the 

vowels, the excitation type is nearly similar. The difference between the vowel sounds are 

coming as a result of place and manner of articulation. Thus, we can conclude that each sound 

is produced as a result of unique combination of excitation source and vocal tract participation. 

Therefore, to characterize a sound unit, excitation source parameter as well as vocal tract 

parameter are necessary. The most commonly used source parameters are Reflection 

coefficient (RC), Log area ratio (LAR) and Arc-sin reflection coefficients (ARC)[69]. In the 

present study, source features have not been considered as it has more information about 

speaker identity than information about the spoken words.  
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A sound unit is characterized by a sequence of shapes assumed by the vocal tract during 

production of the sound [70]. The vocal tract system can be considered as a cascade of cavities 

of varying cross sectional areas. During speech production, the vocal tract act as a resonator 

and emphasizes certain frequency components depending on the shape of the oral cavity. 

Formants are the resonances of the vocal tract at a given point of time characterized by 

bandwidth and amplitude [71]. These parameters are unique for a sound unit. The information 

about the sequence of shapes of vocal tract that produce the sound unit is captured by vocal 

tract features also called system or spectral features. The vocal tract features are clearly visible 

in the frequency domain. Frequency domain analysis of the speech signal is performed by 

segmenting the speech signal into frame of 20-30 ms, with the frame shift of 10 ms. Most 

commonly used spectral features are linear predictor cepstral coefficients (LPCC), mel 

frequency cepstral coefficients (MFCC), perceptual linear predictor coefficients (PLPC) and 

their derivations [72]. In the present study, LPCC, MFCC and PLPCC features have been 

considered to analyze their phoneme discrimination capability with reference to tonal 

phonemes. Due to the state of the art performance of MFCC features, it has been considered as 

a de facto feature for speech recognition, specially for non-tonal languages. 

Prosody represents the suprasegmental aspects of speech production. Prosody is 

concern with those aspects of speech signal that modulate and enhance its meaning [73]. It 

makes the human speech natural. It is associated with longer unit of speech such as syllable, 

words, phrases and sentences. Prosody is acoustically represented by duration, intonation (F0 

contour) and energy [74]. Mary and Yegnnarayana [75] analyzed the effectiveness of prosodic 

features for speaker verification. They observed that shape of the F0 contour reflects certain 

speaking habits of a person. In order to represent the shape of the F0 contour, tilt parameters 

have been used [76]. A 7-dimensinal feature vector was proposed, which includes mean value 

of pitch (𝐹𝐹0𝜇𝜇), peak fundamental frequency (𝐹𝐹0𝑝𝑝), change of F0 (∆F0), distance of F0 peak 

with respect to vowel onset point (VOP) (𝐷𝐷𝑝𝑝), amplitude tilt (𝐴𝐴𝑡𝑡), Duration tilt (𝐷𝐷𝑡𝑡) and change 

of log energy (∆E). Prosody plays an important role in the transcript of information in human 

communication. To utilize the prosodic features in speech recognition, suitable 

parameterization of the prosodic information is required. Normally, it is represented by 

fundamental frequency (𝐹𝐹0), energy and normalized duration of syllable [77]. In the present 

study, in order to use only frame-based features, fundamental frequency and energy have been 

considered for the representation of prosodic information. Fundamental frequency and frame 

energy are static features, calculated frame by frame. In order to include temporal information, 
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their first (∆)- and second (∆∆)-order derivatives have been calculated and added to the feature 

set. Thus, we got a 6-dimensional prosodic feature vector for each frame. 

In the present study, each tonal instance of a vowel has been considered as different 

tonal vowel. For example, the vowel /a/ has three associated tones – rising, falling and level. 

Thus vowel /a/ give raise to the tonal vowels �́�𝑎 (/a/ rising), �̀�𝑎 (/a/ falling) and 𝑎𝑎� (/a/ level). We 

referred to these vowels as tonal vowel. A feature would be effective in discriminating between 

different tonal vowels if the distribution of different tonal vowels are concentrated at widely 

different location in the parameter space although they are different from each other only in 

associated tone.  

 

3.3.1 F-ratio  

 

A good measure of effectiveness would be the ratio of inter-vowel to intra-vowel 

(within the class) variance for the tonal vowels, referred to as F-ratio, which is defined as  

 

𝐹𝐹 = Variance between the tonal vowels for a coefficient
Average variance within all the tonal vowels for the coefficient 

  … (1) 

 

It can be represented as  

𝐹𝐹 =
1
𝑁𝑁�∑ (𝜇𝜇𝑖𝑖−𝜇𝜇�)2𝑁𝑁

𝑖𝑖=1 �
1
𝑁𝑁
∑ 𝑆𝑆𝑖𝑖𝑁𝑁
𝑖𝑖=1

       … (2) 

where N is the number of tonal vowels, 𝜇𝜇𝑖𝑖 is the mean of a particular coefficient of the feature 

vector for ith tonal vowel, �̅�𝜇 is the overall mean value for that coefficient of the feature vector 

for all the tonal vowels. 𝑆𝑆𝑖𝑖, the within tonal vowel variance is given by,  

𝑆𝑆𝑖𝑖 = 1
𝑀𝑀𝑖𝑖
∑ (𝑥𝑥𝑖𝑖𝑖𝑖 − 𝜇𝜇𝑖𝑖)2
𝑀𝑀𝑖𝑖
𝑖𝑖=1      … (3) 

where 𝑥𝑥𝑖𝑖𝑖𝑖 is the value of the coefficient for jth observation of the ith tonal vowel and 𝑀𝑀𝑖𝑖 is the 

number of observations for ith tonal vowel. Higher F-ratio value for a coefficient indicates that 

it can be used for good classification. 

 

 

3.3.2 Kullback-Leibler Distance (KLD) 

 

Kullback Leibler distance (KLD) has been used to measure the distance between the 

features. The KLD provides a natural distance between a probability distribution and a target 
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probability distribution. In the present study, KL distances have been measured among the 

features extracted from each tonal instance of the phoneme with other tonal instance of the 

same base phoneme. If the distance is high, the feature will be able to discriminate among the 

tonal instances.  However, the same feature should also be able to discriminate among the 

different phonemes. To measure the inter-phoneme discrimination capability the feature, we 

have computed the KL distance among different base phonemes.  

 

3.4 Tonal Speech Recognition System  

3.4.1 Hidden Markov Model  
The concept of HMM was developed by  Baum and his colleagues. Baker at CMU and Jelinek 

and his colleagues at IBM in the late 1960s and early part of 1970s. The fundamental concepts 

of HMM was published by for speech processing applications in the 1970s [1]. It is a system 

which can be described by the following components and properties [23, 78]: 

• It is a collection of N distinct states, {𝑠𝑠1, 𝑠𝑠2, … 𝑠𝑠𝑁𝑁}. One of these states is considered as 

the current state of the system, at any discrete time t. At discrete time t,𝑞𝑞𝑡𝑡 is considered 

as the state of the system where 𝑞𝑞𝑡𝑡 =  𝑠𝑠𝑖𝑖  and 𝑖𝑖 = 1, 2… N. 

• Depending upon the probabilities associated with the states, changes of states are 

occurred at equal spaced discrete times. The state transition probability is another 

component of the system which is not dependent of time. In the equation (14),  the 

probability of change in state from 𝑠𝑠𝑖𝑖 to 𝑠𝑠𝑖𝑖 at discrete time t is represented by 𝑎𝑎𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗  

𝑎𝑎𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗 = 𝑃𝑃�𝑞𝑞𝑡𝑡 = 𝑠𝑠𝑖𝑖�𝑞𝑞𝑡𝑡−1 = 𝑠𝑠𝑖𝑖�           1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑁𝑁                           … (14) 

                 Where   

𝑎𝑎𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗 ≥ 0                 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖, 𝑗𝑗                                                                         … (15𝑎𝑎) 

�𝑎𝑎𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗 = 1  
𝑁𝑁

𝑖𝑖=1

          𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖                                                                          … (15𝑏𝑏) 

• Equation (16) shows that the probability of the previous state decides the probability of 

a particular state. 

