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Preface
Health informatics involves multidisciplinary domains to extract information and 
knowledge from physiological data to use in decision making for improved human 
health through the effective use of recently developed technologies and algorithms. 
The aim is to provide a cross-disciplinary forum to share information on research, 
simulations and modeling, measurement and control, analysis, information extrac-
tion, and monitoring of physiological data in clinical medicine and the biological sci-
ences. Emphasis is placed on contributions dealing with the practical, applications-led 
research on the use of methods and devices in clinical diagnosis, disease prevention, 
patient monitoring, and management. Health informatics is closely related to artifi-
cial intelligence where heuristic as well as metaheuristic algorithms are designed to 
provide better and optimized solutions in reasonable amounts of time. These algo-
rithms have been successfully applied to different application domains in biomedical, 
bioinformatics, and biological sciences. The practice of recent biomedical research 
requires sophisticated information technologies to manage patient information, and 
plan for diagnostics, prognostics, procedures, interpretation, and investigations. This 
provides a conceptual framework and practical inspiration for the quickly growing 
and promising engineering and scientific disciplines of computer science, decision 
science, information science, cognitive science, and biomedicine. The objective of 
this book is to provide the researchers a platform to present state-of-the-art inno-
vations, research, design, and implement methodological and algorithmic solutions 
to data processing problems by designing and analyzing evolving trends in health 
informatics and computer-aided diagnosis. This book will provide support and aid 
to the researchers involved in designing decision support systems that will permit 
the societal acceptance of ambient intelligence. The overall goal of this book is to 
present the latest snapshot of the ongoing research as well as shed further light on 
future directions in this space. This book presents novel technical studies as well as 
position and vision papers comprising hypothetical/speculative scenarios.
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Impact of Gender on 
the Lipid Profile of 
Patients with Coronary 
Artery Disease
A Bayesian Analytical 
Approach

Vivek Verma, Ashwani Kumar Mishra, Anita Verma, 
Hafiz T. A. Khan, Dilip C. Nath, and Rajiv Narang
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1.1  INTRODUCTION

Cardiovascular diseases are grouped into diseases based on problems of the heart 
and blood vessels [1], including acute coronary syndrome and coronary artery dis-
ease (CAD). CAD occurs when the heart has not received adequate amounts of oxy-
gen and blood due to plaque buildup within the coronary arteries, and CAD is the 
most common type of heart disease. The deposition of cholesterol (known as athero-
sclerosis) and other materials (called plaque) within the coronary arteries causes the 
arteries to narrow and harden, which affects the blood supply to the heart. If such 
deposition continues, then it will lead to heart failure. According to the World Health 
Organization, CAD is one of the leading causes of morbidity and mortality and is 
also the leading cause of death.

1
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According to the American Heart Association, among several risk factors for 
coronary heart disease, the components of the lipid profile, namely triglycerides, 
low-density lipoprotein cholesterol (LDL-C), direct high-density lipoprotein cho-
lesterol (HDL-C), and total cholesterol are very common. According to the Centers 
for Disease Control and Prevention (CDC), CAD is the leading cause of death in 
the United States for both men and women. CAD alone is responsible for more than 
4.5 million deaths worldwide [2].

Risk factors associated with CAD include lifestyle, environment, and genetic 
factors [3]. Previous CAD studies have documented the association of the lipid pro-
file; in this sense, intensive lifestyle changes can also stop or reverse its progres-
sion without the use of lipid-lowering drugs [4]. According to the American Heart 
Association, the recommended normal range prescribed for a lipid profile is: total 
cholesterol <  200  mg/dL, triglycerides < 200 mg/dL, HDL-C > 40 mg/dL, and  
LDL-C < 130 mg/dL. The lipid profile acts as a diagnostic tool for the detection and 
clinical management of cases of CAD. For example, in dyslipidemia, patients with 
CAD, LDL-C, total cholesterol and triglycerides, will be higher, and HDL-C choles-
terol will be lower [5]. It is also well known that in patients with CAD, triglycerides 
[6], total cholesterol, and LDL-C are significantly higher, and HDL-C is significantly 
lower [7–10].

