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About the University 

 
Rajiv Gandhi University (formerly Arunachal University) is a premier institution for higher education in the state 

of Arunachal Pradesh and has completed twenty-five years of its existence. Late Smt. Indira Gandhi, the then 

Prime Minister of India, laid the foundation stone of the university on 4th February, 1984 at Rono Hills, where the 

present campus is located. 

Ever since its inception, the university has been trying to achieve excellence and fulfill the objectives as 

envisaged in the University Act. The university received academic recognition under Section 2(f) from the 

University Grants Commission on 28th March, 1985 and started functioning from 1st April, 1985. It got financial 

recognition under section 12-B of the UGC on 25th March, 1994. Since then Rajiv Gandhi University, (then 

Arunachal University) has carved a niche for itself in the educational scenario of the country following its 

selection as a University with potential for excellence by a high-level expert committee of the University Grants 

Commission from among universities in India. 

The University was converted into a Central University with effect from 9th April, 2007 as per notification 

of the Ministry of Human Resource Development, Government of India. 

The University is located atop Rono Hills on a picturesque tableland of 302 acres overlooking the river 

Dikrong. It is 6.5 km from the National Highway 52-A and 25 km from Itanagar, the State capital. The campus 

is linked with the National Highway by the Dikrong bridge. 

The teaching and research programmes of the University are designed with a view to play a positive role 

in the socio-economic and cultural development of the State. The University offers Undergraduate, Post- 

graduate, M.Phil and Ph.D. programmes. The Department of Education also offers the B.Ed. programme. 

There are fifteen colleges affiliated to the University. The University has been extending educational 

facilities to students from the neighbouring states, particularly Assam. The strength of students in different 

departments of the University and in affiliated colleges has been steadily increasing. 

The faculty members have been actively engaged in research activities with financial support from UGC 

and other funding agencies. Since inception, a number of proposals on research projects have been sanctioned 

by various funding agencies to the University. Various departments have organized numerous seminars, workshops 

and conferences. Many faculty members have participated in national and international conferences and seminars 

held within the country and abroad. Eminent scholars and distinguished personalities have visited the University 

and delivered lectures on various disciplines. 

The academic year 2000-2001 was a year of consolidation for the University. The switch over from the 

annual to the semester system took off smoothly and the performance of the students registered a marked 

improvement. Various syllabi designed by Boards of Post-graduate Studies (BPGS) have been implemented. 

VSAT facility installed by the ERNET India, New Delhi under the UGC-Infonet program, provides Internet 

access. 

In spite of infrastructural constraints, the University has been maintaining its academic excellence. The 

University has strictly adhered to the academic calendar, conducted the examinations and declared the results on 

time. The students from the University have found placements not only in State and Central Government 

Services, but also in various institutions, industries and organizations. Many students have emerged successful 

in the National Eligibility Test (NET). 

Since inception, the University has made significant progress in teaching, research, innovations in curriculum 

development and developing infrastructure. 



 

About IDE 

 
The formal system of higher education in our country is facing the problems of access, limitation of seats, lack of 

facilities and infrastructure. Academicians from various disciplines opine that it is learning which is more important 

and not the channel of education. The education through distance mode is an alternative mode of imparting 

instruction to overcome the problems of access, infrastructure and socio-economic barriers. This will meet the 

demand for qualitative higher education of millions of people who cannot get admission in the regular system and 

wish to pursue their education. It also helps interested employed and unemployed men and women to continue 

with their higher education. Distance education is a distinct approach to impart education to learners who remained 

away in the space and/or time from the teachers and teaching institutions on account of economic, social and 

other considerations. Our main aim is to provide higher education opportunities to those who are unable to join 

regular academic and vocational education programmes in the affiliated colleges of the University and make 

higher education reach to the doorsteps in rural and geographically remote areas of Arunachal Pradesh in particular 

and North-eastern part of India in general. In 2008, the Centre for Distance Education has been renamed as 

“Institute of Distance Education (IDE).” 

Continuing the endeavor to expand the learning opportunities for distant learners, IDE has introduced Post 

Graduate Courses in 5 subjects (Education, English, Hindi, History and Political Science) from the Academic 

Session 2013-14. 

The Institute of Distance Education is housed in the Physical Sciences Faculty Building (first floor) next to 

the University Library. The University campus is 6 kms from NERIST point on National Highway 52A. The 

University buses ply to NERIST point regularly. 

Outstanding Features of Institute of Distance Education: 

(i) At Par with Regular Mode 

Eligibility requirements, curricular content, mode of examination and the award of degrees are on par with 

the colleges affiliated to the Rajiv Gandhi University and the Department(s) of the University. 

(ii) Self-Instructional Study Material (SISM) 

The students are provided SISM prepared by the Institute and approved by Distance Education Council 

(DEC), New Delhi. This will be provided at the time of admission at the IDE or its Study Centres. SISM 

is provided only in English except Hindi subject. 

(iii) Contact and Counselling Programme (CCP) 

The course curriculum of every programme involves counselling in the form of personal contact programme 

of duration of approximately 7-15 days. The CCP shall not be compulsory for BA. However for professional 

courses and MA the attendance in CCP will be mandatory. 

(iv) Field Training and Project 

For professional course(s) there shall be provision of field training and project writing in the concerned 

subject. 

(v) Medium of Instruction and Examination 

The medium of instruction and examination will be English for all the subjects except for those subjects 

where the learners will need to write in the respective languages. 

(vi) Subject/Counselling Coordinators 

For developing study material, the IDE appoints subject coordinators from within and outside the University. 

In order to run the PCCP effectively Counselling Coordinators are engaged from the Departments of the 

University, The Counselling-Coordinators do necessary coordination for involving resource persons in 

contact and counselling programme and assignment evaluation. The learners can also contact them for 

clarifying their difficulties in then respective subjects. 
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INTRODUCTION 
 

 

Mathematics is the study of quantity, structure, space and change. The mathematician, 

Benjamin Peirce called mathematics ‘the science that draws necessary conclusions’. 

Hence, Mathematics is the most important subject for achieving excellence in any field 

of Science and Engineering. Mathematical statistics is the application of mathematics to 

statistics, which was originally conceived as the science of the state—the collection and 

analysis of facts about a country: its economy, land, military, population, and so forth. 

Mathematical techniques which are used for this include mathematical analysis, linear 

algebra, stochastic analysis, differential equations, and measure-theoretic probability 

theory. 

Statistics is considered a mathematical science pertaining to the collection, analysis, 

interpretation or explanation and presentation of data. Statistical analysis is very important 

for taking decisions and is widely used by academic institutions, natural and social sciences 

departments, governments and business organizations. The word statistics is derived 

from the Latin word status which means a political state or government. It was originally 

applied in connection with kings and monarchs collecting data on their citizenry which 

pertained to state wealth, collection of taxes, study of population, and so on. 

The subject of statistics is primarily concerned with making decisions about various 

disciplines of market and employment, such as stock market trends, unemployment rates 

in various sectors of industries, demographic shifts, interest rates, and inflation rates 

over the years, and so on. Statistics is also considered a science that deals with numbers 

or figures describing the state of affairs of various situations with which we are generally 

and specifically concerned. To a layman, it often refers to a column of figures or perhaps 

tables, graphs and charts relating to areas, such as population, national income, 

expenditures, production, consumption, supply, demand, sales, imports, exports, births, 

deaths, accidents, and so on. 

This book, Mathematics and Statistics, has been designed keeping in mind the 

self-instruction mode format and follows a SIM pattern, wherein each unit begins 

with an ‘Introduction’ to the topic followed by the ‘Unit Objectives’. The content is 

then presented in a simple and easy-to-understand manner, and is interspersed with 

‘Check Your Progress’ questions to test the reader’s understanding of the topic. 

‘Key Terms’ and ‘Summary’ are useful tools for effective recapitulation of the text. 

A list of ‘Questions and Exercises’ is also provided at the end of each unit for effective 

recapitulation. 

Introduction 
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UNIT I: Co-Ordinate Geometry (Two Dimensional) and Algebra 

1.1 Objectives 

• To introduce with equations of straight line and circle. 

• To provide some basic understanding of binomial expansion. 

• To discuss about the basic concepts of vector. 

• To discuss the matrix algebra. 

 

1.2 Introduction 

The coordinate geometry, vector, matrix algebra etc have enormous uses in the study of economics. 

Accordingly, this chapter aims to discuss the basics of Coordinate Geometry, Algebra and Matrix so 

that reader can have a preliminary understanding of the various topics covered. The distance between 

two points, equations of a straight line in various forms are discussed along with suitable examples.  

The equation of circle in standard form, binomial expansion etc are also included in the chapter. The 

chapter further introduces the concept of vector. Further, discussion on definition, types and operations 

of matrix, use of crammer’s rule and characteristic (eigen) roots and vector are incorporated in the 

chapter. 

1.3 Distance between two points 

Let two points A(x1, y1) and B(x2, y2) and joints them by line AB. Again, draw AD and BE from points 

A and B to x-axis. By drawing ⊥ 𝐴𝐶 𝑡𝑜 𝐵𝐸, we get the right-angled triangle ACB where ∠𝐴𝐶𝐵 = 90𝑂 

Now, AC = DE = OE-OD 

∴ AC = x2 − x1 

And BC =EB-EC 

 = Y2-Y1 

Now, as per Pythagoras Theorem,  

𝐴𝐵2 = 𝐴𝐶2 + 𝐵𝐶2 

= (𝑥2−𝑥1)2 + (𝑦2 − 𝑦1)2 

∴ 𝐴𝐵 =  √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 

∴ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑝𝑜𝑖𝑛𝑡𝑠 𝐴 𝑎𝑛𝑑 𝐵 𝑖𝑠  

𝐴𝐵 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 

 

 

 

 

Example:  1 Two points (6, - 8) and (2, -5) are given. Find the distance between them. 

 

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

We know that the distance between two points is given by – 

 √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 

 = √(2 − 6)2 + (−5 − 8)2 

 = √16 + 9 

 =  √25 

 = 5 

 

1.4 Equation of straight line 

 The simplest form of curve is straight line. Straight line is represented by a linear equation. 

Depending on the type of information available, the equation of straight line can be of different forms. 

(a) Two points form  

 Let a straight line passes through M (x1, y1) and N (x2, y2) and R (x, y) be another point on it. 

Draw perpendiculars RR’, MM’ and NN’ to x-axis. Again, draw perpendicular line RP to MM’ and 

A(x1,y1

) 

Y 

B(x2, y2) 

C 

Y 

O D E 

X 



 

MQ to NN’. Now we have to similar right angled triangles RPM and MQN 

 

 

∴  
𝑀𝑃

𝑅𝑃
=

𝑁𝑄

𝑀𝑄
 

𝑂𝑟 
𝑀′𝑀 − 𝑀′𝑃

𝑂𝑀′ − 𝑂𝑅′
=

𝑁𝑁′ − 𝑁′𝑄

𝑂𝑁′ − 𝑂𝑀′
 

𝑂𝑟 
𝑌1 − 𝑌

𝑋1 − 𝑋
=  

𝑌2 − 𝑌1

𝑋2−𝑋1
 

𝑂𝑟 
𝑌−𝑌1

𝑋−𝑋1
=  

𝑌2−𝑌1

𝑋2−𝑋1
 

∴ 𝑌 − 𝑌1 =  
𝑌2−𝑌1

𝑋2−𝑋1
 (𝑋 − 𝑋1) 

is the equation of straight line  

and the slope is given by(
𝑌2−𝑌1

𝑋2−𝑋1
). 

Example: 2 Given that (2, 2) and (4,8) are two points through which a straight line. Find the equation 

of the straight line and the slope.  

𝑆𝜕𝑙𝑛 

The equation is  

 𝑦 − 2 = (
8−2

4−2
) (𝑥 − 2) 

 ⇒ 𝑦 − 2 = 3(𝑥 − 2) 

 ⇒ 𝑦 − 2 = 3𝑥 − 6 

 ∴ 𝑦 = 3𝑥 − 4 

Again the slope of the straight line is  

 
𝑌2−𝑌1

𝑋2−𝑋1
 

 =
8−2

4−2
 

 = 3 

(b) Slope intercept form 

 

 Suppose intercept on Y-axis is c units and the angle of the straight line with X-axis is 𝜃. Now draw 

perpendicular PR to X-axis and NQ to PR. Now we have PQN right angled triangle and 

∠𝑃𝑁𝑄 =  ∠𝑃𝑀𝑅 = 𝑄 

 In right angled triangle PQN,  

𝑡𝑎𝑛𝜃 =  
𝑃𝑄

𝑁𝑄
 

=
𝑃𝑅−𝑄𝑅

𝑁𝑄
 

=
𝑦−𝑐

𝑥
  𝐴𝑠 𝑄𝑅 = 𝑁𝑂 = 𝐶 

𝑜𝑟 𝑥𝑡𝑎𝑛𝜃 = 𝑦 − 𝑐 

∴ 𝑌 = 𝑥𝑡𝑎𝑛𝜃 + 𝑐 

Denoting numerical value of 𝑡𝑎𝑛𝜃 by m,  

y = mx+c which is the equation of a straight line in slope intercept form.  

Note: 

If c=0, y = mx, the line will pass through origin 

If m= 0, y= c, the line will parallel to the x-axis.  

Example 3: Write the equation of a straight line if Y intercept is -5 and slope is -5/8. 

Solution: 

 The equation of the straight line is 

 y=mx + c 

 𝑜𝑟 𝑦 = −
5

8
𝑥 − 5 

 Or 8y = -5x-40 

Q 
P 

R(x,y)   M (x1, y1)  N(x2, 

y2) 

R’           M’        

N’ 
X O A X/ 

B 

Y/ 

 
Y 

X’    A  

                Y’ 

N 

O                        R       

X 

P(X,

Y) 
 

Q 

𝜃 M 



 

 Or 5x + 8y + 40 = 0 

 

(c) Intercepts form 

 Let a straight line AB cuts x – axis at N and y-axis at M such that ON= a and OM= b. Again, 

let P(x,y) be a point on AB and draw perpendicular PQ to x-axis. 

Now we have similar triangle 

NOM and NQP 

∴
𝑃𝑄

𝑀𝑂
=

𝑁𝑄

𝑂𝑁
 

𝑜𝑟 
𝑦

𝑏
=

𝑂𝑁−𝑂𝑄

𝑂𝑁
 

𝑜𝑟 
𝑦

𝑏
=

𝑎 − 𝑥

𝑎
 

𝑜𝑟 
𝑦

𝑏
= 1 −

𝑥

𝑎
 

∴  
𝑥

𝑎
+

𝑦

𝑏
= 1  

is the equation of a straight line 

 in intercepts form.  

Example : 4 : Find the intercepts on x-axis and y-axis for the straight line 2x-4y=3 

Solution: 

 2x-4y=3 

 ⇒ 2
3⁄ 𝑥 − 4

3⁄ 𝑦 = 1 

 ⇒
𝑥

3
2⁄

−
𝑦

3
4⁄

= 1 

 ∴ 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 𝑜𝑛 𝑥 − 𝑎𝑥𝑖𝑠 𝑖𝑠 3
2⁄  𝑎𝑛𝑑 𝑜𝑛  𝑦 − 𝑎𝑥𝑖𝑠 𝑖𝑠 − 3

4⁄  

 

(d) Slope point form 

 Suppose slope of the straight line EF is ‘m’ and it passes through point A(x1,y1). Let P(x,y) be 

any point on the straight line EF. AM and PN are perpendiculars to x-axis, AC is perpendicular to PN. 