𝑃𝑃�𝑞𝑞𝑡𝑡 = 𝑠𝑠𝑖𝑖�𝑞𝑞𝑡𝑡−1 = 𝑠𝑠𝑖𝑖, 𝑞𝑞𝑡𝑡−2 = 𝑠𝑠𝑘𝑘 ,∙∙∙∙∙� = 𝑃𝑃�𝑞𝑞𝑡𝑡 = 𝑠𝑠𝑖𝑖�𝑞𝑞𝑡𝑡−1 = 𝑠𝑠𝑖𝑖�                 … (16) 

• The other components are: an initial state (𝑞𝑞0 ) and an end state (𝑞𝑞𝐹𝐹 ). 

Fig. 1 shows a four state Markov chain. 
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Fig.1: Selected state transitions by a four states Markov chain.  

 

In Markov chain each state is related to an event that can be observed and so it is also known 

as observable Markov model. An output of a Markov process can be stated as a collection of 

states at a discrete time instance. When it is required to estimate probability of an output 

sequence consisting of observable events a Markov chain is useful. Any observation sequence 

not consisting of directly observable event, Markov chain is not applicable but we need an 

extension of Markov chain which is specifically known by the name Hidden Markov Model 

(HMM). HMM allows observing the hidden stochastic process through another collection of 

stochastic processes which produce the observation sequence. 

HMM can be described by the following properties and elements: 

• A HMM consist of a collection of N number of states  {𝑠𝑠1, 𝑠𝑠2, … 𝑠𝑠𝑁𝑁} .At time t, 

𝑞𝑞𝑡𝑡 is the state. 

• The type of the HMM is responsible for the possible state transitions from one 

state to another state. 

• As mentioned in equation (16), as per Markov chain property, probability of 

each consecutive state is dependent only on the probability of the previous state. 

This property is one of the most important elements of HMM. 
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• Below mentioned equation (17a) represents the state transition probabilities in 

HMM.  

         𝐴𝐴 = 𝑎𝑎𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗  ,  𝑎𝑎𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗 = 𝑃𝑃�𝑞𝑞𝑡𝑡+1 = 𝑠𝑠𝑖𝑖�𝑞𝑞𝑡𝑡 = 𝑠𝑠𝑖𝑖�  , 1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑁𝑁            … ( 17𝑎𝑎) 

         �𝑎𝑎𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗 = 1  
𝑁𝑁

𝑖𝑖=1

          𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖                                                                      … (17𝑏𝑏) 

When each state can be reached from any other state in a single step as shown in Fig. 

2, all 𝑎𝑎𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗 > 0. 

Otherwise, for one or more than one values of(𝑖𝑖, 𝑗𝑗)  as shown in Fig. 3, some 𝑎𝑎𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗 = 0. 

Each hidden state in a HMM can randomly generates one of the M observation symbols 

available as collection of M number of observation symbols. The set of observation symbols 

are denoted as V={𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑀𝑀}. Probabilities of the sequence of observation symbol are 

another important element of HMM. It can be stated as the probability of an observation 𝑓𝑓𝑡𝑡 at 

time t generated from a state 𝑠𝑠𝑖𝑖. In the following equation (18), observation symbol 

probabilities are denoted by B is given by: 

                      𝐵𝐵 = �𝑏𝑏𝑠𝑠𝑖𝑖(𝑓𝑓𝑡𝑡)� , 𝑏𝑏𝑠𝑠𝑖𝑖(𝑓𝑓𝑡𝑡) = 𝑃𝑃(𝑓𝑓𝑡𝑡 = 𝑣𝑣𝑘𝑘|𝑞𝑞𝑡𝑡 = 𝑠𝑠𝑖𝑖) ,                                        … (18) 

  1 ≤ 𝑘𝑘 ≤ 𝑀𝑀     𝑎𝑎𝑎𝑎𝑎𝑎   1 ≤ 𝑖𝑖 ≤ 𝑁𝑁   

HMM also has an initial state probability distribution which is denoted by π in equation (19) 

where  πsi gives the probability of the Markov chain to start in state  si and if πsj = 0, it means 

the Markov chain will not start in state  sj. 

                                             𝜋𝜋 = �𝜋𝜋𝑠𝑠𝑖𝑖�  ,

                  𝜋𝜋𝑠𝑠𝑖𝑖 = 𝑃𝑃(𝑞𝑞1 = 𝑠𝑠𝑖𝑖)  ,      1 ≤ 𝑖𝑖 ≤ 𝑁𝑁                                           … ( 19) 

HMM is used as a generator of the observation sequence, O = 𝑓𝑓1, 𝑓𝑓2, … , 𝑓𝑓𝑇𝑇 with N and M. Here 

𝑓𝑓𝑡𝑡 is one of the observation symbols available in V. T is the total number of observation symbols 

present in the observation sequence O. The HMM model is represented by λ =  (A, B, π). 
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Fig. 2: A 4-state HMM where each state can be reached from any other state in a single step. 

 

Fig.  3: A 4-state HMM where every state cannot be reached from any other state in a single 

step. 

 

There are three main issues related to the successful and efficient implementation of HMM in 
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case of real world applications like speech recognition based on HMM which are stated below: 

• First issue: Calculating efficiently the probability to be generated by HMM  λ =

 (A, B, π)  for the observation sequence  O = 𝑓𝑓1, 𝑓𝑓2, … , 𝑓𝑓𝑇𝑇 . 

• Second issue: Estimating the most likely sequence of hidden states si  that produced 

the observation sequence  O = 𝑓𝑓1, 𝑓𝑓2, … , 𝑓𝑓𝑇𝑇   with the HMM  λ =  (A, B, π). 

• Third issue: Determining the HMM parameters  λ =  (A, B, π) for some of the 

training observation sequence,  O = 𝑓𝑓1, 𝑓𝑓2, … , 𝑓𝑓𝑇𝑇   by the general structure of HMM 

hidden and visible states so that the HMM will maximize the probability of the 

observation sequence.  

The above mentioned issues can be solved in the following ways: 

• The first issue can be solved using the forward procedure. 

• The second issue can be solved by using Viterbi Algorithm which can be used 

to estimate the single best state sequence that produced the observation sequence 

with a HMM  

• The third issue can be solved by using Baum-Welch method which is an 

efficient technique to adjust the HMM parameters (A, B, π) with training 

observation sequence and the structure of HMM hidden and visible states so that 

it will maximize the probability of the observation sequence. 

 

3.4.2 Forward Algorithm for Probability Estimation  

In HMM, the probability denoted as 𝑃𝑃(𝑂𝑂|𝜆𝜆) has to be estimated efficiently where O =

𝑓𝑓1, 𝑓𝑓2, … , 𝑓𝑓𝑇𝑇 is the observation sequence and λ =  (A, B, π) where A denote the state transition 

probabilities as in equation (17a), B denote the observation probabilities as in equation (18)  

and π denote the initial probabilities (19).  

𝑃𝑃(𝑂𝑂|𝜆𝜆)can be estimated using the equation (20), considering the state sequence of length T 

for the observation sequence  O = 𝑓𝑓1,𝑓𝑓2, … ,𝑓𝑓𝑇𝑇 as q= 𝑞𝑞1,𝑞𝑞2, … ,𝑞𝑞𝑇𝑇. 

         𝑃𝑃(𝑂𝑂|𝜆𝜆) = � 𝜋𝜋𝑞𝑞1𝑏𝑏𝑞𝑞1(𝑓𝑓1)
𝑞𝑞1,𝑞𝑞2,……,𝑞𝑞𝑇𝑇

𝑎𝑎𝑞𝑞1𝑞𝑞2𝑏𝑏𝑞𝑞2(𝑓𝑓2) … .𝑎𝑎𝑞𝑞𝑇𝑇−1𝑞𝑞𝑇𝑇𝑏𝑏𝑞𝑞𝑇𝑇(𝑓𝑓𝑇𝑇)                      … (20) 

This approach cannot be used in practical applications because it requires a large amount of 
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computations. To obtain the required value of   𝑃𝑃(𝑂𝑂|𝜆𝜆) it requires 2⨯T⨯NT number of 

calculations with N numbers of HMM states and the observation sequence with length T 

because for each observation of the observation sequence, N number of possible states are 

available that means total number of possible state sequence is NT and for each state sequence 

require 2⨯T calculations. 