The influence of gender on the components of the lipid profile is also studied in 
various situations. Total cholesterol levels in women are significantly reduced in the 
25- to 49-year age group and are higher in the 50- to 64-year age group than in men 
[11]. Total cholesterol, LDL-C, and the ratio of total cholesterol to HDL-C levels 
are significantly higher in older women (> 50 years) than in younger women (30–46 
years), but in men, these levels do not change dramatically with age [12]. The impact 
of gender on triglycerides turns out to be significantly different [13–15].

In a study [6], it had shown that 13.3% of the population older than 55 years were 
affected by CAD and, among them, the percentage of men was higher than that 
of women. The appearance of CAD is associated with changes in the lipid profile, 
which is influenced by several factors, and among them, the sex of an individual is 
also an important factor. Therefore, the objective of the present study is to exam-
ine the impact of sex on the lipid profile in patients with CAD. For this study, the 
data set from the National Health and Nutrition Examination Survey (NHANES), 
2015–2016, was used. The study population is made up of people 50 years of age 
or older. To compare the differences in the lipid profile between the sexes when 
the sample size is comparatively small, both a classic two-tailed Student test and a 
non-parametric Wilcoxon rank sum test, as well as the Bayesian t-test were adopted. 
Statistical significance was measured using p-values in the context of the Student’s 
t-test and the Wilcoxon rank sum test, while the Bayes factor was used for the 
Bayesian t-test.

1.2  METHODS

For the evaluation of the health and nutrition component of the noninstitutional-
ized population in the United States, since the early 1960s, the CDC has conducted 
the NHANES. The NHANES program was initiated to assess the level of health 
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and nutritional status in the United States, collecting information on various charac-
teristics—household, physical, and medical examinations of sampled children and 
adults. In this study, we used NHANES 2015–2016, which was launched with 15,327 
people. The NHANES (2015–2016) database was considered, which included 9,971 
individuals, who completed the interview.

1.2.1  Study Population

Participants aged less than 50 (n = 8635) and lipid profiles were not observed or 
declared (n = 291), are excluded. There were 1,045 participants, aged 50 years or 
older, and among them, 91 were clinically diagnosed with CAD and the remain-
ing 945 did not have CAD (non-CAD), and their lipid profiles were observed and 
reported.

1.2.2 L aboratory Methods 

Information on laboratory parameters, including lipid profiles, including triglycer-
ides (mg/dL), LDL cholesterol (mg/dL), direct HDL cholesterol (mg/dL), and total 
cholesterol (mg/dL), were obtained from the participants, who were recommended 
too fast for at least nine hours before physical examination at the mobile examination 
center (MEC) for blood collection.

The criteria of the lipid standardization program of the CDC were used to stan-
dardize the parameters of the serum lipid profile due to changes in laboratory meth-
ods during years of research to ensure accuracy and comparability of measurements 
between studies.

1.3  STATISTICAL ANALYSIS

For the comparison of the descriptive statistics among gender, the results were 
expressed as Mean (µ ) ± Standard Deviation (s ) and percentage (%). Under the 
assumption that the variation among the components of lipid profile and other con-
tinuous differences based on sex (for male ( sM Mµ , ); female ( sF Fµ , )) are fixed quanti-
ties, to test the hypothesis

	 H HM F M Fµ = µ µ ≠ µ: vs :0 1 	 (1.1)

the classical two-tail Student’s t-test and Wilcoxon rank sum test under parametric 
and nonparametric setup, respectively, were appropriately used and discussed, and 
statistical significances were measured using their p-values. For testing the hypoth-
esis of equation (1.1), the test statistic takes the following form under the classical 
paradigm:

	 t
x x

n s n s

n n
n

M F

M M F F

M F

= −
− + −

+ −




 θ

( 1) ( 2)
2

2 2 1/2 	 (1.2)
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where, n n nM F( )= +θ
−1 1 1

, the degrees of freedom are  n nM Fτ = + − 2, xi  and  iµ   

respectively, denotes the sample and population mean corresponding to each the 
continuous quantity of the ith gender,  i Male M Female F={ ( ),  ( )}.