Now we have right angled triangle PCA and ∠CAP = ∠NQP = 𝜃 

 ∴ 𝑡𝑎𝑛𝜃 =  
𝑃𝐶

𝐴𝐶
 

 = 
𝑃𝑁−𝑁𝐶

𝑂𝑁−𝑂𝑀
 

 =
𝑌−𝑌1

𝑋−𝑋1
 

Or  m =
𝑌−𝑌1

𝑋−𝑋1
 as 𝑡𝑎𝑛𝜃= m 

 ∴ 𝑦 − 𝑦1 = (𝑥 − 𝑥1),  
is the equation of a straight line  

in slope point form.  
 

 

 

 

 
Example: 5 Find the equation of the straight line passing through the point (4,5) and having a slope 6. 

Solution: 

The equation of a straight line in slope point form is 

 y - y1= m(x - x1) 

 or y - 5 =6(x - 4) 

 or y - 5 = 6x - 24 

 

 
A       

Y 

X’     
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Y’ 

Q               

N(a,0) 

M(0,b) 

P(x,y) 

B 

Q                  M                     N      

X’ 

 

𝜃 

A(x1,y1

) 

P(x,y

) F 

 

 

C 

O 

E 



 

 or y =6x - 19 

 

1.5 Angle between two straight lines.  

Let two straight lines are given by y = m1x + c1 and y = m2x + c2. If the angle between the lines is ‘𝜃′, 

𝑡𝑎𝑛𝜃 = |
𝑚2−𝑚1

1 +  𝑚1𝑚2
| 

Now, if 𝑚1 =  𝑚2 𝑎𝑛𝑑 𝑐1 = 𝑐2 lines will coincide 

if 𝑚1 =  𝑚2 𝑏𝑢𝑡 𝑐1 ≠ 𝑐2 lines are parallel and 

If 𝑚1 𝑚2 =  −1 (𝑚1 =
−1

𝑚2
), lines are perpendicular.  

Example  6: Find the angle between lines x+2y=5 and 3x+y-11=0 

Solution:  

𝑥 + 2 𝑦 = 5 

⇒ 2𝑦 = −𝑥 + 5 

⇒ 𝑦 =  − 1
2⁄ + 5

2⁄  

∴  𝑚1 =  − 1
2⁄  

Again, 3𝑥 + 𝑦 − 11 = 0 

⇒ 𝑦 =  −3𝑥 + 11 

∴ 𝑚2 =  −3 

∴ 𝑡𝑎𝑛𝜃 =  |
−3 − (− 1

2⁄ )

1 + (−3)(− 1
2⁄ )

| 

= |
−3 +

1
2

1 +
3
2

| 

= |
−5

2⁄

5
2⁄

| 

= 1 

∴ 𝜃 = 450 

 

1.6 The circle and its equation in standard form  

A circle is the locus of a point that moves in a place such that the distance from the centre is always 

fixed. To find out the equation of a circle, let the centre C(h,k) and radius ‘r’. Let draw a circle with 

centre C(h,k)and radius ‘r’. Suppose P(x,y) be a point on the circle and draw PN perpendicular to x-

axis and CM perpendicular to PN.  

Now, CMP is a right angled triangle where,   

CP= r 

 Again CM=QN=ON-OQ=X-h and 

 PM=PN-NM=Y-k 

Now, by Pythagorean theorem, 

(𝐶𝑃)2 = (𝐶𝑀)2 + (𝑃𝑀)2 

𝑜𝑟 r2 = (𝑋 − ℎ)2 + (𝑌 − 𝑘)2 

𝑜𝑟 𝑋2 + ℎ2 − 2𝑋ℎ + 𝑌2 + 𝑘2 − 2𝑌𝑘 = r2 

𝑜𝑟 𝑋2 + 𝑌2 + ℎ2 + 𝑘2 − 2𝑋ℎ − 2𝑌𝑘 = r2  

𝑖𝑠 𝑡ℎ𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 

 

 

 

 

Example 7: Find the equation of the circle with centre (-1,2) and radius 3 unit. 

M 

Y 
P(X,Y) 

X 
O Q N 

C(h,k) 



 

Solution: The equation of the circle 

with centre (-1,2) and radius 3 units 

is  

{(𝑋 − (−1)2} + (𝑌
− 2)2

= 32 

⇒ 𝑋2 + 1 + 2𝑋 + 𝑌2

+ 4 − 4𝑌
= 9 

⇒ 𝑋2 + 𝑌2 + 2𝑋 − 4𝑌
= 9 − 5  

⇒ 𝑋2 + 𝑌2 + 2𝑋 − 4𝑌
= 4 

⇒ 𝑋2 + 𝑌2 + 2𝑋 − 4𝑌 = 22 

 

1.7 Conic sections 

 A conic section is the locus of a point which moves in a plane in a way that the distance from a 

fixed point bears a constant ratio to the distance from a fixed line. The fixed point is focus, the fixed 

line is directrix and the constant ratio is eccentricity which is equal to 1. The straight line passes 

through the focus and perpendicular to the directrix is known as axis.  

Parabola: a parabola is the locus of points in a plane that are equidistant from both directrix and focus.  

Here,  F – focus 

 DD’ – directrix 

 LM – latus rectum 

 N – Vertex 

 YY’ – axis of symmetry 

The general form of the equation of a parabola is:  

y = a(x-h)2 + k or  

x = a(y-k)2 +h,  

where (h,k) denotes the vertex. 

The standard forms of the equation of parabola are: 

y2 = 4ax 

y2 = -4ax 

x2 = 4ay 

x2 = -4ay 

 

Hyperbola: It is the locus of a point that moves in a way that the distance from a fixed point called 

focus is always ‘e’ times its distance from directrix where e>1. In other words, a hyperbola is the set of 

all points in a plane whose distances form a fixed point in the plane, i.e, focus bears a constant ratio, 

greater than 1, to their distance from a fixed line in the plane,i.e, directrix. The standard form of the 

equation of hyperbola with centre at the origin is 

 
𝑥2

𝑎2
−

𝑦2

𝑏2
= 1  or  

𝑦2

𝑎2
−

𝑥2

𝑏2
= 1 

 

 

 

Y 

F 

M L 

V 

D 
D’ 

Y’ 



 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ellipse: An ellipse is the set of points in a plane the sum of whose distances from two fixed points 

(foci) is constant. Alternatively, it is the locus of a point which moves in such a way that the distance 

from the focus is always ‘e’ times of its distance from directrix where e<1. The equations of ellipse in 

standard form are  

 
𝑥2

𝑎2
+

𝑦2

𝑏2
= 1 and  

𝑥2

𝑏2
+

𝑦2

𝑎2
= 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1.8 Binomial Expansion 

 If an expression contain two terms, it is called binomial. The binomial expansion is given by  
(x ± a)n = xn ± nc1

 xn−1a + nc2
xn−2a2 ± nc3 x

n−3a3……………………………………..(1) 

To prove the binomial expansion, let  

(x + a)n = xn +  nc1
xn−1a + nc2

xn−2a2 +  … … … … … . . + an………………………………(2) 

Now, 

(x + a)2 = x2 + 2ax + a2 =  2c0
x2a0 + 2c1

x1a1 + 2c2
x0a2 

(x + a)3 = x3 + 3x2a + 3xa2 + a3 = 3c0
x3a0 + 3c1

x2a + 3c2
xa2+ 3c3

x0a3 

. 

. 

. 

. 

. 

(x + a)m = mc0
xma0 + mc1

xm−1a +  mc2
xm−2a2 + mc3

xm−3a3 +  … +mcm
x0am 

 

(-a,0) 

(-c,0) 

(a,0) 

 

(c,0) 

 

𝑥2

𝑎2
−

𝑦2

𝑏2
= 1   

Transverse 

axis 

y 

x 

Y 

(0,c) (0,a) 

 

(0,-c) 

 
(0,-a) 

 

x 
Transverse 

axis 

 

𝑦2

𝑎2
−

𝑥2

𝑏2
= 1 

 
Y 

 

C P(x,y) 

F2(ae,0)       

B 
F1(-ae, 0) O 

D 

𝑥2

𝑎2
+

𝑦2

𝑏2
= 1 

x 
A 

(0,ae) 

(0,a) 

Y 

(-b,0) 
(b,0) 

O 

(0,-a) 
𝑥2

𝑏2
+

𝑦2

𝑎2
= 1 

(0,-ae) 



 

= xm + 𝑚𝑐1
𝑥𝑚−1𝑎 + 𝑚𝑐2

𝑥𝑚−2𝑎2 + 𝑚𝑐3
𝑥𝑚−3𝑎3 +  … + 𝑎𝑚………………………………..(3) 

Multiplying (3) by (𝑥 + 𝑎) 

(𝑥 + 𝑎)(𝑥 + 𝑎)𝑚 = (𝑛 + 𝑎)(𝑥𝑚 + 𝑚𝑐1
𝑥𝑚−1𝑎 + 𝑚𝑐2

𝑥𝑚−2𝑎2 + 𝑚𝑐3
𝑥𝑚−3𝑎3 + ⋯ + 𝑎𝑚) 

𝑜𝑟 (𝑥 + 𝑎)𝑚+1 = 𝑥𝑚+1 + (𝑚 + 1)𝑐1
𝑥𝑚𝑎 + (𝑚 + 1)𝑐2

𝑥𝑚−1𝑎2 +  … … … … … … . . +𝑎𝑚+1  as per 

equ…(3) 

Assuming m+1 = n, 

(𝑥 + 𝑎)𝑛 = 𝑥𝑛 + 𝑛𝑐1
𝑥𝑛−1𝑎 + 𝑛𝑐2

𝑥𝑚−2𝑎2 +  … … … … … + 𝑎𝑛 

Example 7: Expand (2𝑥 + 3)5 

Solution:  

Here, n= 5 

∴ Number of terms in the expansion will be 6 

(2𝑥 + 3)5 = (2𝑥)5 + 5𝑐1
(2𝑥)43 + 5𝑐2

(2𝑥)332 + 5𝑐3
(2𝑥)233 + 5𝑐2

(2𝑥)34 + 35 

= 32𝑥5 + 240𝑥4 + 720𝑥3 + 1080𝑥2 + 810𝑥 + 243 

 

General Term: 

The general term for the expansion (𝑥 + 𝑎)𝑛 is given by  

 Tr+1= 𝑛𝑐𝑟
𝑥𝑛−𝑟𝑎𝑟 where Tr+1 is the (r+1)th term. 

Example 8:  

Find the general term for the expansion (𝑥
2⁄ − 2𝑦)6 

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛   

In the expansion (𝑥
2⁄ − 2𝑦)6, 

We have  𝑥 = 𝑛
2⁄ , 𝑎 = (−2𝑦) 𝑎𝑛𝑑 𝑛 = 6 

 ∴ 𝑇𝑟+1 =  6𝑐𝑟
(𝑥

2⁄ )6−𝑟(−2𝑦)𝑟 

 = (−1)𝑟6𝑐𝑟
𝑥6−𝑟(1

2⁄ )6−𝑟(2𝑦)𝑟 

 = (−1)𝑟6𝑐𝑟
𝑥6−𝑟𝑦𝑟 2𝑟

26−𝑟 

 = (−1)𝑟6𝑐𝑟
𝑥6−𝑟𝑦𝑟22𝑟−6 

 

Middle term 

 For the expansion (𝑥 + 𝑎)𝑛, we will have one middle term if ‘n’ is even and it will be (
𝑛+2

2
) th 

term. 

 If ‘n’ is odd we will have two middle terms which are (
𝑛+1

2
) th and (

𝑛+3

2
) th terms.  

 

Example 9: Find the middle term of the expansion (3𝑥 − 2)10 

Solution:  

In the expansion(3𝑥 − 2)10, n=10 is even 

 ∴ There is one middle term and it is (
10+2

2
) =6th term 

Now, the 6th term is  

𝑇5+1 =  10𝑐5
(3𝑥)5(−2)5  (Following the formula for general term) 

= (−1)510𝑐5
(3𝑥)5 25 

= −  
10!

5! 5!
3525𝑥5 

= −195055𝑥5 

 

Exponential Series: 

The sum of the series 1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+ ⋯ is defined as 𝑒𝑥, i.e.,  

  𝑒𝑥 = 1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+ ⋯  



 

If x=1, e1=e = 2.71828… which is an irrational number.  

Now  

𝑒𝑥 = 1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
+ ⋯ 

∴ 𝑒1 = 1 +
1

1!
+

1

2!
+

1

3!
+ ⋯ 

𝑜𝑟 𝑒 = 1 + 1 + 𝑠0, where S0 = 
1

2!
+

1

3!
+ ⋯ 

∴ 𝑒 > 2 as S0 is positive…………………………………………………………………(1) 

Again, we know that 𝑛! > 2𝑛−1 for all n>2 

Therefore, if n=3, 
1

3!
<

1

22 

n=4, 
1

4!
<

1

23
 

n=5, 
1

5!
<

1

24
 

Thus, 
1

3!
+

1

4!
+

1

5!
+ ⋯ <

1

22 +
1

23 +
1

24 + ⋯ 

Or (1 +
1

1!
+

1

2!
) +

1

3!
+

1

4!
+

1

5!
+ ⋯ < (1 +

1

1!
+

1

2!
) +

1

22 +
1

23 +
1

24 + ⋯ 

Or e < 1 + (1 +
1

2
+

1

22 +
1

23 +
1

24 + ⋯ ) 

Now, 𝑎 + 𝑟 + 𝑟2 + 𝑟3 + 𝑟4 + ⋯ =
𝑎

1−𝑟
 where ‘a’ is initial term and ‘r’ is common ratio. 

Therefore, 1 +
1

2
+

1

22 +
1

23 +
1

24 + ⋯ =
1

1−
1

2

= 2 where 1 is initial term and 
1

2
 is common ratio. 

So, e < 1 + 2 ………………………………………………………………………………….(2) 

∴ 𝑓𝑟𝑜𝑚 (1)𝑎𝑛𝑑 (2), 2 < 𝑒 < 3 

Thus, ‘e’ lies between 2 and 3 

Logarithmic series: 

We know that  
1

1 + 𝑥
= 1 − 𝑥 + 𝑥2 − 𝑥3+. . . … … .,                                        |𝑥| < 1 

∴ ∫
1

1 + 𝑥
𝑑𝑥

𝑥

0

= 𝑥 − 𝑥2

2⁄ + 𝑥3

3⁄ − 𝑥4

4⁄ +. . . . . … . .         |𝑥| < 1 

However, 

 ∫
1

1+𝑥
𝑑𝑥

𝑥

0
= log (1 + 𝑥) 

 ∴ log(1 + 𝑥) = 𝑥 −  
𝑥2

2
+

𝑥3

3
−

𝑥4

4
+ ⋯ 

Similarly, log(1 − 𝑥) = −𝑥 −  
𝑥2

2
−

𝑥3

3
−

𝑥4

4
− ⋯ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

NIT II: Matrix Algebra 

2.1 Vector 

Vector vs Scalar: 

Scalar is a quantity having only magnitude but no direction. For example, weight on the other 

hand, vector is a quantity having both magnitude and direction. For example, speed.  