Alternatively, we can use the forward algorithm to estimate 𝑃𝑃(𝑂𝑂|𝜆𝜆) efficiently as explained 

below: 

This algorithm considers a forward variable 𝐹𝐹𝑡𝑡(𝑠𝑠𝑖𝑖) which is for the current state 𝑠𝑠𝑖𝑖 at time t, 

the probability of the observation sequence 𝑓𝑓1𝑓𝑓2𝑓𝑓3 … . 𝑓𝑓𝑡𝑡  as stated in the equation (21). 

                     𝐹𝐹𝑡𝑡(𝑠𝑠𝑖𝑖) = 𝑃𝑃(𝑓𝑓1𝑓𝑓2𝑓𝑓3 … . 𝑓𝑓𝑡𝑡 , 𝑞𝑞𝑡𝑡 = 𝑠𝑠𝑖𝑖|𝜆𝜆)                                                          … (21)  

Now estimation of 𝐹𝐹𝑡𝑡(𝑠𝑠𝑖𝑖) is performed inductively as mentioned in the following three steps.  

Step 1: At first the forward variable is initialized as shown in the equation (22) with joint 

probabilities of state 𝑠𝑠𝑖𝑖 and initial observation 𝑓𝑓1. 

                    𝐹𝐹1(𝑠𝑠𝑖𝑖) = 𝜋𝜋𝑠𝑠𝑖𝑖𝑏𝑏𝑠𝑠𝑖𝑖(𝑓𝑓1)               1 ≤ i ≤ 𝑁𝑁                                                              … (22) 

Step 2: The second step estimates inductively the probability of the observation sequence 

𝑓𝑓1𝑓𝑓2𝑓𝑓3 … . 𝑓𝑓𝑡𝑡 , 𝑓𝑓𝑡𝑡+1 with state transition from 𝑠𝑠𝑖𝑖 to 𝑠𝑠𝑖𝑖 as shown in equation (23)[91]. This step 

is the most important step in this approach. 

            𝐹𝐹𝑡𝑡+1�𝑠𝑠𝑖𝑖� = ��𝐹𝐹𝑡𝑡(𝑠𝑠𝑖𝑖)𝑎𝑎𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗

𝑁𝑁

𝑖𝑖=1

� 𝑏𝑏𝑠𝑠𝑗𝑗(𝑓𝑓𝑡𝑡+1)                  1 ≤ 𝑡𝑡 ≤ 𝑇𝑇 − 1                            … (23)  

                                                                                        1 ≤ 𝑗𝑗 ≤ 𝑁𝑁 

Step 3: The third step estimates 𝑃𝑃(𝑂𝑂|𝜆𝜆) as shown in equation (24)[1] by summing the estimated 

terminal forward variables denoted by 𝐹𝐹𝑇𝑇(𝑠𝑠𝑖𝑖),  which was obtained in the second step. 

                    𝑃𝑃(𝑂𝑂|𝜆𝜆) = ∑ 𝐹𝐹𝑇𝑇𝑁𝑁
𝑖𝑖=1 (𝑠𝑠𝑖𝑖)                                                                                         … (24) 

 

3.4.3 Backward Algorithm for Estimation of Probability for Partial 

Observation Sequence 
Backward algorithm is another way to estimates the probability for partial observation 

sequence, 𝑓𝑓𝑡𝑡+1,𝑓𝑓𝑡𝑡+2, … . 𝑓𝑓𝑇𝑇 from the observation sequence O = 𝑓𝑓1,𝑓𝑓2, … ,𝑓𝑓𝑇𝑇 . This Backward 

calculation is used to solve the following HMM issues: 

1) To estimate HMM parameter in an optimal way.  

2) To estimate the best state sequence for an observation sequence. 
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Now the backward variable is computed for the Backward procedure. As shown in equation 

(25)[70], backward variable is the probability of the partial observation sequence, 

𝑓𝑓𝑡𝑡+1, 𝑓𝑓𝑡𝑡+2, … . 𝑓𝑓𝑇𝑇 from the observation sequence O = 𝑓𝑓1,𝑓𝑓2, … ,𝑓𝑓𝑇𝑇. 

              𝐵𝐵𝑘𝑘𝑡𝑡(𝑠𝑠𝑖𝑖) = 𝑃𝑃(𝑓𝑓𝑡𝑡+1𝑓𝑓𝑡𝑡+2 … . 𝑓𝑓𝑇𝑇|𝑞𝑞𝑡𝑡 = 𝑠𝑠𝑖𝑖, 𝜆𝜆)                                                                    … (25) 

At first the backward variable 𝐵𝐵𝑘𝑘𝑇𝑇(𝑠𝑠𝑖𝑖)is initialized for all possible N states of the HMM as 

shown in the equation (26) 

              𝐵𝐵𝑘𝑘𝑇𝑇(𝑠𝑠𝑖𝑖) = 1,                      1 ≤ 𝑖𝑖

≤ 𝑁𝑁                                                                                                                       … (26)  

The second step estimates 𝐵𝐵𝑘𝑘𝑡𝑡(𝑠𝑠𝑖𝑖) inductively for all N states of the HMM as shown in 

equation (27) [91]. This step is the most important step in this approach. 

    𝐵𝐵𝑘𝑘𝑡𝑡(𝑠𝑠𝑖𝑖) = �𝑎𝑎𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗𝑏𝑏𝑠𝑠𝑗𝑗(𝑓𝑓𝑡𝑡+1)
𝑁𝑁

𝑖𝑖=1

𝐵𝐵𝑘𝑘𝑡𝑡+1�𝑠𝑠𝑖𝑖�,    𝑡𝑡 = 𝑇𝑇 − 1,𝑇𝑇 − 2, … , 1,                             … (27)    

                                                                                               1 ≤ 𝑖𝑖 ≤ 𝑁𝑁             

 

3.4.4 Baum-Welch Method for HMM Parameter Estimation 
One of the challenges of HMM is optimal estimation of the HMM parameters,   λ =

 (A, B, π) so that it will maximizes the value of  𝑃𝑃(𝑂𝑂|𝜆𝜆)[1]. To overcome this challenge, Baum 

and his colleagues proposed a method known as Baum-Welch method which is stated below. 

As shown in equation (28), ξt(i, j) is the probability of an observation sequence where state 𝑠𝑠𝑖𝑖 

is reached at time t and state 𝑠𝑠𝑖𝑖 is reached at time t+1. 

ξt(i, j) = P�qt = si, qt+1 = sj|O, λ�                                                                                      … (28)  

ξt(i, j)can be represented as shown in the equation (29)[78] taking into consideration the 

definitions of forward equation (21) and backward equation (25). 

ξt(i, j) =
𝑃𝑃�𝑞𝑞𝑡𝑡 = 𝑠𝑠𝑖𝑖, 𝑞𝑞𝑡𝑡+1 = 𝑠𝑠𝑖𝑖 ,𝑂𝑂�λ�

𝑃𝑃(𝑂𝑂|λ)  

                                                     =
𝐹𝐹𝑡𝑡(𝑠𝑠𝑖𝑖)𝑎𝑎𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗𝑏𝑏𝑠𝑠𝑗𝑗(𝑓𝑓𝑡𝑡+1)𝐵𝐵𝑘𝑘𝑡𝑡+1�𝑠𝑠𝑖𝑖�

∑ ∑ 𝐹𝐹𝑡𝑡(𝑠𝑠𝑖𝑖)𝑎𝑎𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗𝑏𝑏𝑠𝑠𝑗𝑗(𝑓𝑓𝑡𝑡+1)𝐵𝐵𝑘𝑘𝑡𝑡+1�𝑠𝑠𝑖𝑖�𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1

                … (29) 

Next we need to compute the probability of reaching state 𝑠𝑠𝑖𝑖 at time t and is represented by 

𝛾𝛾𝑡𝑡(𝑖𝑖)  as shown in equation (30) [70].  

                               𝛾𝛾𝑡𝑡(𝑖𝑖) = �ξ𝑡𝑡(𝑖𝑖, 𝑗𝑗)
𝑁𝑁

𝑖𝑖=1

                                                                                    … (30) 

The expected number of transitions from state 𝑠𝑠𝑖𝑖 and the expected number of transitions from 
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state 𝑠𝑠𝑖𝑖 to 𝑠𝑠𝑖𝑖 considering a observation sequence O = 𝑓𝑓1,𝑓𝑓2, … ,𝑓𝑓𝑇𝑇 ,  can be estimated as given  

in equation (31) and (32)[70]. 