In real sense, the exact characterization of the randomness inherent in the quanti-
tative measurement is ignored. Under such situation, the comparison of any continu-
ous quantities and their assessments under a traditional test of significance becomes 
a serious concern. Therefore, the present work emphasizes another promising para-
digm of the statistical framework that can address such a situation by considering the 
formulation under the Bayesian t-test. In this analytical procedure, a reasonable and 
useful prior has suggested to obtain a closed form of Bayes factor for emphasizing 
the statistical significance. To test the hypothesis under two-sided alternatives, the 
Bayesian version of the two-sample t statistic under the null and alternative hypoth-
eses was adopted, and the decision was made using the value of Bayes factor (B). In 
the present study, common variance, say  σ  2 , has assumed both sex corresponding 
to each quantity. In order to work with the Bayesian paradigm, we need to specify 
the prior distribution of the effect size (difference) that needs to be tested. Under 
the suggested hypothesis of a nonzero difference, the standardized difference  M Fµ − µ

σ
has prior mean, say θ , and prior variance, say σθ

2 . The Bayes factor for testing H0 
against H1 of equation (1.1) is:

	 B
T t

T t n n
( ) =

θ + σ
τ

τ θ θ θ
x ( | 0,1)

( | ,1 ) 2 	 (1.3)

where T t α βτ( | , )  denotes the value that results from plugging t into noncentral 
t  distribution probability density function with  f  degree of freedom and parame-
ters α  for location and  β  1/2  for scale [16]. The rule of thumb [17–18] followed for 
inference is as follows, if log B( )( )x10  varies between 0 and 0.5, the evidence against 
null hypothesis H0 will be poor, if log B( )( )x10  lies between 0.5 and 1, it is sub-
stantial, if it is between 1 and 2, it is strong, and if it is above 2 it is decisive. The 
results are simulated by following the Gibbs sampling, with 100,000 iterations, by 
using R-software version 3.6.2, and data processing is done using the SAS University 
edition.

1.4  RESULTS

1.4.1 D escriptive Characteristics

Table 1.1 shows the comparison of patients with CAD and non-CAD, which includes 
the age at which CAD occurred, its duration, if the doctor ever said the person 
was obese and/or to reduce salt and fat/calories intake. A total of 91 CAD and 954 
non-CAD participants [males (CAD = 55; non-CAD = 450) and females (CAD = 36; 
non-CAD = 504)] were included in this study. The overall mean age ± general 
standard deviation of the participants was 69.8 ± 7.5 years in CAD (54–80 years) 
and 64.5 ± 9.2 in non-CAD (50–80) years. The mean age of presentation to seek 
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treatment for CAD in men (57.2 years) was earlier than in women (60.4 years). The 
duration of CAD in men (12.2 years) was longer than in women (10.1 years). Most of 
the patients with CAD were obese (51.7%), and it was recommended to reduce their 
salt intake (52.8%) and diet control (57.8%). Among non-CAD participants, the per-
centage distribution of obese people prescribed to reduce salt intake and diet control 
is almost the same.

1.4.2 C linical Features

A comprehensive gender comparison between the lipid profile parameters as 
well as some of the derived parameters, namely triglycerides (mg/dL), LDL cho-
lesterol (mg/dL), direct HDL cholesterol (mg/dL) and total cholesterol (mg/dL), 
non-HDL cholesterol, TC: HDL and LDL: HDL ratio are listed in Tables 1.2–1.4. 
The gender association between the various components of the lipid profile and 
their derived proportions has been measured under the classical (both parametric 
and nonparametric) and Bayesian paradigms. Furthermore, the empirical gender-
wise distribution pattern of each of the lipid parameters and their means are 
shown in Figures 1.1–1.2, participants without CAD (n = 945) and CAD partici-
pants (n = 91).

In Table 1.2, it was hypothesized (null hypothesis) that there is no gender dif-
ference in the lipid profile of the participants (independent of CAD and absence 
of CAD). The classical t-test and nonparametric Wilcoxon rank sum test based 

TABLE 1.1
Demographic and Clinical Characteristics of the Patients with CAD Versus 
No CAD

Characteristics and Categories

CAD (n = 91)
(Mean ± SD/ 

Percentage) (Range)

No CAD (n = 954)
(Mean ± SD/ 

Percentage) (Range)
Age (in years)
(Mean ±SD) (range)

Male 69.3 ± 7.2 (54–80) 64.5 ± 8.9 (50–80)

Female 70.6 ± 7.9 (57–80) 64.5 ± 9.4 (50–80)