Definition of a vector:  

 Let P1, P1, …..Pn be any ‘n’ real numbers and P is ordered set of these real numbers such as P= 

(P1, P1, …..Pn), then P is a vector of order ‘n’. Here, P1, P1, …..Pn are called components of the vector 

P. 

 When components are written in row, it is known as row vector. If components are written in 

column, vector is known as column vector.  

Null vector: If all the components of a vector are zero, vector are zero, vector is known as null vector 

and denoted by ‘O’. For example O=(0,0,0) 

Unit vector: If the ith component of a vector is unity and other components are zero, the vector is 

known as unit vector. For a unit vector with i-th component as unity, the order of the vector is ‘i’. 

Thus, E1=[1,0,0], E2= [0,1,0], E3=[0,0,1,0]. 

Sum vector: If all the components of a vector are unity, the vector is called sum vector and denoted by 

‘I’. For example, I=[1,1,……1] 

Equality of vectors:  

Two vectors of same order are said to be equal if their corresponding elements are equal.  

Let 𝑃 = (𝑝1, 𝑝2, 𝑝3)𝑎𝑛𝑑 𝑄 = (𝑞1, 𝑞2, 𝑞3) 

Then P=Q if and only if 𝑝1 = 𝑞1, 𝑝2 = 𝑞2 𝑎𝑛𝑑 𝑝3=𝑞3 

Addition/subtraction of vectors: 

Suppose 𝑃 = (𝑝1, 𝑝2, … … . 𝑝𝑛) 

Q=(𝑞1, 𝑞2, … … . 𝑞𝑛) 

𝑅 = (𝑟1, 𝑟2, … … . 𝑟𝑛) 

Now for 𝑅 = 𝑃 ± 𝑄, ith component is computed as 𝑟𝑖 =  𝑝𝑖 ± 𝑞𝑖 

Thus 𝑅 = 𝑃 ± 𝑄 

 = (𝑝1 ± 𝑞1, 𝑝2 ± 𝑞2, … 𝑝𝑛 ± 𝑞𝑛) 

If P,Q and S are vectors of same order, They will follows- 

(i)  P+Q=Q+P  (Commutative law) 

(ii) (P+Q)+S=P+(Q+S) (Associative law) 

(iii) P+(-P)=O  (Zero vector) 

 

Multiplication of vector by Scalar: 

If 𝑃 = (𝑝1, 𝑝2, … … . 𝑝𝑛) is a vector of order ‘n’ and 𝜃 is a scalar, 

𝑄 = 𝜃𝑃 = (𝜃𝑝1, 𝜃𝑝2 … 𝜃𝑝𝑛 

Properties 

 If P and S are two vectors of same order, 

(i) 𝜃(𝑃 + 𝑆) = 𝜃𝑃 + 𝜃S 

(ii)  𝜃(𝛾𝑝) = (𝜃𝛾)𝑝, where 𝜃 and 𝛾 are scalars. 

 

Scalar product/dot product/Inner product: 

Suppose 𝑃 = (𝑝1, 𝑝2, … … . 𝑝𝑛) 

 Q=(𝑞1, 𝑞2, … … . 𝑞𝑛) 

 ∴ 𝑃. 𝑄 = 𝑝1𝑞1 + 𝑝2𝑞2 + ⋯ + 𝑝𝑛𝑞𝑛 

 = ∑ 𝑝
𝑖
𝑞

𝑖
𝑛
𝑖=1  

If dot product of two vectors is equal to zero, they are perpendicular to each other 

Magnitude of a vector: 

 For a vector 𝑃 = (𝑝1, 𝑝2, … … . 𝑝𝑛) 

magnitude/length is given by  



 

|𝑃| = √𝑝1
2 + 𝑝2

2 + ⋯ + 𝑝𝑛
2 

 

Linear combination of a set of vectors:  

A vector 𝜂 is said to be a linear combination of the set  (𝜂1, 𝜂2, … 𝜂𝑟) if  𝜂 can be expressed as 𝜂 =
𝑘1𝜂1 + 𝑘2𝜂2 + ⋯ + 𝑘𝑟 , where 𝑘1, 𝑘2, … 𝑘𝑟 are scalars not all zero. 

 

Linear dependence/Independence of vectors 

 Vectors P1, P1, …..Pn are linearly independent iff  

  ∑ 𝜃𝑗𝑃𝑗
𝑛
𝑗=1 = 𝑂,   𝜃𝑗 = 𝑂, 𝑗 = 1,2, … 𝑛 

  If 𝜃𝑗  are not all zero but ∑ 𝜃𝑗𝑃𝑗
𝑛
𝑗=1 = 𝑂,  vectors are linearly dependent. 

Example 10: Examine whether vectors a1(3,2) and a2(1,4) are linearly dependent or independent. 

Solution: 

 Let 

 𝜃1(3,2) + 𝜃2(1,4) = (0,0) 

 Or 3𝜃1 + 𝜃2 = 0 𝑎𝑛𝑑 2𝜃1 + 4𝜃2 = 0 

 ⇒ 𝜃2 = −3𝜃1 

 Putting 𝜃2 = −3𝜃1 𝑖𝑛  2𝜃1 + 4𝜃2 = 0, 
  ⇒ 2𝜃1 − 12𝜃1 = 0 

  ⇒ −10𝜃1 = 0 

  ∴ 𝜃1 = 0 

  ∴ 𝜃2 = 0 

∴ a1 and a2 are linearly independent. 

 

Example 11 

 Show that 𝑛1 = (2, 3, −1) 𝑎𝑛𝑑 𝑛2 = (4,6, −2) are linearly dependent. 

Let 𝑘1𝑛1 + 𝑘2𝑛2 = 0 

⇒ 𝑘1(2,3, −1) +  𝑘2(4, 6, −2) = 0 

⇒ (2𝑘1, 3𝑘1, −𝑘, ) + (4𝑘2, 6𝑘2, −𝑘2) = 0 

⇒ 2𝑘1 + 4𝑘2,3𝑘1 + 6𝑘2, 𝑘1−2𝑘2) = (0,0,0) 

∴ 2𝑘1 + 4𝑘2 = 0,     3𝑘1 + 6𝑘2 = 0,    𝑘1 − 2𝑘2 = 0 

⇒ 𝑘1 = −2𝑘2 ,        ⇒ 𝑘1 = −2𝑘2 ,     ⇒ −𝑘1 = 2𝑘2 

                                                                    ⇒ 𝑘1 = −2𝑘2 

Now, 

 −2𝑛1 + 𝑛2 

 = −2(2,3, −1) + (4,   6, −2) 

 = (−4, −3,   2) + (4,   6, −2) 

 = (0,0,0) 

∴ 𝑛1 𝑎𝑛𝑑 𝑛2 are linearly dependent. 

 

1.10 Matrix 

 A matrix is a rectangular array of elements. A matrix of m x n order is given by 

𝐴 =  [

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21

⋮
𝑎22 ⋯

⋮
𝑎2𝑛

⋮
𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

]

𝑚𝑥𝑛

 Where 𝑎𝑖𝑗𝑠 𝑎𝑟𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 

 𝑚 → no. of rows 

 𝑛 → no. of columns 

 

Types of Matrices 

Square matrix: If the number of rows(m) and number of columns(n) of a matrix is same i.e. m=n, the 



 

matrix is known as square matrix. For example, 

𝐴 = [
1 2 1
2 5 1
3 7 5

]

3𝑥3

 

Null matrix: If all the elements of a matrix are zero, it is called null matrix and denoted by O. 

For example,  

𝑂 = [
0 0
0 0

]
2𝑥2

 

Identity matrix: It is a square matrix which diagonal elements are equal to ‘1’ and off-diagonal 

elements are zero. An identity matrix is also known as unit matrix. For example, 

𝐼2 = [
1 0
0 1

]
2𝑥2

,    𝐼3 = [
1 0 0
0 1 0
0 0 1

]

3𝑥3

 

 

Diagonal matrix : A matrix which off-diagonal elements are zero but has scalar elements in the 

principal diagonal, not necessarily equal, is known as diagonal matrix. For example,  

𝐴 = [
1 0 0
0 3 0
0 0 2

]

3𝑥3

 

 

Equality of matrices:  

Two matrices 𝐴 = [𝑎𝑖𝑗] and 𝐵 = [𝑏𝑖𝑗] are equal if 𝑎𝑖𝑗 =  𝑏𝑖𝑗 for all i and j and they are of same size. 

For example  

𝐼𝑓 𝐴 = [
1 2
3 4

]  𝑎𝑛𝑑 𝐵 = [
1 2
3 4

] 

Then A= B, but 

𝑖𝑓 𝐶 = [
1 2
3 4

]  𝑎𝑛𝑑 𝐷 = [
−1 2
3 5

], 

C ≠ D 

Arithmetic operations of matrices:  

Addition/Subtraction of matrices 

Two matrices 𝐴 = [𝑎𝑖𝑗] and 𝐵 = [𝑏𝑖𝑗] can be added provided they have same order. The sum A+B is 

obtained by adding the corresponding elements in A and B. 

Let,  𝐴 = [
1 2
3 4

]  𝑎𝑛𝑑 𝐵 = [
3 4
5 6

] 

∴ 𝐴 + 𝐵 = [
(1 + 3) (2 + 4)
(3 + 5) (4 + 6)

] = [
4 6
8 10

] 

Similarly, 

𝐴 − 𝐵 = [
(1 − 3) (2 − 4)
(3 − 5) (4 − 6)

] = [
−2 −2
−2 −2

] 

If A,B and C are matrices of same size,  

(i) A+B=B+A   (Commutative) 

(ii) A± (B±C) = (A±B)±C  (Associative) 

(iii)(A±B)/ = A/±B/ 

 

Matrix Multiplication 

 The multiplication of two matrices A and B in the form AB requires that the number of 

columns of A equals the number of rows of B.  

Example 13: 

 If 𝐴 = [
1 3
2 4

]
2𝑥2

 𝑎𝑛𝑑 𝐵 = [
5 7 9
6 8 0

]
2𝑥3

  

∴ 𝐴𝐵 = [
(1 × 5 + 3 × 6) (1 × 7 + 3 × 8)
(2 × 5 + 4 × 6) (2 × 7 + 4 × 8)

(1 × 9 + 3 × 0)
(2 × 9 + 4 × 0)

] 



 

= [
23 31 9
34 46 18

]
2𝑥3

 

If matrix A is of order (m x n) and matrix B is of order (n x m), then the order of AB is (m x m). 

In general AB ≠ BA 

Properties: 

(i) ImA=AIn=A where, Im & In are identity matrices 

(ii) (AB)C=A(BC) 

(iii) C(A+B) = CA+CB 

(iv) (A+B)C=AC+BC 

(v) α(AB) =( αA) B = A(αB), α is a scalar 

Scalar Multiplication 

 If a matrix is multiplied by a number, all the elements are multiplied by it. For example,  

𝐴 = [
𝑎11 𝑎12

𝑎21 𝑎22
] 

∴⋋ 𝐴 = ⋋ [
𝑎11 𝑎12

𝑎21 𝑎22
] = [

⋋ 𝑎11 ⋋ 𝑎12

⋋ 𝑎21 ⋋ 𝑎22
] 

 

Transpose of a matrix 

If A is a matrix of order (m x n), the transpose of A, i.e., A/ is obtained by interchanging rows and 

columns and the order of A/ is (n x m).  

 

Example 14: 

If, 𝐴 = [
1 2 3
4 5 6

]
2𝑥3

, 

∴ 𝐴′ =  [
1 4
2 5
3 6

]

3𝑥2

 

Note  

(i) (𝐴/)/ = 𝐴 

(ii) (𝐴 ± 𝐵)/ = 𝐴/ ± 𝐵/ 

 (𝐴 + 𝐵+𝐶)/ = 𝐴/ + 𝐵/ + 𝐶/ 

(iii)(𝐴𝐵)/ = 𝐵/𝐴/ 

 (𝐴𝐵𝐶)/ = 𝐶/𝐵/𝐴/ 

 

Determinant of a matrix 

Determinant of a matrix is the scalar number associated with a square matrix. 

 𝐼𝑓 𝐴 = [
𝑎11 𝑎12

𝑎21 𝑎22
] 

 

 

  

=a11a22 - a21a12 

If  𝐴 = [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] 

= 𝑎11 |
𝑎22 𝑎23

𝑎32 𝑎33
| + 𝑎12(−1) |

𝑎21 𝑎23

𝑎31 𝑎33
| +  𝑎13 |

𝑎21 𝑎22

𝑎31 𝑎32
| 

= 𝑎11(𝑎22𝑎33 − 𝑎23𝑎32) − 𝑎12(𝑎21𝑎33 − 𝑎23𝑎31) + 𝑎13(𝑎21𝑎32 − 𝑎22𝑎31) 

 

Example 15: 

𝐼𝑓 𝐴 =  [
4 7
1 3

]  𝑓𝑖𝑛𝑑  |𝐴| 

a11 

a21 

a12 

a22 ჻ |A|= 
 



 

Solution: 
|𝐴| = (4 × 3) − (7 × 1) = 12 − 7 = 5 

 

Example 16: Find the determinant of  

𝐴 = [
1 2 3
2 3 2
3 3 4

] 

Solution: 

𝐴 = [
1 2 3
2 3 2
3 3 4

] 

= 1 |
3 2
3 4

| − 2 |
2 2
3 4

| + 3 |
2 3
3 3

| 

= (3 × 4 − 2 × 3) − 2(2 × 4 − 2 × 3) + 3(2 × 3 − 3 × 3) 

= 6 − 2(2) + 3(−3) 

= 6 − 4 − 9 

= 6 − 13 

= −7 

 

Singular matrix and non-singular matrix:  

 If determinant of a matrix is zero, it is known as singular matrix. Matrix A is said to be singular 

if |A|=0. For example, 

𝐼𝑓 𝐴 = |
1 2
5 10

| 

∴ |𝐴| = 10 − 10 = 0 

∴ 𝐴 𝑖𝑠 𝑎 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑚𝑎𝑡𝑟𝑖𝑥 

If determinant of a matrix is non-zero, matrix is non-singular. Matrix B is said to be non-singular if 

|B|≠0 

For example  

𝐵 = |
1 2
3 4

|   ∴ |𝐵| = 4 − 6 = −2 ≠ 0 

∴ 𝐵 𝑖𝑠 𝑎 𝑛𝑜𝑛 − 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑚𝑎𝑡𝑟𝑖𝑥 

Note: 

If A is a square matrix of order ‘n’, - 

(i) If rank of A is ‘n’, A is non-singular and there is no linear dependence between rows or 

columns.  

(ii) If rank of A is less than ‘n’, A is singular and there is linear dependence between at least two 

rows or column. 

 

Properties of determinant:  

(i) If all the elements of a row or column are zero, determinant of the matrix is zero. 

(ii) |𝐴| = |𝐴/| 

(iii)If a new matrix B is obtained by interchanging any two rows or column of matrix A, the 

determinant values of new matrix will be same with the determinant value of original matrix 

but the sign will change, i.e., |B|= -|A|. 

(iv) If two rows or columns of a matrix are multiple of one another, the determinant is equal to zero. 

(v) If a scalar of times a column (or row) is added to another column (or row), the value of 

determinant of the matrix remains same. 

(vi) If all the elements of a row or column of a determinant is multiplied by a scalar⋋ , the  value 

of the determinant is also multiplied by ⋋.  

(vii) If A and B are two square matrix of same order, thus, |AB|=|A||B|. 