�𝛾𝛾𝑡𝑡(𝑖𝑖) = 𝑒𝑒𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑎𝑎 𝑎𝑎𝑛𝑛𝑛𝑛𝑏𝑏𝑒𝑒𝑓𝑓𝑠𝑠 𝑓𝑓𝑓𝑓 𝑡𝑡𝑓𝑓𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖𝑡𝑡𝑖𝑖𝑓𝑓𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑛𝑛 𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡𝑒𝑒 𝑠𝑠𝑖𝑖 𝑖𝑖𝑎𝑎 𝑂𝑂
𝑇𝑇−1

𝑡𝑡=1

                 … (31)  

�ξ𝑡𝑡(𝑖𝑖, 𝑗𝑗) = 𝑒𝑒𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑎𝑎 𝑎𝑎𝑛𝑛𝑛𝑛𝑏𝑏𝑒𝑒𝑓𝑓𝑠𝑠 𝑓𝑓𝑓𝑓 𝑡𝑡𝑓𝑓𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖𝑡𝑡𝑖𝑖𝑓𝑓𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑛𝑛 𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡𝑒𝑒 𝑠𝑠𝑖𝑖 𝑡𝑡𝑓𝑓 𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡𝑒𝑒 𝑠𝑠𝑖𝑖  𝑖𝑖𝑎𝑎 𝑂𝑂
𝑇𝑇−1

𝑡𝑡=1

 … (32) 

The re-estimation of the HMM parameters, λ =  (A, B, π) are processed by equation (33), (34) 

and (35)[70], using equation (30) and (31) as shown below. 

      �̂�𝐴 = 𝑎𝑎�𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗 =
∑ ξ𝑡𝑡(𝑖𝑖, 𝑗𝑗)𝑇𝑇−1
𝑡𝑡=1

∑ 𝛾𝛾𝑡𝑡(𝑖𝑖)𝑇𝑇−1
𝑡𝑡=1

                                                                                          … (33) 

        𝐵𝐵� = 𝑏𝑏�𝑠𝑠𝑗𝑗(𝑓𝑓𝑡𝑡) =
∑ 𝛾𝛾𝑡𝑡(𝑗𝑗)𝑇𝑇

𝑡𝑡=1
𝑜𝑜𝑡𝑡=𝑣𝑣𝑘𝑘
∑ 𝛾𝛾𝑡𝑡(𝑗𝑗)𝑇𝑇
𝑡𝑡=1

                                                                                     … (34)  

           𝜋𝜋� = 𝜋𝜋�𝑠𝑠𝑖𝑖 = 𝛾𝛾1(𝑖𝑖)                                                                                                          … (35)    

If  𝑃𝑃�𝑂𝑂��̂�𝜆� > 𝑃𝑃(𝑂𝑂|𝜆𝜆), it means re-estimated HMM parameters, λ� = ��̂�𝐴,𝐵𝐵� ,𝜋𝜋�� provides better 

probability scores for observation sequence O = 𝑓𝑓1,𝑓𝑓2, … ,𝑓𝑓𝑇𝑇 then �̂�𝜆will be considered as 𝜆𝜆 for 

further iterations of the HMM parameter adjustment process to maximize the value of  𝑃𝑃(𝑂𝑂|𝜆𝜆). 

Until some limiting condition is achieved, this iterative process continues [1]. 

 

3.4.5 The Viterbi Algorithm for Single Best State Sequence Estimation 
One of the main issues in the testing phase of ASR system while using HMM is to find out the 

best state sequence for an observation sequence. This issue has several solution, one of which 

is the Viterbi algorithm where optimality criteria used is to find out the single best state 

sequence. This is done to maximize 𝑃𝑃(𝑞𝑞|𝑂𝑂, 𝜆𝜆)  where q is the single best state sequence for the 

observation sequence O with HMM 𝜆𝜆[70]. The following describes the Viterbi algorithm. 

The first step in the Viterbi algorithm is to find the best probability score along a single path 

with first t observations of an observation sequence  O = 𝑓𝑓1,𝑓𝑓2, … ,𝑓𝑓𝑇𝑇 and state 𝑠𝑠𝑖𝑖 at time t as 

shown in the equation(36)[1]. 

          𝛿𝛿𝑡𝑡(𝑖𝑖) = max
𝑞𝑞1,𝑞𝑞2,…,𝑞𝑞𝑡𝑡−1

𝑃𝑃(𝑞𝑞1𝑞𝑞2 …𝑞𝑞𝑡𝑡−1, 𝑞𝑞𝑡𝑡 = 𝑠𝑠𝑖𝑖, 𝑓𝑓1𝑓𝑓2 … 𝑓𝑓𝑡𝑡|𝜆𝜆)                                      … (36) 

Next step is to define 𝛿𝛿𝑡𝑡+1(𝑗𝑗) by induction as given in the equation (37) [70]. 

             𝛿𝛿𝑡𝑡+1(𝑗𝑗) = �max
𝑖𝑖
𝛿𝛿𝑡𝑡(𝑖𝑖)𝑎𝑎𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗�  . 𝑏𝑏𝑠𝑠𝑗𝑗(𝑓𝑓𝑡𝑡+1)                                                                    … (37) 

To obtain the required single best state sequence a tracking process for the parameter which 
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maximizes equation (37) for each t and j is performed using an array𝜑𝜑𝑡𝑡(𝑗𝑗). Viterbi algorithm 

requires the following steps for implementation 

Step 1: First step is to define 𝜋𝜋�𝑠𝑠𝑖𝑖   , 𝑏𝑏�𝑠𝑠𝑖𝑖(𝑓𝑓𝑡𝑡)  and 𝑎𝑎�𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗as given in the equation (38), (39) and 

(40)[91]. 

             𝜋𝜋�𝑠𝑠𝑖𝑖 = 𝑎𝑎𝑓𝑓𝑙𝑙�𝜋𝜋𝑠𝑠𝑖𝑖�                           1 ≤ i ≤ 𝑁𝑁                                                               … (38) 

             𝑏𝑏�𝑠𝑠𝑖𝑖(𝑓𝑓𝑡𝑡) = 𝑎𝑎𝑓𝑓𝑙𝑙�𝑏𝑏𝑠𝑠𝑖𝑖  (𝑓𝑓𝑡𝑡)�             1 ≤ 𝑖𝑖 ≤ 𝑁𝑁, 1 ≤ 𝑡𝑡 ≤ 𝑇𝑇                                         … (39)  

             𝑎𝑎�𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗 = 𝑎𝑎𝑓𝑓𝑙𝑙 �𝑎𝑎𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗�                           1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑁𝑁                                                     … (40)  

Step 2: Second step initializes 𝛿𝛿1(𝑖𝑖)and 𝜑𝜑1(𝑖𝑖) as given in equation (41), (42) and (43)[91]. 

               𝛿𝛿1(𝑖𝑖) = 𝜋𝜋𝑠𝑠𝑖𝑖𝑏𝑏𝑠𝑠𝑖𝑖(𝑓𝑓1),      1 ≤ 𝑖𝑖 ≤ 𝑁𝑁                                                                           … (41) 

               𝛿𝛿1(𝑖𝑖) = 𝑎𝑎𝑓𝑓𝑙𝑙�𝛿𝛿1(𝑖𝑖)� = 𝜋𝜋�𝑠𝑠𝑖𝑖 + 𝑏𝑏�𝑠𝑠𝑖𝑖(𝑓𝑓𝑡𝑡)                  1 ≤ 𝑖𝑖 ≤ 𝑁𝑁                                 … (42) 

                𝜑𝜑1(𝑖𝑖) = 0              1 ≤ 𝑖𝑖 ≤ 𝑁𝑁                                                                                   … (43) 

Step 3: Third step implements a recursive process using equation (44) and array 𝜑𝜑𝑡𝑡(𝑗𝑗) is used 

as shown in equation (45) to track of the argument that maximized the equation (44)[91]. 