All 69.8 ± 7.5 (54–80) 64.5 ± 9.2 (50–80)

CAD Occurrence Age (in years)
(Mean ±SD)

Male 57.2 ± 9.8 NA

Female 60.4 ±10.5 NA

All 58.5 ± 10.2 NA

Duration of period of CAD
Male 12.2 ± 8.1 NA

Female 10.1 ± 8.9 NA

All 11.4 ± 8.4 NA

“Doctor ever said you were overweight”* Yes 47 (51.7) 370 (38.8)

“Doctor told to reduce salt in diet” * Yes 48 (52.8) 350 (36.7)

“Doctor told to reduce fat/calories”* Yes 47 (57.7) 371 (38.9)

*From the questionnaire used in the study.
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on participants (n  =  1,045) suggested a significant difference between the sexes 
(p < 0.05) for triglycerides, LDL cholesterol, direct HDL cholesterol, total choles-
terol, and non-cholesterol, HDL, TC:HDL ratio and LDL:HDL ratio of the lipid 
profile. The similar significant gender difference in lipid profiles was also captured 
by Bayesian t-tests and revealed that the Bayes factor (Log (B)) is greater than 2 

FIGURE 1.1  Gender-wise empirical distributional patterns of the lipid parameters pattern 
of no CAD participants (Male = 450; Female = 504), black denotes male and dashed denotes 
female.

FIGURE 1.2  Gender-wise empirical distributional patterns of the lipid parameters pat-
tern of CAD participants (Male = 55; Female = 36), black denotes male and dashed denotes 
female.
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as triglycerides (Log  (B)  =  8.58), LDL cholesterol (Log (B) = 2.76), direct HDL 
cholesterol (Log  (B)  =  16.96), total cholesterol (Log (B) = 14.03) and non-HDL 
cholesterol (Log (B) = 5.11), TC: HDL ratio (Log (B) = 2.73) and LDL: HDL ratio 
(Log (B) = 2.29).

The classical t-test and nonparametric Wilcoxon rank sum test based on no-CAD 
participants (n = 945) is presented in Table 1.3, which was also suggesting a sig-
nificant (p < 0.05) gender-wise difference among Triglyceride, LDL cholesterol, 
direct HDL cholesterol, total cholesterol and non-HDL cholesterol, TC:HDL ratio 
and LDL:HDL ratio of lipid profile. Significant differences among lipid profiles of 
males and females were also captured by Bayesian t-tests with Bayes factor (Log(B)) 
greater 2, that is, triglyceride (Log(B) = 4.76), LDL cholesterol (Log(B) = 2.45), 
direct HDL cholesterol (Log(B) = 32.62), total cholesterol (Log(B) = 22.79) and non-
HDL cholesterol (Log(B) = 3.51), TC:HDL ratio (Log(B) = 4.54) and LDL:HDL ratio 
(Log(B) = 4.06).

The classical t-test and nonparametric Wilcoxon rank sum test based on CAD 
participants (n = 91) is presented in Table 1.4, which suggested significant gender-
wise differences only among LDL cholesterol, direct HDL cholesterol, total cho-
lesterol, and non-HDL cholesterol, of lipid profile. On the other hand, Bayesian 

TABLE 1.2
Classical and Bayesian Evaluation of Gender Differences in Association of 
Lipid Profile Among Total Patients (Large Sample Size)

Parameter Gender (n = 1,045) Parametric Test 
for Difference in 

Mean

Nonparametric
Wilcoxon rank 

sum test

Bayes Factor
(Log(B))

Male  
(nM = 505)
Mean ± SD

Female  
(nF = 540)
Mean ± SD

t-value p-Value p-Value

Total 
Cholesterol 
(mg/dL)

178.80 ± 39.91 200.30 ± 40.97 –8.56 < .0001 < .0001 14.03

LDL 
Cholesterol 
(mg/dL)

105.90 ± 36.25 115.80 ± 36.54 –4.39 < .0001 < .0001 2.76

Direct HDL 
Cholesterol 
(mg/dL)

53.02 ± 16.73 63.41 ± 18.93 –9.37 < .0001 < .0001 16.96

Non-HDL 
Cholesterol

125.80 ± 38.28 136.80 ± 39.68 –4.57 < .0001 < .0001 5.11

Triglyceride 
(mg/dL)