 

 

Rank of a matrix 

Rank of a matrix, i.e., 𝜌 is the maximum number of linearly independent rows or columns in the 

matrix. For example 

𝐼𝑓 𝐴 =  [
1 2
3 4

] , |𝐴| = 4 − 6 = −2 ≠ 0 

∴ 𝜌(𝐴) = 2 

𝐼𝑓 𝐵 = [
2 5 4
3 0 6
1 2 2

] 

∴ |𝐵| = 2(0 − 12) − 5(6 − 6) + 4(6 − 0) 

= −24 − 0 + 24 

= 0 

∴ 𝜌(𝐵) is less than 3. 

Let take the 2 x 2 sub-matrix of B. Suppose first sub-matrix is 

[
2 5
3 0

] 

Now [
2 5
3 0

] = 0 − 15 = −15 ≠ 0 

∴  𝜌(𝐵) = 2 

𝐼𝑓 𝐶 = [
2 5
7 11
3 1

] 

Now as maximum number of linearly independent rows (columns) must be equal to the maximum 

number of linearly independent rows (columns), 𝜌(𝐶) cann’t be more than 2. 

Let us take a (2x2) ordered sub-matrix 

[
2 5
7 11

] 

Now  

[
2 5
7 11

] = 22 − 35 = −13 ≠ 0 

∴ 𝜌(𝐶) = 2 

 

Minors and cofactors 

Minors (𝑀𝑖𝑗)of the element 𝑎𝑖𝑗  of matrix A is the determinant of the submatrix of A obtained by 

deleting ith row and jth column of original matrix A.  

 

𝐹𝑜𝑟 𝑚𝑎𝑡𝑟𝑖𝑥   𝐴 = [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] 

Minors are  

𝑀11 = |
𝑎22 𝑎23

𝑎32 𝑎33
| , 𝑀12 = |

𝑎21 𝑎23

𝑎31 𝑎33
| , 𝑀13 = |

𝑎21 𝑎22

𝑎31 𝑎32
| 

𝑀21 = |
𝑎12 𝑎13

𝑎32 𝑎33
| , 𝑀22 = |

𝑎11 𝑎13

𝑎31 𝑎33
| , 𝑀23 = |

𝑎11 𝑎12

𝑎31 𝑎32
| 

𝑀31 = |
𝑎12 𝑎13

𝑎22 𝑎23
| , 𝑀32 = |

𝑎11 𝑎13

𝑎21 𝑎23
| , 𝑀33 = |

𝑎11 𝑎12

𝑎21 𝑎22
| 

 

A cofactor (𝐶𝑖𝑗) of the element  (𝑎𝑖𝑗) of matrix A is the minor of the element with a prescribed sign 

such that 

(𝐶𝑖𝑗) = (−1)𝑖+𝑗𝑀𝑖𝑗 

 

Example 17: Find minor and cofactor of the first row of the following matrix 



 

𝐴 = [
1 2 3
6 −3 7
1 2 4

] 

Solution: 

Minors of the first row are  

𝑀11 = [
−3 7
2 4

] ,         𝑀12 = [
6 7
1 4

],   𝑀13 = [
6 −3
1 2

] 

= -12 - 14,  = 24 - 7,   = 12 + 3 

= - 26,   = 17,   = 15 

 

Cofactors of the first row are- 

𝐶11 = (−1)1+1 [
−3 7
2 4

] ,         𝐶12 = (−1)1+2 [
6 7
1 4

],   𝐶13 = (−1)1+3 [
6 −3
1 2

] 

 =-26,    =-17,   = 15 

 

Adjoint of Matrix 

Adjoint of a matrix is the transpose of the cofactor matrix. For instance 

 

If A = [
7 12
4 3

], 

Cofactors are  

𝐶11 = (−1)1+13             𝐶12 = (−1)1+24 

𝐶21 = (−1)2+112          𝐶22 = (−1)2+27 

∴ 𝑐𝑜𝑓𝑎𝑐𝑡𝑜𝑟 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝐴 𝑖𝑠  

[
3 −4

−12 7
] 

∴ 𝐴𝑑𝑗𝑜𝑖𝑛𝑡 𝑜𝑓 𝐴 =  [
3 −4

−4 7
] 

Matrix Inversion  

 Inverse of a matrix exist if the matrix is non-singular, i.e., the matrix do not have vanishing 

determinant. In other word, for matrix A, inverse will exist if |A|≠0. For matrix A, its inverse is given 

by 

𝐴−1 =
1

|𝐴|
 𝑎𝑑𝑗 𝐴 

Some important properties of matrix inversion are – 

(i) (𝐴−1)−1 = 𝐴 

(ii) (AB)−1 = 𝐵−1𝐴−1 

(iii) (𝐴/)−1 = (𝐴−1)/ 

 

Example 18 

Find the inverse of matrix A if  

𝐴 = [
12 −6
−9 7

] 

Solution: 

Now |𝐴| = 12 × 7— (−6)(−9) 

= 84 − 54 

= 30 ≠ 0 

As |A|≠0, matrix is non-singular and hence, inverse exist. 

Now, cofactor matrix of A is  

[
(−1)1+17 (−1)1+2(−9)

(−1)2+1(−6) (−1)2+2(12)
] 

= [
7 9
6 12

] 



 

∴ 𝑎𝑑𝑗 𝐴 = [
7 6
9 12

] 

∴ 𝐴−1 =
1

30
[
7 6
9 12

] = [

7

30

6

30
9

30

12

30

] 

 

Example 19 

Solve the following system of equations by matrix inversion. 

4x1+3x2=28 

2x1+5x2=42 

Solution 

Let us express the given system of equation in matrix form as below- 

[
4 3
2 5

] [
𝑥1

𝑥2
] = [

28
42

] 

𝑜𝑟 𝐴𝑋 = 𝐵  

𝑤ℎ𝑒𝑟𝑒 𝐴 = [
4 3
2 5

] , 𝑋 = [
𝑥1

𝑥2
] , 𝐵 = [

28
42

] 

𝑜𝑟 𝑋 = 𝐴−1𝐵 

Now |A|= 4x5 - 3x2 = 20 – 6 = 14≠0 

Cofactor matrix of A is 

[
5 −2

−3 4
] 

∴ 𝑎𝑑𝑗 𝐴 = [
5 −3

−2 4
] 

∴  𝐴−1 =
1

14
[

5 −3
−2 4

] = [

5

14

−3

14
−2

14

4

14

] 

∴  𝑋 = 𝐴−1𝐵 = [

5

14

−3

14
−2

14

4

14

] [
28
42

] 

= [

5

14
(28) +  

−3

14
(42)

−2

14
(28) +  

4

14
(42)

] 

= [
10 − 9

−4 + 12
] 

Or [
𝑥1

𝑥2
] = [

1
8

] 

∴ x1=1 and x2=8 

Cramer’s Rule 

It is a method to solve a system of linear equations by using determinant. As per Cramer’s rule  

𝑥𝑖 =
|𝐴𝑖|

|𝐴|
 

Where, 

 A is the coefficient matrix 

 Ai is the matrix obtained by replacing the column of coefficients of Xi with the column vector 

of constant.  

Let a system of equations with ‘n’ equations and ‘n’ variables  

𝑎11𝑥1 + 𝑎12𝑥2 + − − − + 𝑎1𝑛𝑥𝑛 = 𝑏1 

𝑎21𝑥1 + 𝑎22𝑥2 + − − − + 𝑎2𝑛𝑥𝑛 = 𝑏2 



 

⋮ 
𝑎𝑛1𝑥1 + 𝑛𝑥2 + − − − + 𝑎𝑛𝑛𝑥𝑛 ≠ 𝑏𝑛 

As per Cramer’s rule 

𝑥𝑖 =
|𝐴𝑖|

|𝐴|
  

𝑤ℎ𝑒𝑟𝑒 𝐴 =  [

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21

⋮
𝑎22 ⋯

⋮
𝑎2𝑛

⋮
𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑛

] and i=1. 2.,… n 

If 𝑖 = 1, 𝑥1 =
|𝐴1|

|𝐴|
 𝑎𝑛𝑑 𝐴1 =  [

𝑏1 𝑎12 ⋯ 𝑎1𝑛

𝑏2

⋮

𝑎22 ⋯

⋮
𝑎2𝑛

⋮
𝑏𝑛 𝑎𝑛2 ⋯ 𝑎𝑛𝑛

] 

 

 

Example 19: Solve the following using Cramer’s rule-  

6𝑥1 + 5𝑥2 = 49 

3𝑥1 + 4𝑥2 = 32 

Solution: 

Let us express the given set of equations in matrix form as below- 

[
6 5
3 4

] [
𝑥1

𝑥2
] = [

49
32

] 

or AX =  B, Where A =  [
6 5
3 4

] , 𝑋 = [
𝑥1

𝑥2
] , 𝐵 = [

49
32

] 

𝑁𝑜𝑤 𝑋1 =
|𝐴1|

|𝐴|
=

|
49 5
32 4

|

|
6 5
3 4

|

196 − 160

24 − 15
=

36

9
= 4 

𝑋2 =
|𝐴2|

|𝐴|
=

|
6 49
3 32

|

|
6 5
3 4

|

192 − 147

24 − 15
=

45

9
= 5 

∴ 𝑥1 = 4 𝑎𝑛𝑑 𝑥2 = 5 

 

1.11 Characteristic (eigen) roots and vector  

Let A is a square matrix and x is a nonzero vector. If there exists a scalar λ such that Ax=λx, x is said 

to be a characteristic vector of a square matrix A and λ is characteristic root of A.  

Now Ax=λx 

 ⇒Ax-𝜆x=0 

 ⇒(A-𝜆)x=0 

 ⇒(A-𝜆𝐼)x=0, where I is an unit matrix 

Here, 𝜆 is called characteristic roots or eigen value and x is called characteristic vector (eigen vector). 

Let us construct a matrix [A-𝜆𝐼], where A =[
2 3
3 2

] which is a nonsingular square matrix, 𝜆 is a 

scalar and I is the identity matrix. 

Now, A-λI =[
2 3
3 2

]- 𝜆 [
1 0
0 1

]=[
2 − 𝜆 3

3 2 − 𝜆
], 

Here, A-λI is called characteristic matrix of A and |𝐴 − 𝜆𝐼|is characteristic determinant of A.  
 |𝐴 − 𝜆𝐼|= (2-𝜆)(2 − 𝜆) − 3.3 

  = 𝜆2-4𝜆-5  

 𝑓(𝜆) = |𝐴 − 𝜆𝐼| = 𝜆2-4𝜆-5 is called characteristic function of matrix A and 𝑓(𝜆) = 𝜆2-4𝜆-5 =0 

is called   characteristic equation of matrix A.  

Here, 𝜆 = −1 and 𝜆 = 5 satisfies the characteristic equation which are called characteristic roots.  

Example 20: Find characteristic vector and characteristic roots of the following matrix: 



 

 A= [
2 3
3 2

] 

Solution 

Let 𝜆 be the characteristic root. 

Therefore, A-λI =[
2 3
3 2

]- 𝜆 [
1 0
0 1

] 

=[
2 − 𝜆 3

3 2 − 𝜆
] 

Now, |𝐴 − 𝜆𝐼|= (2-𝜆)(2 − 𝜆) − 3.3 

  = 𝜆2-4𝜆-5  

Every characteristic root must satisfy  

 𝑓(𝜆) = |𝐴 − 𝜆𝐼|=0 

                        ⇒ 𝜆2-4𝜆-5 =0 

  ⇒ 𝜆2+ 𝜆 - 5𝜆-5 =0 

  ⇒ 𝜆(𝜆+ 1) – 5(𝜆 +1) =0 

  ⇒ (𝜆+ 1) (𝜆– 5) =0 

Therefore,  𝜆 = −1 and 𝜆 = 5  are the characteristic roots. 

Let x=[
𝑥1

𝑥2
] be the characteristic vector 

Now,   (A-𝜆𝐼)x=0 

⇒ [
2 − 𝜆 3

3 2 − 𝜆
] [

𝑥1

𝑥2
] = 0 

If 𝜆 = −1,  

[
2 − (1) 3

3 2 − (−1)
] [

𝑥1

𝑥2
] = 0 

⇒ [
3 3
3 3

] [
𝑥1

𝑥2
] = 0 

⇒ [
3𝑥1 + 3𝑥2

3𝑥1 + 3𝑥2
] = 0 

⇒ 3𝑥1 + 3𝑥2 = 0 

⇒ 3𝑥1 = −3𝑥2 

⇒ 𝑥1 = −𝑥2 

If x1=k, x2=-k 

Therefore x=[
−𝑘
𝑘

]=𝑘 [
−1
1

] 

So, characteristic vector is [
−1
1

] 

Again, If 𝜆 = 5,  

[
2 − (5) 3

3 2 − (5)
] [

𝑥1

𝑥2
] = 0 

⇒ [
−3 3
3 −3

] [
𝑥1

𝑥2
] = 0 

⇒ [
−3𝑥1 + 3𝑥2

3𝑥1 − 3𝑥2
] = 0 

⇒ −3𝑥1 + 3𝑥2 = 0 

⇒ 3𝑥1 = 3𝑥2 

⇒ 𝑥1 = 𝑥2 

If x1=k, x2=k 

Therefore, x=[
𝑘
𝑘

] = 𝑘 [
1
1

] 

So, characteristic vector is [
1
1

] 

1.12 Summary 

This chapter discusses the length of a straight line and equations of such line in four forms. The 

concepts circle, parabola, hyperbola and ellipse are discussed along with their equations in standard 



 

form. Binomial expansion is illustrated using with example. In the chapter, concept of vector, its types, 

scalar product, linear dependency/independency, etc are discussed. Definition of matrix, types, 

operations, determinants and its properties, matrix inversion, use of crammer’s rule are some other 

topic covered in the chapter. Finally, characteristic roots and vector are explained. 

1.13 Key terms 

Vector: vector is a quantity having both magnitude and direction 

Matrix: A matrix is a rectangular array of elements. 

Determinant: Determinant of a matrix is the scalar number associated with a square matrix. 

Rank of a matrix: Rank of a matrix is the maximum number of linearly independent rows or columns 

in the matrix. 

Cramer’s rule: It is a method to solve a system of linear equations by using determinant. 

 

1.14 Questions 

1. Derive the equation of a straight line in slope intercept form. 

2. Derive the equation of a circle in standard form. 

3. Expand (2x-3)5 and find the middle term(s). 

4. Compare vector and scalar. 

5. What is a null vector? 

6. If 𝐴 = [
1 2 2
5 8 9
2 3 1

] and  𝐵 = [
−4 2 1
5 5 2
2 3 1

], show that A+B= B+A. 

7. Find transpose of  𝐴 = [
1 2 2
5 8 9
2 3 1

]. 

8. Discuss the properties of determinant. 

9. Find the adjoint of  𝐴 = [
3 2 2
2 1 4
1 3 5

]. 

10. Find the inverse of  𝐴 = [
2 3 −1
0 4 2
3 2 0

]. 