             𝛿𝛿𝑡𝑡(𝑗𝑗) = 𝑎𝑎𝑓𝑓𝑙𝑙�𝛿𝛿𝑡𝑡(𝑗𝑗)� = max
1≤𝑖𝑖≤𝑁𝑁

�𝛿𝛿𝑡𝑡−1(𝑖𝑖) + 𝑎𝑎�𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗� + 𝑏𝑏�𝑠𝑠𝑗𝑗(𝑓𝑓𝑡𝑡)                                       … (44)  

              𝜑𝜑𝑡𝑡(𝑗𝑗) = arg max
1≤𝑖𝑖≤𝑁𝑁

��̂�𝛿𝑡𝑡−1(𝑖𝑖) + 𝑎𝑎�𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗�   2 ≤ 𝑡𝑡 ≤ 𝑇𝑇 , 1 ≤ 𝑗𝑗 ≤ 𝑁𝑁                              … (45) 

Step 4: Forth step implements termination process of the Viterbi algorithm as given in equation 

(46) and (47) [70]. 

               𝑃𝑃�∗ = max
1≤𝑖𝑖≤𝑁𝑁

�𝛿𝛿𝑇𝑇(𝑖𝑖)�                                                                                    … (46)  

               𝑞𝑞𝑇𝑇∗ = arg max
1≤𝑖𝑖≤𝑁𝑁

��̂�𝛿𝑇𝑇(𝑖𝑖)�                                                                               … (47) 

Step 5: Fifth step implements a backtracking process as given in equation (48). Backtracking 

process is used to find out the single best state sequence where 𝑞𝑞𝑡𝑡∗  is the most suitable state at 

time t to maximize 𝑃𝑃(𝑞𝑞|𝑂𝑂, 𝜆𝜆)[70]. 

                             𝑞𝑞𝑡𝑡∗ = 𝜑𝜑𝑡𝑡+1(𝑞𝑞𝑡𝑡+1∗ )    𝑡𝑡 = 𝑇𝑇 − 1,𝑇𝑇 − 2, … … . ,1                                         … (48) 

This implementation of Viterbi algorithm requires about N2 ⨯T number of calculations [91]. 

 

4. Analysis of Features for their Tonal Speech Representation Capability 
 

4.1 Introduction  
 This chapter presents an analysis of the speech features for their tonal speech 

discrimination capability. Speech features have been evaluated for their tonal base unit (TBU) 
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discrimination ability even when the TBUs are distinct from each other only by tone or only 

by base syllabic unit. A detail profiling of the features has been done. Further, different 

combinations of features have been tried to find the suitable combination for the representation 

of the tonal base units. A feature extraction method with varying observation window has been 

proposed for tonal speech recognition and its performance has been evaluated. All the 

experiments reported in this chapter are carried out using the tonal vowel database. 

 

4.2 Tonal vowel database  
The Apatani language of Arunachal Pradesh has six vowels and two lexical tones – rising 

and falling. Beside from these two tones each Apatani vowel has an instance without any 

associated tone, which we called level tone. Except the vowel [ə], all the vowels have all these 

three tonal instances. For vowel [ə] only level tone has been observed. Each tonal instance of a 

vowel has been considered as different tonal vowel. For example, the vowel [ɑ:] has three 

associated tones -- rising, falling and level. Thus vowel[ɑ:] gives raise to the tonal vowels [ ɑ́:] 

([ɑ:] rising), [ ɑ̀:] ([ɑ:] falling) and [ɑ�:]  ( [ɑ:]   level). We referred to these vowels as tonal 

vowels. Considering the tonal instances as a separate vowel, we get sixteen tonal vowels in 

Apatani language. The vowels are given in Table. 5. Since the vowel [ə] has only one tone, it is 

not taken into consideration while evaluating the performance of the feature vectors.  

Table. 5. Apatani Tonal vowels. 

[ɑ�:] Vowel ɑ: with level tone 

[ ɑ́:] Vowel ɑ: with rising tone 

[ ɑ̀:] Vowel ɑ: with falling tone 

[ɪ]̅ Vowel ɪ with level tone 

[ ɪ́] Vowel ɪ with rising tone 

[ ɪ]̀ Vowel ɪ with falling tone 

[ɔ �] Vowel ɔ with level tone 

[ ɔ́] Vowel ɔ with rising tone 

[ ɔ̀] Vowel ɔ with falling tone 
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[ɛ �] Vowel ɛ with level tone 

[ ɛ́] Vowel ɛ with rising tone 

[ ɛ̀] Vowel ɛ with falling tone 

[ʊ �] Vowel ʊ with level tone 

[ ʊ́] Vowel ʊ with rising tone 

[ ʊ̀] Vowel ʊ with falling tone 

[ə �] Vowel ə with level tone 

 

 The vowel database consist of 750 instance for each tonal vowel spoken by 50 speakers 

in three sessions and each speaker utter the same word 5 times in each session.  

 

4.3 Evaluation of the Features for tonal vowel discrimination capability  
 In this section we have evaluated the features for their tonal vowel discrimination 

capability. The features are evaluated on the basis of their tonal vowel discrimination capability 

when  

a) Base vowels are same only the tones are different.  

b) Tones are same only the base vowels are different.  

c) Both tones and base vowels are different. 

 

4.3.1 Statistical Evaluation of the Features  

The speech signals have been analyzed using a Hamming windows of length 20 ms, frame 

rate 100 Hz and pre-emphasis factor of 0.97. From each windowed speech signal MFCC, 

LPCC, RC, LAR and prosodic features have been extracted. Features are extracted from each 

tonal instance of the vowel separately. Kullback-Leibler distances (KLD) have been computed 

from each tonal vowel to all the other tonal vowels and their average has been taken. KLD is 

defined as the relative entropy of two density functions. Higher the value of the KLD indicates 

that the feature is capable for discriminating among the tonal vowels.  The results of the 

experiments are given in the table-6 (a) and table-6 (b). 
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Table-6 (a): Table: Average KL Distance from each tonal vowel to all the other vowels 

(Vowel ɑ:,ɪ and ɔ) 

 

Feature 

Type 

Vowels 

[ ɑ�:] [ ɑ́:] [ ɑ̀:] [ ɪ]̅ [ ɪ́] [ ɪ]̀ [ ɔ �] [ ɔ́] [ ɔ̀] 

MFCC 1.3961 0.3375 0.9665 0.7851 0.1114 0.3104 0.3871 0.6731 0.7513 

LPCC 0.1307 0.2220 0.5271 0.7370 0.8135 0.6929 0.7506 0.3960 0.0477 

RC 1.1063 0.0665 0.9483 0.3955 0.3622 0.2413 0.0231 0.3613 0.2004 

LAR 0.1170 0.2492 0.2749 0.2640 0.0060 0.1262 0.1979 0.1517 0.0505 

PROSODIC 0.0910 0.0889 0.0658 0.0194 0.1134 0.0038 0.1517 0.1262 0.0488 

 

Table-6 (b): Table: Average KL Distance from each tonal vowel to all the other vowels 

(Vowel ɛ and ʊ) 

Feature 

Type 

Vowels 

[ ɛ �] [ ɛ́] [ ɛ̀] [ ʊ � ] [ ʊ́] [ ʊ̀] 

MFCC 1.1161 0.9675 0.5907 0.9076 0.6625 0.5145 

LPCC 0.3223 0.1451 0.3293 0.2938 0.1106 0.6640 

RC 0.0720 0.2041 0.1950 0.0737 0.0933 1.5474 

LAR 0.0762 0.0651 0.0779 0.1828 0.1859 0.0461 

PROSODIC 0.0762 0.1365 0.1553 0.1258 0.1227 0.1979 

 

 The above result shows that all the features, except the prosodic feature exhibit change 

in entropy due to the change in tone and base-phoneme together. However, significant changes 

have been recorded only in the case of spectral features MFCC and LPCC only. The average 

changes in entry for MFCC and LPCC are 0.6985 and 0.4122, which is still significantly low 

for distinguishing the tonal vowels. The change in entry may be for two reasons – change in 

base phoneme and change in tone. In the next experiment we have analysed the change in 
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entropy only due to the change in tone keeping the base phoneme fixed. 

Table-7: Average KL Distance among the different tonal instances of the same vowel 

Feature Type 
Vowel 

ɑ ɪ ɔ ɛ ʊ 

MFCC 0.3884 0.2639 0.3319 0.2146 0.1468 

LPCC 0.2068 0.1638 0.1100 0.1056 0.1075 

RC 0.0744 0.0997 0.1818 0.0365 0.0546 

LAR 0.2469 0.0950 0.2180 0.0245 0.0409 

PROSODIC 0.5210 0.4610 0.7980 0.9560 0.9100 

 

The above result shows that only Prosodic features can discriminate among the different 

tonal instances of the same phoneme prominently compared to other features. The above result 

shows that MFCC and LPCC have vowel discrimination capability when the tone is same but 

the base-phonemes are different and prosodic and RC features shows more vowel 

discrimination capability when the phonemes are distinct from each other due to tone only. 