99.21 ± 46.07 105.00 ± 46.66 –2.00 0.0457 0.0347 8.58

TC:HDL ratio 3.60 ± 1.11 3.36 ± 1.03 3.69 0.0002 < .0001 2.73

LDL:HDL 
ratio

2.17 ± 0.94 1.98 ± 0.85 3.40 0.0007 0.0005 2.29
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t-tests suggested significant gender-wise differences among all lipid profile param-
eters with Bayes factor (Log(B)) greater 2, that is, triglyceride (Log(B) = 7.21), LDL 
cholesterol (Log(B) = 2.52), direct HDL cholesterol (Log(B) = 3.36), total choles-
terol (Log(B)  =  3.38) and non-HDL cholesterol (Log(B) = 4.55), TC: HDL ratio 
(Log(B) = 4.55) and LDL: HDL ratio (Log(B) = 3.76).

1.5  DISCUSSION

Table 1.1 shows that the mean age of participants with CAD is higher than that of 
non-CAD participants. The mean age of onset of CAD in men was lower than that of 
women; therefore, the mean duration of the CAD period was longer in men than in 
women. The age factor is an important predictor for CAD. The majority of the CAD 
prevalence occurred between the ages of 50 and 70, approximately four times the 
prevalence in people older than 70 years. Among patients with CAD compared to 
non-CAD, more than 50% of the individuals corresponding to each of the risk fac-
tors of being overweight, high salt intake, and high fat/calorie intake were prescribed 
to reduce the intake and food control. This suggests the need to focus on the daily 
routine of the participants.

TABLE 1.3
Classical and Bayesian Evaluation of Gender Differences in Association of 
Lipid Profile Among Patients with No CAD (Large Sample Size)

Parameter Gender (n = 954) Parametric Test 
for Difference in 

Mean

NonParametric
Wilcoxon Rank 

Sum Test

Bayes Factor
(Log(B))

Male  
(nM = 450)
Mean ± SD

Female  
(nF = 504)
Mean ± SD

t-Value p-Value p-Value

Total 
Cholesterol 
(mg/dL)

182.20 ± 39.67 201.10 ± 40.29 –7.28 < .0001 < 0.0001 22.79

LDL 
Cholesterol 
(mg/dL)

109.00 ± 36.14 116.60 ± 36.26 –3.23 0.0013 0.0006 2.45

Direct HDL 
Cholesterol 
(mg/dL)

53.76 ±16.62 63.72 ± 18.84 –8.61 < .0001 < 0.0001 32.62

Non-HDL 
Cholesterol

128.50 ± 38.04 137.40 ± 39.51 –3.55 0.0004 0.0003 3.51

Triglyceride 
(mg/dL)

97.12 ± 42.47 103.80 ± 44.28 –2.38 0.0176 0.0193 4.76

TC:HDL ratio 3.61 ± 1.10 3.35 ± 1.02 3.81 0.0001 < 0.0001 4.54

LDL:HDL 
ratio

2.20 ± 0.94 2.00 ± 0.86 3.68 0.0003 0.0001 4.06
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Nonsignificant results obtained in both of the classic nonparametric Wilcoxon 
rank sum t-tests for some of the important lipid parameters, namely triglycerides, 
TC:HDL ratio and LDL:HDL ratio, which is considered a good predictor of CAD, 
was found significantly different in Tables 1.2 and 1.3, which suggests that the null 
hypothesis is contrary to the theory of the difference between the sexes, and is also 
observed in the empirical densities shown in Figure 1.1–1.2.

Previous studies that focused on the impact of triglycerides, the TC:HDL ratio, and 
the LDL:HDL ratio on CAD have shown that elevated triglyceride levels increase the 
risk of prevalence of coronary heart disease and is lowered through clinical manage-
ment in addition to diet control, regular exercise, and pharmacotherapy [19]. This is 
of great importance for public health since such a suggestion can have positive rein-
forcement among patients toward adopting a healthy dietary pattern in their daily 
routine. The higher value of the LDL:HDL ratio shows a positive association with 
the prevalence of hypertension and hypercholesterolemia in men and women [20] 
and the higher TC:HDL ratio was considered an independent indicator of extensive 
coronary disease [21]. As with the classic t-test and nonparametric Wilcoxon rank 
sum paradigms, some of the important lipid parameters, namely triglycerides, the 
TC:HDL ratio, and the LDL:HDL ratio were not found to differ significantly across 