11. Solve the following system of equations using crammer’s rule:  

6x1+7x2=56 

2x1+3x2=44 
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UNIT III: Diifferentiation 

3.1 Introduction:  

The study of effect of change(s) in certain economic variable(s) is a common economic phenomenon 

result of which the changes in the value of a related economic variable would make us know the 

director and magnitude of change in a particular economic variable. As for instance if the price of a 

product or price of related goods of the consumer changes then what will be the direction of magnitude 

of change in the demand for a commodity. Likewise due to change in the level of output, what would 

be total cost of production or what would be the change in the level of inputs employed. Therefore, it is 

very important to know the rate of change. The rate of change in the dependent variable with respect to 

the change in the independent variable, say, change in demand with respect to the change in price or 

change in the level of national income with respect to change in government expenditure or say 

parameter Play, marginal prosperity to consume. Therefore, the concept of differentiation or did I with 

you form the code of differential calculus that can be understood as a mathematical tool to find out the 

magnitude of direction of change in a particular variable due to change in the value of any other 

variable on a certain economic phenomenon. 

3.2 Objectives:  

The objectives of this module are to acquaint the learners about the concept of limit, rules of 

differentiation and their application in finding out rate of growth, marginal product, revenue, cost.  

3.3 Limits: 

The real number system would be incomplete without limits. They are essentially confined 2 days 

numbers death are calculated precisely in a finite number of steps, as for instance, play the case for 

integers and rational number. 

Suppose, the equation x²-2=0 has a song positive solution alpha=√2 & to provide arbitrarily accurate 

approximations to √2, We therefore, need to define √2 As a limit. So in in implicit may, we write 

√2~1.41421…This has an infinite sequence of play decimal expansion, i.e. 1,1.4, 1.41, 1.414, … which 

get closer to the limit √2. In which may, we can say √2 as a limit of a sequence of rational numbers, the 

same is true for irrational numbers, the same is true for irrational numbers aa well. Limits arise in the 

study of infinite series. The derivative of a function that measures rate of change of a variable with 

respect to the change of order related variable, can be defined using limits. 

The derivative of a function in terms of limit is given by: 

𝑓′(𝑎) = lim
ℎ→𝑐

[𝑓(𝑎 + ℎ) − 𝑓(𝑎)]/ℎ 

Thus,lim
𝑥→𝑎

𝑓(𝑥)can be read as when α approaches a constant quantity a from either side, there exists a 

definite finite number towards which f(x) tends. Such a numerical difference of f(x) as x tends to a. 

Limits that do not exist: 

Hypothetically, f is defined for all x close to a, but not necessarily at a. The function f(x) has the 

number A as its limits as x tends to a, provided that the number f(x) can be made as close to A as one 

nu ….  For all x sufficiently close to (But not equal to) a. 

lim
𝑥→𝑐

𝑓(𝑥) = 𝐴   𝑜𝑟   𝑓(𝑥)  ⟶ 𝐴    𝑎𝑠   𝑥 ⟶ 𝑎 

 

Functions tending to infinity: 

The behaviour of a function can be described as its argument tends to be Infinity large through 

marginal values. 

Let, 'f' defined for arbitrarily large positive number x. So, f(x) has the limit A as X tends to infinity if 

f(x) can be made arbitrary close to A for all X sufficiently large. 

lim
𝑥→𝛼

𝑓(𝑥) = 𝐴   𝑜𝑟   𝑓(𝑥)  ⟶ 𝐴    𝑎𝑠   𝑥 ⟶ 𝛼 

Likewise, 

lim
𝑥→𝛼

𝑓(𝑥) = 𝐵 𝑜𝑟   𝑓(𝑥)  ⟶ 𝐵    𝑎𝑠   𝑥 ⟶ 𝛼 

This indicates that f(x) can be made arbitrary close to B for all X which is sufficiently large and 

negative. Therefore, the horizontal asymptote for the graph of f as x tend to α is horizontal line y=A 

and y = B is a horizontal asymptote for the graph as x tend to α. 



 

 

3.4 Continuity 

A function is Continuous if small changes in the explanatory variable produce small changes in the 

function values. Play in geometric sense a function is continuous if its graph is connected i.e., it has no 

brakes. To make it simpler we can say that a function is continuous if its graphs drawn without lifting 

one’s pencil of the paper. Otherwise, if the graph makes one or more jumps, we can therefore, say that 

f is discontinuous in form. 

As for instance, f is defined on a domain that includes an open interval around a. Then f is continuous 

at x a provided that f(x) tends to f(a) in the limit as x tends to a: 

 f is continuous at x = a, if … 

 following are the continuous for f to be continuous at x=a 

I) The function f must be defined/ expressed as… 

II) The limit of f(x) as x-a must exist. 

III) This limit must be equal to f(a). 

 

Properties of continuous function 

i. The sum or difference of two continuous function is a continuous function which is valid for 

any phoenix number of functions. 

ii. The product of two continuous functions is a continuous function which is also valid for any 

finished number of functions. 

iii. The quotientof two continuous function is a continuous function, provided the denominator is 

non zero anywhere for the range of values considered. 

iv. If f(x) is continuous at x=a & f(a) is not equal to 0, then in the neighbourhood of x=a, f (x) has 

the same sign as that of f(a), i.e., we get a positive quantity & such that f (x) presence the same 

sign as that of f(a) for every value of f (x) in the interval ………. 

v. If f(x) is continuous throughout the interval (a,b) & f(a) is not equal to f(b), here f (x) assumes 

every value between f(a) & f(b) at least once in the interval. 

vi. A function is bounded which is continuous, throughout a closed interval. 

vii. Continuous function attains its upper and lower bounds, at least once each in the interval.  

viii. A function f(x) is considered to be continuous in a closed interval(a,b), therefore, attains every 

intermediate value at least once between its upper and lower bounds in the interval. 

 

3.5 Basic Rules in differentiation  

In any scientific discipline, the rate of change is very important to estimate the future of any particular 

variable (say demand for a commodity) or to predict the growth in population of a biologicalspecies in 

order to compute the future position of   planet. 

A derivative is defined as the central concept in mathematical analysis isthe rate of change of a 

function. 

Most of the general rules were discovered independently of each other’s by Isaac 

Newton(1642-1727) and Gottfried Leibriz (1646-1716). 

Rate of change and derivative: 

Suppose we have a general two variable function 

Y=f(x) 

Where, the value of y is associated with the value of x. 

Therefore,the difference quotient of the above quotient function will be ∆y/∆x, therefore, represents 

the rate of change in  the value of y with respect to change in the value of x.It also represents the slope 

of the curve of the function y=f(x). 

If we consider the function to be linear one, then 

Y = f(x) = a+bx (a>0;b>0) 

Where, b is the slope of the curve, we can then map y corresponding to the value of x in a diagram. 



 

When x = x1, then the corresponding value of y is 

Y1 = a+bx1 

Which represents the position A of a curve 

Similarly, when x = x2, then the corresponding value of y is y = a+bx2 represents the position of a 

curve. 

Therefore, when we move from A to Bon curve, the y value changes by ∆y corresponding to the 

change in the value of x by ∆x. 

Therefore, 

∆y = y1-y2 

∆y = bx1-bx2 

∆y = b(x1-x2) 

∆y = b∆x 

∆y/∆x = b, where b implies the slope of the curve. 

 

BASIC RULES OF DIFFERENTIATION WITH SINGLE EXPLANATORY VARIABLE: 

The rules of differentiation are derived for various forms offunctions using the definition of 

derivative. 

1. Power function rule: 

y = f(x) = xn 

The derivative of the above function is 
𝒅𝒚

𝒅𝒙
= 𝒇′𝒙 = 𝒏𝒙𝒏−𝟏 

The power function rule of differentiationcan be generalised for 

y = f(x) = cxn 

Where c is a constant and n is a rational number. 

Therefore, the differentiation of the above generalised power function 
𝒅𝒚

𝒅𝒙
= 𝒇′𝒙 = 𝒄 𝒏𝒙𝒏−𝟏 

 

2. Constant Function Rule: 

The function of Y such that 

Y = f(x) = c 

Where c is constant 

The differentiation of the above function is always zero. 
𝒅𝒚

𝒅𝒙
= 𝒇′𝒙 = 𝟎 

 

This indicates that whenever the x value changes, the y value remains the same.An example of such 

situation is the constant price under perfect competitive market. 

3. LOGARITHMIC FUNCTION RULE: 

The function under logarithmic form is: 

y = f(x) = log (x) 

Thus,  
𝒅𝒚

𝒅𝒙
= 𝒇′𝒙 =

𝟏

𝒙
 

 

RULES OF DIFFERENTIATION FOR TWO OR MORE FUNCTIONS OF THE SAME 

EXPLANATORY FUNCTIONS: 

In economic studies, we often experience certain situation, where a particular economic variable is 

observed as either a sum of two functions or difference of two functions or product of two functions or 

division of two functions of the same explanatory variable.As for example, profit can be expressed as 

the difference between total revenue andtotal cost function. Again, total revenue can be expressed as 



 

the product of two functions,price and quantity i.e.TR=P*Q.Similarly, the Average Revenue can be 

expressed as quotient of two functions i.e., total revenue function divided by quantity 

sold{AR=TR/Q}.So here the rules of differentiation either for sum or difference of two functions,or for 

product of two functions or the quotient of two functions are not same. 

1. Sum –Difference Rule: 

A function which is the sum of two functions of the same independent variable, then the derivative of 

the sum of the functions is equal to the sum of the derivatives of the functions 

y= f(x) = g(x) + h(x) 
𝒅𝒚

𝒅𝒙
= 𝒇′𝒙 = 𝒈′(𝒙) + 𝒉′(𝒙) 

2. Quotient Rule of Differentiation: 

Suppose the function is: 

𝒚 =
𝒇(𝒙)

𝒈(𝒙)
 

Therefore, 
𝒅𝒚

𝒅𝒙
= 𝒇′𝒙 =

𝒈(𝒙)𝒇′(𝒙) − 𝒇(𝒙)𝒈′(𝒙)

[𝒈(𝒙)]𝟐
 

 

RULES OF DIFFERENTIATION FOR FUNCTIONS OF DIFFERENT VARIABLES: 

1. Chain Rule of Differentiation: 

Under chain rule, if we have a function y = f(u) where u is, in turn, a function of another variable x 

such that u = g(x), then the derivative of y with respect to x is the product of the derivative of y with 

respect to u and derivative of u with respect to x. Symbolically, 
𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑢
×

𝑑𝑢

𝑑𝑥
= 𝑓′(𝑢) × 𝑔′(𝑥) 

The above rule indicates that the effect of change in the value of x on the value of y is measured via the 

u variable. A given ∆x will result in a corresponding ∆u via u = g(x). In turn, ∆u will result in 

corresponding ∆y via y = f(x). 

Example: 

If y=5u2 and u=2+3x-x2, then 
𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑢
×

𝑑𝑢

𝑑𝑥
 

𝑑𝑦

𝑑𝑥
=

𝑑

𝑑𝑢
(5𝑢2) ×

𝑑

𝑑𝑥
(2 + 3𝑥 − 𝑥2) 

𝑑𝑦

𝑑𝑥
= 10𝑢(3 − 2𝑥) 

𝑑𝑦

𝑑𝑥
= 10(2 + 3𝑥 − 𝑥2)(3 − 2𝑥) 

𝑑𝑦

𝑑𝑥
= 10(6 − 4𝑥 + 9𝑥 − 6𝑥2 − 3𝑥2 + 2𝑥3) 

𝑑𝑦

𝑑𝑥
= 10(6 + 5𝑥 − 9𝑥2 + 2𝑥3) 

2. Inverse Function Rule: 

If a function y = f(x) represents one to one mapping such that not only a given value of x will yield a 

unique corresponding value of y, but also a given value of y will yield a unique value of x, then the 

function y = f(x) will have an inverse function 

𝑥 = 𝑓−1(𝑦) = 𝑔(𝑦)   (say) 

For example, we can consider a demand function Q=f(P), where quantity demanded (Q) due to change 

in price (P) is inversely related implying that an increase in price will decrease demand. The 

relationship between Q and P is equally true in the form of price function P = g(Q) implying that an 

increase in quantity demanded will raise the price. Therefore, the function Q=f(P) has an inverse 

function. 



 

𝑃 = 𝑓−1(𝑄) = 𝑔(𝑎) 

𝑥 = 𝑓−1(𝑦) = 𝑔(𝑦)   (say) 

In such situation: 
𝑑𝑥

𝑑𝑦
=

1

𝑑𝑦
𝑑𝑥

 

Example: If y = 4x+50, then 
𝑑𝑥

𝑑𝑦
=

1

𝑑𝑦
𝑑𝑥

=
1

4
 

This can be found out by making x as a function of y. so, the above function can be rewritten as: 

𝑥 =
𝑦

4
− 12.5 

So,
𝑑𝑥

𝑑𝑦
=

1

4
 

 

 

 

2.6 Partial and Total Differentiation:  

In most of economic problems, what we observe is that a particular economic variable tends to depend 

on a number of other independent variables. Similarly, some of the independent variable, may also 

have a positive effect on the dependent variable while others have a negative effect on the dependent 

variable. As for instance, let us take the demand function where the Qd is the quantity demanded and 

Qd depends on the price of the product (P), Price of the related goods (PR), income of the consumer (I) 

and size of the family (S), thus, Qd= f(P, PR, I, S). 

Again, the demand for product tends tobe negative when there is a rise in the price of the 

product and the price of the complementary goods. But the on the other hand the condition such as 

increase in income of the consumer, increase in the size of the family of consumer will also raise the 

demand of the product. So, it is quite impossible to quantify the effect of an individual effect of the 

independent variable on the dependent variable. Therefore, in order to solve the such problems, we 

need to assume a particular independent variable changes but the other independent variables do not 

change at the same time. In order to quantify the effect of change in income on demand, price of the 

product and prices of the related goods and size of family of the consumer are assumed to be same. So, 

when we try to trace cut such effects by applying the technique of differentiation, then it is called as 

partial derivatives. But, on the other hand, when all the independent variables, which is termed as 

total differentiation. 

1. Partial Differentiation: 

Let us consider a function of ‘n’ independent variables– 

𝑌 = 𝑓(𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛) 

𝑌 + ∆𝑌 = 𝑓(𝑋1 + ∆𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛) 

∆𝑌 = 𝑓(𝑋1 + ∆𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛) − 𝑌 
Δ𝑌

Δ𝑋1
=

𝑓(𝑋1 + ∆𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛) − 𝑌

Δ𝑋1
 

Δ𝑌

Δ𝑋1
=

𝑓(𝑋1 + ∆𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛) − 𝑓(𝑋1 + ∆𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛)

Δ𝑋1
 

∆Y/∆X1 represents the rate of change in Y with respect to a change in the value of X1, taking other 

independent variables as constant. So, by taking the limiting value of X1 equal to zero, the limit of the 

quotient ∆Y/∆X1is called the partial derivative of Y with respect to X1. 

The rules of partial differentiation are almost same as the rules for ordinary differentiation. 

 

 

 



 

2. Total Differentials: 

Considering a function Y=f(X) where due to an arbitrary change in the value of X, there is a 

corresponding change in the value of Y. So, as the difference quotient (∆Y/∆X), the rate of change in 

Y is given as-  

∆Y =
∆Y

∆X
× ∆X………………………. (1) 

The equation 1 here can be rewritten as- 

dY =
dY

dX
× dX 

or ∆Y = f′X × dX …………………. (2) 

Here, due to the infinitesimal change in the value of X, there has been an infinitesimal change in the 

value of Y, so the difference quotient tends to be 
dY

dX
 and the infinitesimal change in X and Y are 

implicated as dX and dY respectively. 