This observation suggest that in tonal vowel recognition problem, the spectral feature can plays 

an important role in discriminating the base syllable whereas RC and Prosodic features can 

play important role in discriminating among the tones.  

In the next experiment, we have evaluated the F-ratio value for the features. F-ratio gives a 

measure for intra-class variability to inter-class variability. Class boundaries are appropriately 

selected to evaluate the features for their phoneme discrimination capability when: 

• The base-phoneme of the tonal vowels is same but tone is different. 

• The tones of the tonal vowels are same but base phonemes are different.  

The F-ratio values have been computed for all the tonal vowels considering the above 

mentioned class boundaries and their averages have been taken. Higher the F-ratio value 

indicates that the features are more suitable for discriminating among the phonemes under the 

test boundary conditions. The results of the experiments are listed in table-8(a) and table-8(b). 
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Table – 8 (a): Average F-ratio value when the tone is same and base phonemes 

are different 

Feature F-ratio value 

MFCC 0.3251 

LPCC 0.5323 

RC 1.1333 

LAR 0.3986 

PROSODIC 1.0969 

 

Table – 8 (b): Average F-ratio value when the base-phonemes are same and tones are 

different 

Feature F-ratio value 

MFCC 2.6362 

LPCC 2.1789 

RC 0.9058 

LAR 0.7849 

PROSODIC 0.5760 

 

 The above result shows that MFCC and LPCC have vowel discrimination capability 

when the tone is same but the base-phonemes are different and prosodic and RC features shows 

more vowel discrimination capability when the phonemes are distinct from each other due to 

tone only. This observation suggest that in tonal vowel recognition problem, the spectral feature 

can plays an important role in discriminating the base syllable whereas RC and Prosodic 

features can play important role in discriminating among the tones. 

 Kolmogorov-Smirnov (KS) test has been conducted to find the maximum distance 

between two cumulative distributions due the change in tone when the base-phonemes are 

same, change in base phonemes when the tones are same and change in tone and base-phoneme 

both. Feature vectors are extracted from different tonal instances of the vowels and their 

probability distribution functions are converted into a cumulative distribution function (CDF). 

The maximum difference between the CDFs serves as the test statistics. The results of the 

experiment are listed below 
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Fig. 4: The CDF of the MFCC Features 

 

Table-9. Average maximum distance among the CDFs for each feature type under different 

variability conditions  

Feature 

Average maximum distance between the CDFs when 

Tones are different 

base-phonemes are 

same 

Tones are same   

base-phonemes 

are different 

Both tone and 

base-phoneme 

are different 

MFCC 0.2705 0.7226 0.4392 

LPCC 0.2815 0.7011 0.5904 

RC 0.3493 0.4949 0.3646 

LAR 0.0150 0.3616 0.3957 

PROSODIC 0.4723 0.0757 0.1589 

 

 The above analysis shows that the spectral features MFCC and LPCC are better in 

discriminating among the tonal vowels when the base-phonemes are different. However, they 

fail to distinguish the vowels when the base phonemes are same and only tones are different. 

Prosodic features are found to be good in discrimination of the phonemes when the base 

phonemes are same but tones are different. 
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 From the above three experiments, it has been observed that MFCC and LPCC can 

discriminate among the tonal vowels when the tone is same but the base phonemes are different. 

Prosodic features are suitable for discriminating among the tones when the base phonemes are 

same. However, it fails to distinguish among the vowels when the base-phonemes are different. 

Among the source features, RC shows moderate tone discrimination capability. This 

observation suggests that combination of the spectral features with prosodic and RC features 

can improve the tonal vowel recognition accuracy.  

 

4.3.2 Model-base Evaluation of the Speech Features  

 To evaluate the efficiency of the feature set in recognizing the tonal vowels, a Hidden 

Markov Model based recognizer has been trained. 50% tonal instances of each vowel have 

been used for training and the remaining 50% for testing the system. The number of HMM 

states is determined empirically. In the present model, 6 (six) states have been used. The 

performance of each feature have been evaluated in terms of recognition accuracy, which is the 

percentage of times the recognizer has been able to recognize the tonal vowel correctly. The 

error cases have been further in-depth investigated to get an insight into the confusion created 

at modelling level. Table-10 presents an analysis of the performance of HMM based tonal 

vowel recognizer.  
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Table. 10 Performance of the HMM based recognizer for recognizing the tonal vowels 

training and testing with different feature set 

 

 

Recognition accuracy for training and testing 

Features (in %) 

MFCC LPCC RC LAR 
Prosodic 

Features 

Correctly recognized the   

tonal vowel 
59.23 54.23 40.18 34.63 23.78 

Incorrectly recognized 

as a tonal vowel with 

same base phoneme but 

different tone 

26.46 21.45 10.71 27.56 9.78 

Incorrectly recognized 

as a tonal vowel with 

same tone but different 

base phoneme 

8.91 13.11 37.81 21.48 55.81 

Incorrectly recognized 

as a tonal vowel with 

different tone and 

different base phoneme 

5.4 11.21 11.3 16.33 10.63 

 

 The above result shows that MFCC and LPCC have more base-phoneme discrimination 

capability than tone discrimination capability. MFCC features correctly recognized the tonal 

vowels 59.23% cases where as in 85.69% cases it recognized the base-phoneme correctly 

ignoring the tone. The LPCC on the other hand correctly recognized the tonal vowels 54.23% 

cases where as 75.68% cases it recognized the base-phoneme correctly. RC and Prosodic 

features on the other hand recognized the vowels correctly in 40.18% and 23.78% cases 

correctly where as they recognized the tones correctly in 77.99% 79.59% cases. In case of LAR 

feature no significant biasness towards base-phoneme or tone has been observed. 
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4.4 Feature combination for tonal speech recognition  
 From the statistical analysis and model-based evaluation it has been observed that 

MFCC and LPCC features play significant role in identifying the base-phoneme of the tonal 

vowels whereas Prosodic features and RC features play important role in identifying the tone 

associated with the base syllable. This observation suggests the need for combination of these 

two categories of features for tonal vowel recognition. In this section we have analysed the 

effectiveness of combined evidences from different feature sets for tonal speech recognition. 

The following combinations are tested for their effectiveness in tonal speech recognition: 

a) MFCC and Prosodic features  

b) MFCC and RC features  

c) LPCC and Prosodic Features  

d) LPCC and RC features  

 The features are extracted separately from each frame and extracted features are frame-

wise concatenated to obtain the combined feature set. The performances of the features are 

evaluated using the same evaluation framework. 

 

Table-11: Table: Average KL Distance from each tonal vowel to all the other vowels for 

combined features (Vowel ɑ:,ɪ and ɔ) 

Feature 

Type 

Vowels 

[ ɑ�:] [ ɑ́:] [ ɑ̀:] [ ɪ]̅ [ ɪ́] [ ɪ]̀ [ ɔ �] [ ɔ́] [ ɔ̀] 

MFCC + 

Prosodic 

Features 

1.2789 0.3667 0.8878 0.6919 0.1933 0.2702 0.4634 0.6874 0.6881 

MFCC + 

RC 
1.8017 0.2909 1.3787 0.8500 0.3410 0.3972 0.2953 0.7448 0.6852 

LPCC + 

Prosodic 

Features 

0.1441 0.2021 0.3854 0.4917 0.6025 0.4529 0.5865 0.3394 0.0627 

LPCC + 

RC 
0.7546 0.1760 0.9000 0.6908 0.7172 0.5699 0.4720 0.4620 0.1513 
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Table-12 (b): Table: Average KL Distance from each tonal vowel to all the other vowels 

for combined features (Vowel ɛ and ʊ) 

 

Feature 

Type 

Vowels 

[ ɛ �] [ ɛ́] [ ɛ̀] [ ʊ � ] [ ʊ́] [ ʊ̀] 

MFCC + 

Prosodic 

Features 

0.9538 0.8832 0.5968 0.8267 0.6282 0.5699 

MFCC + 

RC 
0.7129 0.7030 0.4714 0.5888 0.4535 1.2371 

LPCC + 

Prosodic 

Features 

0.2790 0.1971 0.3392 0.2937 0.1633 0.6033 

LPCC + 

RC 
0.2642 0.2340 0.3513 0.2462 0.1366 1.4816 

 

From the above results it has been observed that no significant changes in entropy have 

been observed as a result of combining the features together.  