TABLE 1.4
Classical and Bayesian Evaluation of Gender Differences in Association of 
Lipid Profile Among Patients with CAD (Small Sample Size)

Parameter Gender (n = 91) Parametric Test 
for Difference in 

Mean

Nonparametric
Wilcoxon Rank 

Sum Test

Bayes Factor
(Log(B))

Male  
(nM = 55)

Mean ± SD

Female  
(nF = 36)

Mean ± SD

t-Value p-Value p-Value

Total 
Cholesterol 
(mg/dL)

151.02 ±29.92 188.58 ±48.37 –4.15 < .0001 0.0004 3.38

LDL 
Cholesterol 
(mg/dL)

80.80 ±26.14 105.28 ±39.24 –3.29 0.0017 0.0039 2.52

Direct HDL 
Cholesterol 
(mg/dL)

46.96 ±16.60 59.14 ±19.88 –3.16 0.0021 0.0007 3.36

Non-HDL 
cholesterol

104.10 ±95.08 129.40 ±115.30 –3.21 0.0018 0.0054 4.55

Triglyceride 
(mg/dL)

116.29 ±66.93 120.8 ±71.31 –0.30 0.7613 0.8806 7.21

TC:HDL ratio 3.50 ±1.17 3.43 ±1.15 0.24 0.8110 0.5976 6.14

LDL:HDL 
ratio

1.91 ±0.90 1.91 ±0.79 –0.01 0.9893 0.9418 3.76
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gender, which were found to be different in earlier studies. Based on the results 
obtained, data-based estimates for lipid profile parameters were found to be consis-
tent with clinical characteristics and were also found to be effective in demonstrating 
statistical significance with clinical significance. Therefore, the quality of the data 
was not questioned regarding the insensitivity to distinguish the theory from the null 
hypothesis. However, to clinically link the data to theory, apart from certain lipid 
parameters, namely LDL cholesterol, direct HDL cholesterol, total cholesterol, and 
non-HDL cholesterol, these were found to be nonsignificant in the classical tests, 
Bayesian technique was adopted in Table 1.4. The Bayesian t-test suggested evidence 
of differences in the lipid profile across gender and was also observed in the empiri-
cal densities shown in Figure 1.1. The significant difference in elevated levels of lipid 
parameters, namely triglycerides, LDL cholesterol, direct HDL cholesterol, and total 
cholesterol in women with CAD as compared to men, has also been discussed in 
several other studies [22–26], which has also been observed under the Bayesian test 
paradigm.

The lipid parameters of LDL cholesterol, direct total HDL cholesterol, and non-
HDL cholesterol that were significantly different between sexes according to the 
classical test paradigms also corresponded to the Bayesian paradigms. On the other 
hand, the reverse is not true, as triglycerides, TC:HDL ratio, and LDL:HDL ratio 
also differed significantly across gender in Bayesian t-tests and were discussed in 
previous studies, but they were not captured in the conventional classical tests, pos-
sibly due to a small sample size.

1.6  CONCLUSION

In the study, the Bayesian inferential procedure is presented, where the sample size is 
comparatively smaller, with emphasis on the possible differences in the parameters 
of the lipid profile of patients with CAD between men and women. Assuming that 
the differences in parameters due to gender are fixed, the classical t-test and the 
nonparametric Wilcoxon rank sum test were not fully compatible to capture sig-
nificant changes in lipid parameters due to gender. On the other hand, even with a 
small sample size, the results obtained on the basis of Bayesian t-tests turned out to 
be more reliable for concordance of clinical practices on the sex difference in the 
association of lipid profile in patients. Patients with CAD whose results were not 
fully recognized in the conventional t-tests and Wilcoxon rank sum nonparametric 
tests, viz. Triglycerides (p-value = 0.7613 (0.8806), Log (B) = 7.21), TC:HDL ratio 
(p-value = 0.8110 (0.5976), Log (B) = 6, 14) and LDL:HDL ratio (p-value = 0.9893 
(0.9418), Log (B) = 3.76).
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