When there are functions of more than one explanatory variables, total differentials are applied, such 

that 

dY = (
δY

δX2
× dX1) + (

δY

δX2
× dX2) 

Given a function Y= f (X1, X2), when due to the infinitesimal change in both X and Y, there has been a 

total change in Y. This is called total differential of the Y function.Therefore, total differentiation can 

be found out via the process of function total differential. 

 

APPLICATIONS ELASTICITY OF DEMAND AND SUPPLY: 

The price elasticity is a measure of the responsiveness of demand to changes in the commodity’s own 

price. If the changes in price are very small, we use the measure of point elasticity of demand. If the 

change in the price is not so small then we use the elasticity of demand as a relative measure. 

The point elasticity of demand is defined as the proportionate change in the quantity demanded 

resulting from a very small proportionate change in price. 

𝐸𝑝 =

𝑑𝑄
𝑄

𝑑𝑃
𝑃

 

𝑂𝑟,    𝐸𝑝 = (
𝑑𝑄

𝑑𝑃
) × (

𝑃

𝑄
) 

 

THE RELATIONSHIP BETWEEN MARGINAL REVENUE AND PRICE ELASTICITY: 

The marginal revenue (MR) is related to the price elasticity of demand with the formula 

𝑀𝑅 = 𝑃 (1 −
1

𝑒
) 

Such relationship is crucial for price theory. 

Proof, the demand function is given as – 

P= f(Q) 

The Total Revenue (TR) is  

TR=P X Q = [f(Q)] X Q 

Thus, the MR is – 

𝑀𝑅 =
𝑑(𝑃𝑄)

𝑑𝑄
= 𝑃 ×

𝑑(𝑄)

𝑑𝑄
+ 𝑄 ×

𝑑(𝑃)

𝑑𝑄
= 𝑃 + 𝑄.

𝑑𝑃

𝑑𝑄
 

The price elasticity of demand is defined as – 

𝐸𝑃 = −
𝑑𝑄

𝑑𝑃
×

𝑃

𝑄
 

𝐸𝑃 ×
𝑄

𝑃
= −

𝑑𝑄

𝑑𝑃
 



 

𝐸𝑃 = −
𝑑𝑄

𝑑𝑃
×

𝑃

𝑄
 

𝐸𝑃 = −
𝑑𝑄

𝑑𝑃
×

𝑃

𝑄
 

−
𝑃

𝑄𝐸𝑃
= −

𝑑𝑃

𝑑𝑄
 

Substituting dP/dQ in the expression of the MR, 

𝑀𝑅 = 𝑃 + 𝑄.
𝑑𝑃

𝑑𝑄
 

𝑀𝑅 = 𝑃 − 𝑄.
𝑃

𝐸𝑃𝑄
 

𝑀𝑅 = 𝑃 −
𝑃

𝐸𝑃
 

 

 

RELATIONSHIP BETWEEN TOTAL REVENUE, MARGINAL REVENUE AND PRICE 

ELASTICITY: 

If the demand curve is falling, the TR at first increases and reaches a maximum and then starts falling. 

The TR curve reaches its maximum level at the point where EP=1, because at this point its slope, the 

marginal revenue is equal to zero, as 

𝑀𝑅 = 𝑃 −
𝑃

𝐸𝑃
 

𝑀𝑅 = 𝑃 −
𝑃

1
= 0 

If EP> 1, the TR curve has a positive slope, i.e., it is still increasing and hence has not reached its 

maximum point as – 

𝑃 > 0 & (1 −
1

𝐸𝑃
) > 0, therefore, MR>0. If EP<1 the TR curve has a negative slope, i.e., it is falling as 

𝑃 > 0 & (1 −
1

𝐸𝑃
) < 0, therefore, MR< 0. 

So, if the demand is inelastic (EP< 1), a rise in price leads to a rise in total revenue and a fall in price 

leads to a fall in total revenue. If the demand is elastic (EP>1), a rise in the price result in a fall of the 

total revenue, while a fall in price will result in a rise in the total revenue. On the other hand, if the 

demand has unitarily elastic, total revenue is not affected by changes in price. 

EQUILIBIRUM OF THE CONSUMER: 

In a sample model consisting of a single commodity say X and the consumer can either buy X or retain 

his money income Y. The consumer is in equilibrium when the marginal utility of X is equated to its 

market price (PX). 

MUX=PX 

If the marginal utility of X is greater than its price, the consumer can increase his welfare by 

purchasing more units of X. If the marginal utility of X is less than its price, the consumer can cut 

down the quantity of X and keeping more of his income unspent. Therefore, he attains the 

maximization of his utility when MUX=PX. 

In case, there are more commodities, the condition for the equilibrium f the consumer is the equality of 

the ratio of the marginal utilities of the individual commodities to their prices, as, 
𝑀𝑈𝑋

𝑃𝑋
=

𝑀𝑈𝑌

𝑃𝑌
= ⋯ =

𝑀𝑈𝑛

𝑃𝑛
 

Mathematical Derivation: 

The utility function– 

U = f(QX) 

Where, utility is measured in monetary units. If the consumer buys QX his expenditure is QXPX the 

consumer seeks to maximise the difference between his utility and his expenditure– 



 

U – PXQX. 

The necessary condition for a maximum is that the partial derivative of the function with respect to QX 

be equal to zero. 
𝛿𝑈

𝛿𝑄𝑋
−

𝛿(𝑃𝑋𝑄𝑋)

𝛿𝑄𝑋
= 0 

We can obtain, 
𝛿𝑈

𝛿𝑄𝑋
= 𝑃𝑋      𝑜𝑟     𝑀𝑈𝑋 = 𝑃𝑋 

The utility derived from spending an additional unit of money must be same for all commodities. The 

consumer derives greater utility from any other commodity, he can raise his welfare by spending more 

that particular commodity and less on other, until the above condition for equilibrium is satisfied. 

 

2.7 Let us sum up 

2.8 Keywords 

2.9 Short questions 

2.10 Long questions 

2.11 Further/Suggested Readings 
1. Allen, R.G.D., Mathematical Analysis for Economists, Macmillan, 1976. 

2. Chiang, A.C., Fundamental Methods of Mathematical Economics, McGraw Hill, Kogakusha, New 

Delhi, 1974. 

 

3. Yamane, T., Mathematics for Economists, Prentice Halls, New Delhi, Indian Reprint, 1986. 

4. Mehta and Madnani, Mathematics for Economists, Sultan Chand & Sons, 2013.  
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UNIT 4 INTEGRATION 

Structure 

4.0 Introduction 

4.1 Unit Objectives 

4.2 Elementary Methods and Properties of Integration 
4.2.1 Some Properties of Integration 

4.2.2 Methods of Integration 

4.3 Definite Integral and Its Properties 

4.3.1 Properties of Definite Integrals 

4.4 Concept of Indefinite Integral 
4.4.1 How to Evaluate the Integrals 

4.4.2 Some More Methods 

4.5 Integral as Antiderivative 

4.6 Beta and Gamma Functions 

4.7 Improper Integral 

4.8 Applications of Integral Calculus (Length, Area, Volume) 

4.9 Multiple Integrals 
4.9.1 The Double Integrals 

4.9.2 Evaluation of Double Integrals in Cartesian and Polar Coordinates 

4.9.3 Evaluation of Area Using Double Integrals 

4.9.4 Evaluation of Triple Integrals 

4.9.5 Evaluation of Volume Using Triple Integrals 

4.10 Fourier Series 

4.11 Applications of Integration in Economics 
4.11.1 Marginal Revenue and Marginal Cost 

4.11.2 Consumer and Producer Surplus 

4.11.3 Economic Lot Size Formula 

4.12 Summary 

4.13 Key Terms 

4.14 Answers to ‘Check Your Progress’ 

4.15 Questions and Exercises 

4.16 Further Reading 

Integration 

 

 

 

 

NOTES 

 
 

4.0 INTRODUCTION 

In this unit, you will learn about the basic rules of integral calculus. Integration is the 

reverse process of differentiation. When we do not give a definite value to the integral, 

then it referred to as indefinite integral, while when we give the lower and upper limits, 

it is referred to as definite integral. A definite integral is a function only of its limits and 

not of the variable which may be changed. If the limits of a definite integral are changed 

then the sign of the integral also changes. You will learn elementary methods and properties 

of integration, definite integral and its properties, and indefinite integral. You will also 

learn a few methods by which integration of rational and irrational functions can be 

performed. 

This unit will also discuss about the applications of integral calculus in economics 

multiple integrals, and Fourier series. 
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n   1 

Integration 

 

 

 

 

NOTES 

 
 

4.1 UNIT OBJECTIVES 
 

 

After going through this unit, you will be able to: 

• Understand elementary methods and properties of integration 

• Define the term definite integrals 

• Explain properties of definite integrals 

• Discuss the concept of indefinite integrals 

• Apply integral calculus to find the length, area and volume 

• Describe the significance of multiple integrals 

• Find the Fourier series expansion 

• Explain the applications of integration in economics 
 

 

4.2 ELEMENTARY METHODS AND PROPERTIES OF 

INTEGRATION 

After learning differentiation, we now come to the ‘reverse’ process of it, namely 

integration. To give a precise shape to the definition of integration, we observe: If g (x) 

is a function of x such that, 

d 
g (x) = f (x) 

dx 

then we define integral of f (x) with respect to x, to be the function g (x). This is put in 

the notational form as, 

f (x) dx = g (x) 

The function f (x) is called the Integrand. Presence of dx is there just to remind us 

that integration is being done with respect to x. 

For example, since 
d
 

dx 
sin x = cos x 

 
cos x dx = sin x 

We get many such results as a direct consequence of the definition of integration, 

and can treat them as ‘formulas’. A list of such standard results are given: 
 

(1) = x because 
d
 

dx 

xn 

 

(x) = 1 

 
n 

(2) = (n  – 1) because = x , n  – 1 

 

(3) = log x because 
d
 

dx 
(log x) = 

1
 

x 

 
(4)  exdx = ex because

 d 
 

dx 

 
(ex) = ex 

 

(4) sin x dx = – cos x because 
d 

dx 

 

(–cos x) = sin x 

 

 

1 
d xn 1 

dx   n   1 
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 x2 

 x2 

 

 

 

 
(5) cos x dx = sin x because 

d   
(sin x) = cos x 

dx 

Integration 

 

(6) sec2 x dx = tan x because
 d 

dx 

 

(tan x) = sec2 x 
 

NOTES 

(7) (

8

) 

cosec2 x dx = – cot x because
 d 

(– cot x) = cosec2x 
dx 

 

(8) sec x tan x dx = sec x because 
d 

dx 

 

(sec x) = sec x tan x 

 
(9) (

1

0

) 

 cosec x cot x dx = – cosec x because
 d 

(–cosec x) = cosec x cot x 
dx 

 
(10) (

1

1

) 

 

 
(11) (

1

2

) 

 

(12) (

1

3

) 

 

dx = sin–1 x because 
d 

dx 

 

dx = tan–1 x because 
d 

dx 

 
dx = sec–1 x because 

d 

dx 

(sin–1 x) = 
1

 

 
(tan–1 x) = 

1
 

 
(sec–1 x) = 

1
 

 

(13) 

 1 

dx =
 log (ax  because

 d 
 = 

    1  

 

 
(14) (

1

5

) 

ax +b 

 

(ax + b)n 

 

 
x 

a 

 
dx = 

 

 

 

ax 
 

 

dx 

 

. 
1 

(n  – 1) 
a 

 

because 
d
 

dx 

 d x x 
 

 

ax + b 

 

 

 

 

= (ax + b)n, n  – 1 

(15)  a dx = 
log a 

because 

One might wonder at this stage that since 
dx 

a
 

= a log a 

d 
(sin x + 4) = cos x 

dx 

Then, by definition, why cos x dx is not (sin x + 4)? In fact, it could very well have been 

any constant. This suggests perhaps a small alteration in the definition. 

 

 x2 

 

 

x2 

 

 

x2 
 

log (ax b) 

a 

(ax b)n 1 

n   1 

(ax b)n 1 

a(n   1) 

 



Material 206 

 

We now define integration as: 

If 
d

 
dx 

 

g(x) = f (x) 

Then, f (x) dx  = g(x) + c 
 

Where c is some constant, called the constant of integration. Obviously, c could have 

any value and thus, integral of a function is not unique! But, we could say one thing here, 

that any two integrals of the same function differ by a constant. Since c could also 

have the value zero, g(x) is one of the values of f (x)dx . By convention, we will not 

write the constant of integration (although it is there), and thus, 

definition stands. 

f (x)dx = g(x), and our 
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 

Integration 

 

 

 

 

NOTES 

The above is also referred to as Indefinite Integral (indefinite, because we are not 

really giving a definite value to the integral by not writing the constant of integration). 

We will give the definition of a definite integral later. 

4.2.1 Some Properties of Integration 

The following are the some properties of integration: 

(i) Differentiation and integration cancel each other. 

The result is clear by the definition of integration. 
 

Let 
d 

dx 

Then, 

 

g(x) = f (x) 

 
dx = g(x) [By definition] 

 

  
d 

f (x) dx =   
d 

dx  dx 
[g(x)] = f (x) 

Which proves the result. 

(ii) For any constant a,  a f (x) dx = a f (x) dx 

Since
 d 

 
dx 

( a   f ( x)dx) = a
 d 

 
dx 

= a f (x) 

 f (x) dx 

By definition,  a f ( x) dx = a  f ( x) dx 

(iii) For any two functions f (x) and g(x), 

[ f (x) ± g(x)] dx =  f ( x) dx ±  g ( x) dx 

As
 d  f (x) dx   g(x)dx =

 d   
 f ( x) dx 

 d   
 g ( x) dx 

dx   dx dx 

= f (x) ± g(x) 

It follows by definition that, 

 [ f ( x)  g ( x)]dx =  f (x) dx   g(x)dx 

This result could be extended to a finite number of functions, i.e., in general, 

(x) ± . . . ± f n (x)]dx =  f1 ( x) dx   f2 (x)dx ± ... ± fn (x) dx 

Example 4.1: Find 

Solution: We have, 

dx = 

= 

dx. 

= 4 x 2 dx + 9 dx – 12  xdx 

x3 

= 4 
3
 + 9x – 

12x 

2 

= 
4 

x3 – 6x2 + 9x 
3 

f (x) 

f2 [ f1 (x) 

(2x 3)2 

(2x 3)2 (4x2 9 – 12x) dx 

4x2 dx 9 dx –   12x dx 
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x3 

x   1 

 

x 1 

x3 x2 

3 2 

 

 

n   1 

b) 

Example 4.2: Find 

Solution:We have, 

(2x 1)1/ 3 dx. 
Integration 

dx = 

 

3 
 

 

 

 

 

 
4/3 

 
NOTES 

= 
8 

(2x + 1) 

Example 4.3: Solve dx. 