In the next set of experiments, we have evaluated the intra-class to inter-class variability of 

the combined features under same class boundary conditions as above. The results of the 

experiments are given in the table-13(a) and 13(b). 

Table – 13 (a): Average F-ratio value when the tone is same and base phonemes are 

different for combined features  

Feature F-ratio value 

MFCC + Prosodic Features 1.2798 

MFCC + RC 1.2396 

LPCC + Prosodic Features 1.3034 

LPCC + RC 1.2825 
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Table – 13 (b): Average F-ratio value when the base-phonemes are same and tones are 

different for combined features  

 

Feature F-ratio value 

MFCC + Prosodic Features 2.2485 

MFCC + RC 2.1252 

LPCC + Prosodic Features 1.7907 

LPCC + RC 1.8508 

 

It has been observed that as a result of combining the features, the F-ratio values increases 

significantly. The combined features are equally good in discriminating among the tonal 

vowels when the base-phonemes are same and only tone is different as well as when the tones 

are same and only base phonemes are different. The combined features are evaluated for their 

average maximum distance among the CDFs obtained from the probability distribution of the 

features. The results are listed in table-14.  

 

Table-14. Average maximum distance among the CDFs for each combined feature type under 

different variability conditions  

FEATURE 

AVERAGE MAXIMUM DISTANCE BETWEEN THE CDFS WHEN 

TONES ARE 

DIFFERENT 

BASE-PHONEMES 

ARE SAME 

TONES ARE SAME   

BASE-PHONEMES ARE 

DIFFERENT 

BOTH TONE AND 

BASE-PHONEME 

ARE DIFFERENT 

MFCC + PROSODIC FEATURES 0.2894 0.6142 0.4831 

MFCC + RC 0.2498 0.7732 0.3777 

LPCC + PROSODIC FEATURES 0.3012 0.5959 0.6494 

LPCC + RC 0.2599 0.7502 0.5077 
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It has been observed that due to the combination of the features, no significant changes in 

the distances among the CDFs obtained from the probability distribution function of the 

features have been observed.  

 In the next set of experiments, we have evaluated the combined features for their tonal 

vowel recognition accuracy using HMM based recognizer. The recognizer is trained with the 

combined feature vectors. 50% instances of each tonal vowel have been considered for training 

the model and the remaining have been used for testing the system. The result of the experiment 

is given in table 15. 

 

Table 15: Performance of the HMM based recognizer for recognizing the tonal vowels 

training and testing with different combined feature sets 

 

 

Recognition accuracy for training and 

testing Features (in %) 

MFCC + 

Prosodic 

Features 

MFCC 

+ 

RC 

LPCC  

+ 

Prosodic 

Features 

LPCC 

 +  

RC 

Correctly recognized the   tonal 

vowel 
65.75 57.45 58.57 42.84 

Incorrectly recognized as a tonal 

vowel with same base phoneme 

but different tone 

23.88 22.56 19.31 23.88 

Incorrectly recognized as a tonal 

vowel with same tone but 

different base phoneme 

7.13 10.04 11.90 12.73 

Incorrectly recognized as a tonal 

vowel with different tone and 

different base phoneme 

3.24 9.95 10.22 20.55 

 

 The above results show that when MFCC and LPCC features are combined with 

Prosodic features, there is a slight enhancement in the recognition accuracy of the HMM based 
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system. However, when the spectral features are combined with RC features no such 

performance enhancement has been observed.  Therefore, Spectral features combined with 

prosodic features may be considered as a viable option for speech parameterization for tonal 

speech recognition.  

 

4.5 Variable Length Feature Combination  
It has been observed that MFC and LPCC are better in discriminating among the tonal 

vowels when the base-phonemes are different. However, they fail to distinguish the vowels 

when the base phonemes are same and only tones are different. Prosodic features are found to 

be good in discrimination the phonemes when the base phonemes are same but tones are 

different. This observation suggests that combination of features can give a better 

parameterization of the speech signal for the tonal vowel recognition. However, in the frame-

based feature combination experiments, it was found that the performance of the system 

increase only slightly due to the combined effect of spectral and prosodic features. The spectral 

features are short-term feature which can capture the variability of the speech signal with high 

resolution only in short-observation window. The prosodic features on the other hand are supra-

segmental features. It can capture the variability in the speech signal when the observation 

window is long. Therefore, when we extract frame-based prosodic features, the acoustical 

properties which are visible only in long observation window are lost. To overcome this 

problem, we have proposed a feature combination technique where features from varying 

observation windows are combined together to generate a single feature set. The block diagram 

of the feature extraction method is given in the Fig. 5. Here we have proposed a method where 

the features are extracted with different observation windows and then combined together to 

take a decision on class boundary of the TBU. 
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Fig. 5: Block diagram of the hybrid feature extraction system 

 

The pre-emphasized speech signal is first blocked into frame of 100 ms duration with 

50% overlapping. From each block, two types of features have been extracted -- spectral 

features and prosodic features. The spectral features considered in the present study are Mel 

Frequency Cepstral Coefficients (MFCC) and Linear Predictor Cepstral Coefficients (LPCC).  

To extract the spectral features, each speech frame of 100 ms has been re-framed into frame of 

size 20 ms with 50% overlapping. The spectral features namely MFCC and LPCC have been 

extracted from each 20 ms frame separately. In the present study we have proposed a modified 

k-mean clustering algorithm which preserves the temporal information of the speech feature. 

We are calling it temporal k-mean (TKM) algorithm. The algorithm is given below:   
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4.5.1 Temporal K-Mean (TKM) Algorithm  

 

1. Compute the initial value for the ith cluster centroid as follows:  

𝑒𝑒𝑖𝑖𝑖𝑖 = 1
𝑀𝑀
∑ 𝑒𝑒𝑖𝑖𝑖𝑖∗𝑀𝑀
1+(𝑖𝑖−1)∗𝑀𝑀                                                                   … (49)    

where 𝑀𝑀 = 𝑁𝑁
𝑘𝑘

, N and k are the total number of frames and number of clusters respectively, 𝑒𝑒𝑖𝑖 

is the value of the jth coefficient of the feature and 𝑒𝑒𝑖𝑖𝑖𝑖 is the initial value of the  ith cluster for jth 

coefficient .   

2. Use a data structure for the centroid as (centroid_values, proximity_index), the proximity 

index referred to the central location of each cluster derived in the time scale. 

3. For each frame j repeat step 4 to 6  

4. Select the two near by clusters m and k for jth frame based on proximity index. The cluster 

with two consecutive proximity index m and k are nearby clusters to j if   

 𝑀𝑀 ∗𝑛𝑛 ≤ 𝑗𝑗 ≤ 𝑘𝑘 ∗ 𝑀𝑀                                                                 … (50)   

5. Compute the distance of the jth frame from this two cluster centroids.  

6. Assign the frame to the nearby cluster and update its cluster centroid.  

 

The algorithm has been applied separately to both MFCC and LPCC features and 

reduced feature sets have been extracted which represents the spectral characteristic of the 

speech signal for the entire 100 ms duration. These features are combined with prosodic 

features extracted from the 100 ms frame considering it as a single unit. The prosodic features 

extracted are maximum, minimum and average values of F0 and Energy computed over the 

entire 100 ms period. These prosodic features are combined with MFCC and LPCC features 

separately and two different sets of features have been computed. Each feature set is evaluated 

for their relative performance in tonal speech recognition.  