Solution: By division, we note 
 

 
= (x2 – x + 1) – 

 

Thus, dx =  (x2 − x + 1) dx – dx 
 

 
 

 

 
Example 4.4: Find 

Solution: We observe, 

= + x – log (x + 1) 
 

dx 

 dx =  

= 

 

 
sin x 

dx = 0 cos x dx 

4.2.2 Methods of Integration 

The following are the methods of integration: 
 

To evaluate dx where f(x) is the derivative of f(x) 
 

Put f (x) = t, then f (x)dx = dt 
 

Thus, dx = = log t = log f (x) 
 
 

To evaluate f(x)dx, n  –1 

Put f (x) = t, then f (x)dx = dt 

n 
tn 

 

 
[ f (x)]n 

Thus, f '(x)dx 
 t dt = = 

 

To evaluate f '(ax + b)dx 
 

Put ax + b = t, then, adx = dt 

    dt 1 
 

  f (t)   f (ax  

f (ax + b)dx = f (t) = 
a a 

f (t) dt = 
a 

= 
a

 

=  xdx dx 
 

x   1 
dx 

(2x 1)1/ 3 (2x 

 

 

1)1/ 3 1 

 

 

 

x3 

x   1 

 

x   1 

x3 

x   1 

2 cos2 x 

 

f '(x) 
f (x) 

f (x) 

f (x) 

 

 

[ f ( x)]n 

[ f (x)n 

1 

n 1 

1 
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a
2 

– x
2
 

x2 a2 

 

a2 x2 

 

 

a2 x2 

 a cos h θ dθ  

a2 + a2 sin h2 θ 

 

Integration 
Example 4.5: Evaluate (i)  tan xdx (ii)  sec xdx 

 

 
NOTES 

Solution: (i)   tan xdx = 
sec x tan x 

dx = log sec x 
sec x 

(ii)  sec xdx = dx = log (sec x + tan x) 

 

Example 4.6: Find 

Solution: We have, 

x   x2 1 dx 

 

1 
2 1 

x   x 1 dx = 
2 

(2x) (x2 dx 

1 
+1 

 

1 ( x 2 + 1) 2 
= 

2 1 
+ 1 

2 
1 2 3/2 

 
Example 4.7: Evaluate 

 
Solution: We have, 

= 
3 

(x 

dx 

 

dx = 
1
 

2 

+ 1) 
 

 

 
dx 

 

 

Six Important Integrals 

= 
1 

log (x2 + 2x + 3) 
2 

We will now evaluate the following six integrals: 

(i) 
 1 

dx
 

 

(ii)  dx (v) dx (vi) dx 
 

(i) To evaluate dx 
 

Put x = a sin , then, dx = a cos  d 

Thus, 

dx = 
   a cos θ dθ  

= 1. dθ =  

= sin–1 

= 
a cos θ 

d
 

a cos θ 

 

(ii) To evaluate dx 
 

Put x = a sin h , then dx = a cosh  d 

Thus, 
 

 

Self-Instructional 

dx =  = 
a cos h θ 

d
 

a cos h θ 

sec x (sec x tan x) 

sec x tan x 

x2 

 

 

x2 

x 1 

2x 3 
x2 

2x 2 

2x 3 

(ii) 
 1 

dx
 

a2 x2 
(iii) 

 1 
dx

 

x2 a2 

a2 x2 a2 x2 

 1  

a2 x2 

x 

a 

 1  

a2 x2  
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x2 a2 

  a sin h θ dθ  

a2 cos h2θ − a 2 

a sec θ tan θ dθ 

a
2 

sec
2 

θ − a
2
 

a2 x2 

 

  

as cos h2  – sin h2  = 1 Integration 

 

=  dθ =  = sin h–1 

Aliter: Put x = a tan , then dx = a sec2  d 

Thus, 
NOTES 

dx =  
a sec2 θ dθ 

=
 

= log (sec  + tan ) 

 
= log 

sec2 θ dθ 
 

 

sec θ 
= sec θ dθ 

 

 x +    x2 + a2  
= log   

 a  

  

 
(iii) To evaluate dx 

 

Put x = a cos h  then dx = a sin h  d. 

Thus, 

dx = = 
a sin h θ 

dθ = 
a sin h θ 

 

=  = cos h–1 
x
 

a 

Aliter: Put x = a sec , then dx = a sec  tan  d 

Thus, 

 dθ 

dx =  = sec θ dθ 

= log (sec  + tan ) 

 
= log 

 

 

 

= log 
 
 

(iv) To evaluate dx 

Put x = a sin , then dx = a cos  d 

Thus, 

dx =  . a cos  d = a2 cos2  d 

= a2  1 + cos 2θ  
dθ

 
  

2 
 

  

x 

a 

 

a2 x2 

x2 a2 

a 

x 

a 

   

 

   

x2 a2 

x 

a 

x2 a2 

a 

x x2 a2 

a 

a2 x2 

 
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1 + sin h2θ 

 

 

 

a2 

 

2 

Integration a2  sin 2θ  
= 

2 
θ + 

2 
 

 

 

NOTES 

 

 

 

 

 

 

 

 

 

and hence, 

  

= 
a

2 

( + sin  cos ) 
2 

=  
a

2  

(θ + sin θ  1 − sin2 θ ) 

= 
a2 

 

2 

 

dx = 

 
(v) To evaluate 

+ 
a2 

 

2 

dx 

 

sin –1 x 

a 

Put x = a sin h , then dx = a cos h  d 

Thus, 

dx = 

= 

 . a cos h  d 

cos h2  d 

 

= a2 
(cos h 2θ + 1) 

2 
d (As, 2 cos h2 = 1 + cos h 2) 

= 
a2  sin h 2θ 

+ θ
 

2 
 

2 
 

= 
a2 

 

2 

  

sin h θ cos h θ + θ 

 
(As, sin h 2  = 2 sin h  cos h ) 

a2 
  

 

 

 

 

and hence, 

= 
2 

sin h θ 

 
= 

 

 
x 

 
 

 

+ sin h−1 

 

 
a2 

 
 

+ θ

 

 
 

a 

 

 
–1 x 

 
 

dx = 
2 

+ sin h 
2 a 

Aliter: Put x = a tan , then dx = a sec2  d 
Thus, 

dx =  . a sec2 d 

=  a2 sec3 θ dθ 

= 
a

2 

[sec  tan  + log (sec  + tan )] 
2 

= 
a2 

 

2 

 
. log 

sin 
 

 

x   
1
 

 

x2 

a2 

a2 x2  

 
 

a2 x2 

a2 x2 

a2 

a2  x 
 

2 
 
a 

 

 
a2 

a2 x2 a2 x2 

a2 x2 

x2 

 
a2 

x2 

 
a2 

x 

a 

 

x 
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x2 a2 

 

= 
x 

2 

 
(vi) To evaluate 

+ 
a2 

2 

 
dx 

 
log 

Integration 

 

 

 

 

NOTES 

Put x = a cos h , then dx = a sin h  d 
Thus, 

dx =  a sin h  d 

= a2 

 
= a2 

sin h2 θ dθ 

(cos h 2θ − 1)
dθ

 

2 

a2  sin h 2θ 
−   

 = 
2 

 
2 

θ 

= 
a2 

 

2 

  

(sin h  cos h  –  ) 

= 
a

2   

[ 
2 

. cos h  – ] 

a2      x2 x −1 
 

 

 
and hence, 

=  
2 


 

− 1. 
a2 a 

− cos h x / a 


 

dx = 
x
 

2 
– 

a2 

 

2 

 

cos h –1 

 

x/a. 

Aliter: Put x = a sec , then dx = a sec  tan  d 

Thus 

dx =  a sec  tan  d 

=  a2 sec θ . tan2  d 

= a2 sec θ (sec2  – 1) d 

= a2  sec3 θ dθ – a2 sec θ dθ 

= 
a2 

 

2 
sec θ tan θ + log(sec θ + tan θ) 

– a2 log (sec  + tan  ) [As in the previous case] 

= 
a

2 

sec  tan  – 
a

2 

log (sec  + tan  ) 
2 

 
a2  x 

2 

a2  x x2  

= 
2   a 

 
x 

– log  + 
2 

 
a 

 
a2 

− 1 

a2  

= – log 
2 2 

x2 a2 
x x2 a2 

a 

x2 a2 

x2 a2 

cos h2θ − 1 

x2 a2 x2 − a2 

x2 a2 

a2 

x2 

−
 

 

x x2 a2 
 

a 

 
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3 /2  

x    1/ 2 

3 /2  

2x    1 

3 

 

Integration Thus, we get following six results to remember: 

 

 

NOTES 

(i) 

 
 

(ii) 

dx = sin–1 
x

 
a 

 

dx = sin h–1 
x
 
a 

 
 x+   x2 + a2  

= log   
 a  

 

(iii) 
  1 

 

x2 – a2 

  

dx = cos h –1 
x
 
a 

 
 x +   x2 – a2  

= log   
 a  

  

(iv)  dx =
 x

 + 
a

2 

sin–1 x 

 
(v)  

2 

dx =
 x

 

2 

 x 

2 

+ 
a2 

 

2 

a2 

a 

sin h–1 x 
a 

 x+  a2 + x2  
= + log 

  

  
2 2  a  

 
(vi)  

 
dx =

 x
 

2 
 x 

 

– 
a2 

 

2 

a2 

  

cos h–1 
x

 
a 

 x+  x2 – a2  
= – log 

  

  
2 2  a  

 

Example 4.8: Solve 

 
Solution: We have, 

I = 

 

 

 

 

 
dx = 

  

dx. 

 

 

dx 
 

 

Put x + 1 = t, then dx = dt 
2 

Thus, 

I = = sin h–1 
t
 

 

 

 

= sin h–1 

(By the second integral evaluated above) 

= sin h–1 

The above result could, of course, be written directly without actually making the 

substitution x + 
1 

= t, by taking x as x + 
1 

in the formula. 
2 2 

  

a
2 

– x
2
 

  

a
2 

+ x
2
 

  

  

  

 

x2 
 

 

x2 
x   1 

1 

1 
2 

x 
2 

2 

3 

2 

dt 

2 

t2 3 

2 
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  

a 

 

Methods of Substitution 

In this method, we express the given integral  f ( x) dx in terms of another integral in 

which the independent variable x is changed to another variable t through some suitable 

relation x =  (t). 

Let 

Integration 

 

 

 

 

NOTES 

 

dI 

dx 

 
dI 

= f (x) 

 

= 
dI 

. 
dx 

 
 
= f (x) 

dx
 

dt dx   dt dt 

Thus, I = f (x) 
dx 

. dt = f [φ (t )]  (t) dt 
dt 

Note that we replace dx by '(t) dt, which we get from the relation 
dx

 
dt 

 

 
 

=  (t) by 

assuming that dx and dt can be separated. 

In fact, this is done only for convenience. 

Example 4.9: Integrate x(x2 + 1)3. 

Solution: Put x2 + 1 = t  2x 
dx 

= 1 
dt 

Thus,  2xdx = dt 

 x(x2 + 1)3 

 
dx = dt = 

1
 

2 
= 

1 t 4 
= 

t 

2  4 8 

(x2 

= 
8
 
1)4 

Example 4.10: Find  etan θ sec2  d 

Solution: Put tan  = t, then sec2  d = dt 

Thus,  e
tan θ sec2 d =  et dt = et = etan 

 
 

4.3 DEFINITE INTEGRAL AND ITS PROPERTIES 

Suppose f (x) is a function such that 

f (x) dx = g(x) 
 

The definite integral dx is defined by 
 

dx = g (x) b = g(b) – g(a) 

where, a and b are two real numbers, and are called respectively, the lower and the 

upper limits of the integral. 
 

π 
 

Example 4.11: Evaluate 2 cos x dx 
0 

 

Solution: We know that cos x dx = sin x 

I = f (x) dx 

 

 
 

 
 

 

4 
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(tan 
1 

x)
2
 

 x2 

t  

3 4 

b b 

b 
 

a 
f1 ( x)   

b 

a 
 

b 

a 
 

Integration 
π π 

Thus,  2 cos x dx = sin x2 = sin 
π 

– sin 0 

 
 

NOTES 

0 0 2 

= 1 – 0 = 1 

Example 4.12: Find 
 

Solution: Put tan–1 x = t, then 

Also, x = tan t 

dx 

 
 

dx = dt 

Thus, when x = 0, tan t = 0  t = 0 

When x = 1, tan t = 1  t = /4 

Hence, 

 
dx = 

π/4  

 
0 

 3 
π/4 

t 2 dt =   = 
 3 0 

1  π 3 
    
    

 
– 0 = 

π3 
 

 

192 

Note. In the above method, when we make the substitution, we also change the limits 

accordingly, the new limits being the values of the new variable which correspond to the 

values 0 and 1 of x. Alternatively, we could attempt the problem in the following way: 

 

We first consider the integral dx 
 

i.e., we do not take limits. Then, as before, by the same substitution 

t 3 

 
 

and thus, 

 

 

 

 
π3 

 
 = 

192 

dx = = 
3 

 

 
 

dx = 

 

 
(tan 1 1)3 

= 
3 

 

 

 
(tan 1 0)3 

– 
3 

 

 
 

(π / 4)3 
= 

3 
– 0 

It might be remarked here that although both the methods are correct, the first 

method will prove very helpful in certain cases. 

4.3.1 Properties of Definite Integrals 

It is assumed that the function f(x) is integrable on the closed interval (a, b), 

1. a  
kf (x)dx = k a

 

 

f (x)dx 

2. If f1(x), f2(x) are integrable on (a, b) 

3. A definite integral can be expressed as a sum of definite integrals (additive 

property), 
 b c b 

a   
f (x)dx   =  a   

f (x)dx + c
 f (x)dx, a  c  b 

 

 
 x2 

 

 

x2 

 

 
 x2 

(tan 
1 

x)
2
 

 x2 

 

 

 

 
1 x2 

(tan 1 x)3 

3 
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a 

b 

b 

 

x 

 b c d b Integration 

a   
f (x)dx   =  a   

f (x)dx + c    
f (x)dx + d

 f (x)dx, a  c  d  b 

It means that the area under the curve between (a, b) is the sum of the areas under the 

curve between (a, c), (c, d) and (d, b). This property is useful in finding the areas under 

some discontinuous functions also. 

4. A definite integral is a function only of its limits a and b and not of the variable 

which may be changed, 

 

NOTES 

 b b b 

a   
f (x)dx = a   

f ( y)dy = a
 

f (z)dz 

5. A definite integral equals zero when the limits of integration are identical, 

a   
f (x) dx 

 
a 

= [ f (x)] = f (a) − f (a) = 0 
a 

The area on a single point is zero because the width dx of the rectangle, is zero. 

6. The directed length of the interval of integration is given by, 

a  
dx 

 

= b – a 

7. If the limits are interchanged, the sign of the definite integral changes, 

a   
f (x)dx 

 
a 

=  – f (x)dx 
b 

 
For example, 

4 x2dx 
2 

= − 
2 

x2dx 
4 

8. If one of the limits is the variable itself, the definite integral becomes equal to the 

indefinite integral of the function, 

a   
f (x)dx 

 

= f(x)– f(a) = f(x)+ C 

Where C = –f(a) is a constant. 

Note: When one or both of the limits are infinite we have improper integrals. The concept 

of limits is to be used in such cases to find the value of the definite integral. 