 In order to apply the above mentioned algorithm, the speech signal is first segmented 

into frame of 100 ms with 50% overlapping. We refer to this as 1st level frame. Each 1st level 

frame is now passed through two parallel systems. The 1st system extracts the spectral features 

–MFCC and LPCC separately. To extract the spectral features, whose characteristics are 

correctly visible only in short duration frame, we have re-framed the 1st level frame into frame 

of size 20 ms with 50% overlapping. We refer to this as 2nd level frame. The MFCC and LPCC 

features are extracted from each 2nd level frame. The MFCC feature has been computed using 

a 21-channel filter bank resulting in a 13-dimensional cepstral features consisting of c0 to c12 

coefficients. The LPCC has been computed using a 10th dimensional predictor signal 
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aggregated to a 13-dimentional cepstral coefficients. Now, the MFCC and LPCC features are 

clustered into 3 clusters using temporal k-mean algorithm. The cluster centroids are clubbed 

together and we get a 39-dimentional MFCC and 39-dimensional LPCC feature vector for the 

2nd level frame of the speech signal. These two set of features are then combined with the 

prosodic features separately. The prosodic features – maximum, minimum and average of F0 

and Energy are computed from each 1st level frame directly. Thus, we get two sets of 45-

dimensional feature vectors (39 spectral features and 6 prosodic features) for each 1st level 

frame. We will refer to these features as High-level MFCC and High-level LPCC features 

respectively. The performance of the High-level MFCC and LPCC features has been evaluated 

using the statistical evaluation technique as well as HMM based recognizer.  

 

Table – 16: KL-distance for the High-level features 

Feature vector KL Distance 

High-Level MFCC 0.5754 

High-Level LPCC 0.2958 

 

Table – 17: F-ratio value for High-level features 

Feature vector 

F-ratio value when the 

tones are same and base 

phonemes are different 

F-ratio value when 

the base-phonemes 

are same and tones 

are different 

High-Level MFCC 5.7376 3.8250 

High-Level LPCC 4.4236 3.5468 

 

 The statistical values F-ratio and KL-distance indicates that High-level MFCC and 

LPCC separated from each other in the feature space are having high tonal vowel 

discrimination capability even when the vowels are separated from each other only by tone or 

only by base-phoneme.  

 To find the  maximum average distance among the cumulative distribution functions 

computed from the PDF functions of the high-level MFCC and LPCC feature vectors extracted 

from the tonal vowels KS-test has been performed. The result of the experiment is given in 

table-17. 
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Table-18: Average maximum distance among the CDFs for the high-level MFCC and LPCC 

feature vectors 

Feature 

Average maximum distance between the CDFs when 

Tones are different 

base-phonemes are 

same 

Tones are same   

base-phonemes 

are different 

Both tone and 

base-phoneme 

are different 

High Level MFCC 0.8190 0.8505 0.8696 

High Level LPCC 0.7069 0.7370 0.6799 

  

 From the above results, it has been observed that high level MFCC and LPCC features 

are occupying different locations in the feature space. Further, the separation is uniform across 

when the variability in the tonal phone is due to tone only or base-phoneme only or both. Thus 

we conclude that High-level MFCC and LPCC features are suitable parameterization technique 

for tonal vowel recognition.  To evaluate the performance of the High-level features in terms 

of recognition accuracy of the HMM model, Hidden Markov models have been trained 

separately using the High-level MFCC and LPCC features. The results of the experiments are 

listed in table-19. 

 

Table 19: Performance of the HMM based recognizer for recognizing the tonal vowels 

training and testing with High-level MFCC and LPCC features  

 

Recognition accuracy for training 

and testing Features (in %) 

High-level 

MFCC Features 

High-level LPCC 

Features 

Correctly recognized the   tonal vowel 89.13 83.41 

Incorrectly recognized as a tonal vowel with 

same base phoneme but different tone 
5.62 8.71 

Incorrectly recognized as a tonal vowel with 

same tone but different base phoneme 
2.33 4.12 

Incorrectly recognized as a tonal vowel with 

different tone and different base phoneme 
2.92 3.76 
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The recognition accuracies of the HMM ASR are found to be increased considerably due 

to the use of High-level MFCC and LPCC features. This observation confirms the fact that 

High-level MFCC and LPCC features are suitable parameterization technique for recognition 

of tonal vowels. 

 

5. Conclusion and Feature Work  

 The work reported in this report presents a method of developing a automatic speech recognition system 

for the tonal languages of Arunachal Pradesh. The languages can be broadly categorised into two categories – 

tonal and non-tonal. Tone plays an important role in distinguishing among the syllables of a tonal language 

whereas in non-tonal language, tone cannot change the lexical meaning of a syllable. English, Hindi, Assamese 

etc. are example of non-tonal language and Chinese, Japanese, Apatani, Nyishi etc. are example of tonal language. 

Due to the active articipation of the tone related information in determining the meaning of a syllable, the tonal 

speech recognition systems are different from non-tonal speech recognition. In this report we have presented a 

detail analysis of the most commonly used speech parameters: Mel Frequency Cepstral Coefficient (MFCC), 

Linear Predictor Cepstral Coefficients (LPCC), Reflection Coefficient (RC), Log Area Ratio (LAR) and Prosodic 

features for their tonal speech discrimination capability. Analyses of the features have been done using statistical 

evaluation metrics – KL- distance, F-ratio test and KS test. Further, the features are investigated for their tonal 

phoneme recognition accuracy using a Hidden Markov Model based recognizer. The tonal phoneme recognition 

consists of two subtasks – base phoneme recognition and associate tone recognition. Considering the fact that 

some of the speech features are inherently good in discriminating among the base-phonemes and some other 

parameters are good in discriminating among the tones, different combinations of the speech features are 

evaluated for their tonal phoneme discrimination capability. The observation window size plays an important role 

in extracting meaningful, high resolution information from the speech signal. The spectral features like MFCC 

and LPCC are extracted from short observation window of duration 20~25 ms. On the other hand prosodic features 

are supra segmental feature and thus it needs long observation window for the extraction of high resolution 

information. Since spectral and prosodic features represent different aspects of the speech signal, combination of 

this information is necessary for many speech based applications. A feature concatenation method has been 

proposed that combines the features from two different windows size and at the same time preserves the temporal 

information of the speech signal. These combined features are evaluated for tonal speech recognition. 

5.1 Major observations 

• All the features, except the prosodic feature exhibit change in entropy due to the change 

in tone and base-phoneme together. However, the major  contributor to the change in 

entropy is the change in base-phoneme. Therefore, the change in tone without the 

change in base-phoneme remains undetected. 

• The prosodic features can capture the change in tone of the Tonal Base Unit (TBU). 

However, it fails to identify the change in base-syllable itself. 
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• Combining the features from multiple sources can improve the performance of the tonal 

speech recognition system. 

• The features are broadly classified as segmental and supra-segmental features. The 

segmental features can be extracted with high resolution only from short  observation 

windows like MFCC, LPCC etc. whereas supra-segmental features like prosodic features 

can be captured efficiently from long observation window. Therefore, in order to combine 

the features when a common window size is considered, their combined feature set lose 

significant information. 

• The time-varying property of the speech signal contributes significantly in detection 

of the sound unit represented by the speech signal. When features from multiple 

windows size combined together, the temporal information of the smaller observation 

windows have to be preserved. 

• The Hidden Markov Model (HMM) based automatic speech recognition system 

models the speaker specific information in addition to the phonetic information. 

Therefore, when normalization techniques are used to minimize the intra-speaker and 

inter-speaker variability, there speech recognition performance improves. 

 

5.2 Future Works 

a) Optimal Feature Selection 

 The performance of a speech recognition system depends on the selection of the optimal feature set. The 

feature selection is the first step of any Automatics  Speech Recognition (ASR) System and the errors in this phase 

are propagated to the subsequent phases. More in-depth analysis of the speech features is required for the 

development of robust ASR system. Evidence from multiple sources need to be analysed before coming with a 

feature set which can clearly represents the distinguishing property of tonal base units at noisy ambient conditions. 

b) Development of Large Vocabulary Speech Database 

To develop automatic speech recognition system in Arunachali tonal languages, a large vocabulary speech 

database need to be developed. The database must be phonetically rich and include all forms of rule based 

viabilities of the contributing language. 

c) Analysis of Acoustical Cues 

Most of the tonal recognition researches are carried out using the existing feature extraction methods. 

However, these techniques are inherently biased towards non-tonal languages. Therefore in-depth analysis of the 

acoustical cues of the speech signal is required to identify the acoustical properties which can contributes 

significantly to tonal speech recognition but not detected by the existing feature extraction techniques. 
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d) Analysis of the context dependency 

The tonal speech recognition research is mostly centred on the detection of the tonal base unit. However, the 

context in which the TBU appears also has significant impact on the property of the TBU. Therefore, analysis of 

the context related information on the TBU need to be investigated. 
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