 

For example, 
 

Other Useful Properties of Definite Integrals 
 

a 

9. f (x)dx = 
0 

 
a 

f (a x)dx 
0 

 2a a a 

10.  0
 f (x)dx = 

0 
f ( x)dx f (2a x) dx 

0 
 

a 

= 2 f (x)dx, if 
0 

f (x) 

= 0, if f (x) = –f(2a– x) 

 
11. 

 
b 

xf (x)dx = 
a 

a b b 

f (x)dx 
2 a 

 
12. 

 
a 

f (x)dx = 0 if 
0 

 
f (a 

dx 
Lim 

 

 

2 x2 

 

Lim 
1

 
   

Lim 
 

 

 

1 1 

2 2 

f (2a x) 

x) f (a x) 

 
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 

Integration  π 

 

 

 
NOTES 

For example, I = 0   
log (1+ cosθ) dθ =   

log (1− cosθ) dθ 

(Property 9. Note that cos ( – ) = – cos ) 

2 I = 
  

log (1− cos2 θ) dθ = 2
π 

log sinθ dθ 
 0 

(By adding, log (1 + cos ) + log (1 – cos ) = log (1 – cos2)) 

2

2 

π
 

log sinθ dθ
 

= 4 

− 

 
log 2


 

 

=   
0 

    
 

 

  
 I = – log 2 

4.4 CONCEPT OF INDEFINITE INTEGRAL 
 

We will now learn a formula which will help us in finding the integral of a product of two 

functions. 

We know that if u and v are two functions of x 
 

Then, 

 
 

d 
(uv) 

dx 

u 
dv 

dx 

= u 
dv 

dx 

= 
d 

dx 

+ v 
du 

dx 

(uv) – v 
du

 
dx 

Integrating both sides with respect to x , we get 
 

 
or u 

dv
 

dx 

dx = 

 
dx = uv – 

(uv) dx – dx 

 
dx 

Put u = f (x), 
dv

 
dx 

 

= g(x), then v = 
 

g(x)dx 

The above reduces to 

 f ( x) g ( x) dx 

 
= f (x) 

 

 g(x) dx – [ f ' (x) 

 

g(x) dx] 

where f  (x) denotes the derivative of f (x). This is the required formula. In words, 

integral of the product of two functions 

= First function × Integral of the second – Integral of 

(Differential of first × Integral of the second function). 

It is clear from the formula that it is helpful only when we know (or can easily 

evaluate) integral of at least one of the two given functions. Here, one thumb rule may 

be followed by remembering a keyword ‘ILATE’. I-means inverse function, L-

means logarethmic, A-means algebraic, T-means trigonometric and E-means 

exponential. The following examples will illustrate how to apply this rule. 

Example 4.13: Find x2exdx . 

Solution: Taking x2 as the first function as it is algebraic function and ex as the second 

function since it is exponential. We note that, 

x2exdx = x2ex – (2x)exdx 

= x2ex – 2 

 

 

 

v.
 du 

 

x exdx 

Check Your Progress 

1. What is constant of 

integration? 

2. Prove that 

differentiation and 

integration cancel 

each other. 

3. What are lower and 

upper limits of an 

integral? 

4. What is the value of 

the definite integral 

when the upper 

limit is equal to the 

lower limit? 

5. What is the directed 

length of the 

interval of 

integration? 

6. How is the value of 

the definite integral 

affected if one of 

the limits is the 

variable itself? 



Self-Instructional 

Material 217 
 

xn 1 
1 

n   1 x 

xn 1 

n   1 

n   1 

1 

n   1 

1 

 

 
x sec2 

x
 
 

  

= x2ex – 2 

= x2ex – 2 [xex 

 

 
ex ] 

(Integrating by parts again) 
Integration 

Note: If we had taken ex as the first function and x2 as the second function, we would not 

have got the answer. 

 

NOTES 

Example 4.14: Evaluate (i) log x dx , (ii) 
 

Solution: (i) We have, log x dx = 1. log x dx 

 
= (log x). x – 

= x log x – x 

x dx (n  –1) 

 

 

dx 

Here, we have taken log x as first function and 1 = x0 as second function since it is 

algebraic. 
 

(ii) We have 
 

x dx = (log x) 
xn 

n   1 
– dx 

 

= log x – 

 
xn 1 xn 

= log x – 

 
xn  

n  1 
.
 

1    

= log x − 
n + 1

 

Here, we have taken log x as first function and 1 = x0 as second function since it is 

algebraic. 

Example 4.15: Evaluate 

Solution: We have, 

x dx 
 

 
 

 
dx = 

 

 

 

 
x 

2 cos2 
x
 

2 

 

 

 

 
dx = dx 

= 
1 

2x tan 
x 

–   2 tan 
x 

dx

 

 

2  2  2  

= x tan 
x 

– tan 
x 

dx 

2 2 

= x tan 
x 

– 
2 

 

= x tan 
x 

+ 2 log cos 
x
 

2 2 

Here also, the thumb rule of ‘ILATE’ is applied. In the given two functions, one is 

algebraic and another is trigonometric. Algebraic function has been taken as first function 

and trigonometric as second function. 

1   cos x 

 

 

 
 

 
1 

 

n   1 
 

n   1 

1 

x dx 

1   cos x 

2 log cos 
x
 

2 
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ex 

ex ex 

1 
b2 

a2 I1 

eax 

 

 

Integration 4.4.1 How to Evaluate the Integrals 

Consider the following examples to evaluate the integrals. 

 
NOTES 

(i) 
 

(ii) I1 = 

(iii) I2 = 

[f (x) + f (x)] dx 

sin (bx + c) dx 
 

cos (bx + c) dx 

The followings are the solutions for the above problems: 

(i) Consider f (x) dx 

Integration by parts yields 

f (x) dx = f (x)ex – f 

 
 
(x) ex dx 

 

 f (x) dx + f (x) dx = f (x) ex 
 

i.e., [f (x) + f (x)] dx = f (x) ex 

(ii) Using integration by parts, we find 

 

 

 

 

 

 

Similarly, 

I1 = 

= 

 
= 

 
 

I2 = 

sin (bx + c) dx 

 
sin (bx + c) – 

 

sin (bx + c) – 
b 

I 
a  2 

 
cos (bx + c) dx 

 

 

. cos (bx + c). b dx 

eax 

=   
a
 

cos (bx + c) – − 
eax 

 

a 

b 

 
sin (bx + c) bdx 

 
and thus, 

= 

 

eax 

cos (bx + c) + 
a 

I1. 

 
b 

I1 = 

 
 = 

a 
sin (bx + c) – 

a
 

eax 

sin (bx + c) – 
b
 

a a2 

 

 
eax 

 

 
 

cos (bx + c) 

 

 a2 +b2  
 

 

ax  a sin(bx + c) − b cos (bx + c)  
 

 

 a2 

 
I1 = e 

 a2 

 

  

 
 I = sin (bx + c) dx = e

ax  a sin (bx + c) − b cos (bx + c)  
 

 

 
Similiarly, 

1  
 

 
I = eax  a cos(bx + c) + b sin (bx + c)  

 
 

a2 + b2  

2 

 

a2 + b2  

ex 

eax 

eax 

ex 

ex 

eax 

eax 

 

eax 

 

eax 

 

eax 

eax 

 

eax 

cos bx c 
a 

b 

a 
I1 

 

 

 
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eax 

eax    
a2 + b2 

ex 

x 

 

1 
2 

x3 

 
 

 

 x2 

(1 t 2 ) tdt 

 

  

3 

The above two integrals could be put into another form by the substitution 

a = r cos , b = r sin  

Integration 

I = eax  r cosθ. sin (bx + c) − r sin θ cos (bx + c)  
1  

 

= eax r sin (bx + c − θ) 

a
2 

+ b
2
 

a2 + b2  
NOTES 

 
 sin (bx + c) dx = eax 

sin (bx + c − tan−1 b/a) 
 
(As, r2 

 
= a2 

 
+ b2 

 
and tan 

 

 = 
b 

) 
a 

Similarly, 

 
(iii) cos (bx + c) dx = e 

 

 

 
ax cos (bx + c − tan−1 b / a) 

 
 

Example 4.16: Find [sin x + cos x] dx. 
 

Solution: Since 
d
 

dx 
(sin x) = cos x 

ex (sin x + cos x) dx = ex sin x 
 

Example 4.17: Find dx 

 

 

Solution: We have 

 
dx = 

 
= ex.

 1 
 

 

dx 

 
(As, 

d    1    
= – 

1 
) 

 
  

x 

Example 4.18: Evaluate  x2 sin−1x dx . 

Solution: We have, on integration by parts, 

dx 
 

x + 1 

 

x2 sin 1 xdx = (sin–1 x) 
x 

– dx 
3 

x
3 

–1 1 
 

  

 

 
To evaluate 

= 
 

dx , put 

1 sin x – 
3
 

 
= t 

dx ....................................... (1) 

 

1 – x2 = t2 

 –2x dx = 2t dt 

 x dx = – t dt 

Also, x2 = 1 – t2 

 

 

 
 

2 t3 
 

 Thus, = – = (t 1) dt = 
3 

– t 

 

x 

 

1 
2 

ex 1 

x   1 

1 

x 1 
2 

  

x3 

 x2 

  
x3 

 x2 
 x2 

 

 x2 

 
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(x a)(x a) 

 

x a 

Integration  
= 

Hence, the required value is, [From Equation (1)] 

NOTES 
 

x2 sin 1 xdx = 
x
 
3 

sin–1 x – 1 
3 

 

Integration of Algebraic Rational Functions 

 
A function of the type 

f (x)
, where f (x) and g (x) are polynomials in x, is called a 

g(x) 

rational function. We will now learn a few methods by which integration of such 

functions is done. We will be making an extensive use of partial fractions here. 

Let us first establish the integrals 

 

(1) = 
1 

log (ax + b) 
a 

(2) dx = 
1
 

a 
tan–1  

x
 

a 

 

(3) 

 
(4) 

 

dx = 
1 

2a 

 

dx = 
1 

2a 

 

log 

 
log 

 

(x > a) 

 
(a > x) 

Assumed that (a  0). 

Integrals (1) and (2) follow easily from the definition. 

To evaluate integral (3), we note, 

 
1 

 + 

 1  A (x + a) + B (x – a) 

Putting, x = – a and x = a, we get 

 

 
Thus, 

A = 
1
 

2a 
and B = – 

1
 

2a 

1 

 

And hence, 

= 
1 

2a 

 

 
dx = 

1 

2a 

 

 
 

1 
dx 

x a 

 

 

 
1 1 

dx
 

2a x a 
 

= 
1 

log (x – a) – 
1 

2a 2a 

= 
1 

log 
2a 

log (x + a) 

Integral (4) can be evaluated similarly, keeping in mind that, 

a 

1 

x 
dx = – log (a – x) 

(1 x2 )3/ 2 

 
1 x  

(1 x2 )3/ 2 

3 
1    x 

2 

dx 

ax b 

 

x2 a2 

 

x2 a2 

x a 

x a 

 

a2 x2 

a x 

a x 

 

x2 a2 

 

x a 

x2 a2 

 

 

 

x2 a2 

x a 

x a 

3 
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x2 
 

   3 

3  

 

x2 
8x   12 

2 

–1 

 2 


 

  

 
Example 4.19: Integrate (i) 

Integration 

 

(ii) 
1

 

Solution: (i) We have 
  1 

 

NOTES 

4x2 4x 10 

= 1 
 1 

dx 
4 

x2 + x + 
5
 
2 

= 
1 

 1 

dx
 4   

( x + 1 )
2  

+ 
 3 

2

 

    
    

= 
1 

. 
2 

  

 
 
tan 

 x + 1  1 
–1  2  = 

 

tan–1 
 

 (ii) Also, 

4  3 

 1 
dx = 

 3  
6

 
 2  1 

dx 
 

x2 x  1  
( x + 1 )

2

 
 

 2 + 
  

2 
 2  

 

= 
2 

. tan 

 
x + 1 

 

  
  
  
 2  

= 

 

Example 4.20: Evaluate 

 

Solution: We have, 

tan–1  2x + 1  

  

 
dx 

x
3 

= x – 8 + 
52x + 96 

 
 

x2 + 8x + 12 

 

(By division) 

 

 

Again, 

 

If 

52x + 96 
 

 

x2 + 8x + 12 
= 

52x + 96 

(x + 2) (x + 6) 

 
 

 

then, 52x + 96  A (x + 6) + B (x + 2) 

Putting x = – 6 and x = – 2, we get 

A = – 2, B = 54 

Hence,  
 dx = 

  
x − 8 + 

 
54x  

−
 

 
 

 
2 

 
dx 

   
x + 6 x + 2 


 

  
 

= 
x2 

 

2 

 

– 8x + 54 log (x + 6) – 2 log (x + 2) 

 

 

2x   1 

3 

2 

3 

x2 

x3 

8x    12 

52x 96 

(x 2) (x 6) 

A B 

x 2 x 6 

x2 

x3 

8x    12 

dx 

2 
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( x2 1)(3x2 1) 

(t 1)(3t 1) 

(t 1)(3t 1) 

 

2(t 1) 

(x2 1)(3x2 1) 

1/   3 

2   3 

x2 

x4 

1 
dx 

 

1   1/ x2 

x2 
 

 

Integration 

 

 

 

 

NOTES 

4.4.2 Some More Methods 

If the integrand consists of even powers of x only, then the substitution x2 = t is helpful 

while resolving into partial fractions. 

Note: The substitution is not to be made in the integral. 

 
Example 4.21: Evaluate 

 

Solution: Put x2 = t in 
x 

2

 

 

Then, 
t 

 
 

 t  A (3t + 1) + B (t + 1) 

Putting t = – 1 and – 1 , we get 
3 

A = 1 , B = – 1 
2 2 

 
t 

= – 
 

Thus, 

 

 

 

 
 

 
x2 

=
 

 
dx = 1

 
2 

 

 
– 

 
 

– 1       dx  

2    3x
2 

+ 1 
 

= 1 tan–1 x – 1 

 dx  

2 6 

 

= 1 tan–1 x – 
1 

. 
2 6 

x2 + 1 
3 

tan–1 
x
 

 

 

 

Example 4.22: Solve 

= 1 tan–1 x – 
2 

x 
tan–1 (x   3) 

 

 

Solution: We have, I = = dx 

 

Put x – 
1 

= t 
x 

 

 

 

 

 

 
Self-Instructional 

Then, 

 
Also, x2 + 

dx = dt 

 
1 

– 2 = t2 
x2 

 

(x2 1)(3x2 1) 

A B 

t 1 3t 1 

 

2(3t 1) 

 

2(x2 1) 

 

2(3x2 1) 

x2 

(x2 1)(3x2 1) 

    

x2 
 

 

1/ 3 

x2 

x4 

1 
dx 

 

 

x2 
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1 

2 2 

1 

2 

 

 

 

tan x 

1    tan2 x 

tan 0 

tan 
π

 
 

 

 

0 1 

t2 

t4 

 
 

 

2 −   2 

2 +   2 

2 −   2 

2 +   2 

4 

4 

  

1 t − 1 

 

So, I = = tan–1   
t
 

 

= tan–1 
Integration 

 

Substitution before Resolving into Partial Fractions 

The integration process is sometimes greatly simplified by a substitution as is seen in the 

following examples: 

 
NOTES 

Example 4.23: Solve 
dx

 
 

Solution: Put x4 = t, then 4x3 dx = dt 
 

Thus, 

Now, 
1

 
t (t − 1) 

= = 
1
 

4 

 

= 
1 

– 
1

 

t − 1 t 

and hence, the given integral 

= 1    1 − 
1  

dt = 1 [log (t – 1) – log t] 
 4   

t − 1 t 
 4

 

  

= 
1 

log 

 

= 
1 

log 
 

 

Example 4.24: Solve 
π/4  

 dx 
0 

Solution: Put = t, then tan x = t2 

and sec2 x dx = 2 t dt 

 dx = 
2t

 

 

dt = 
 

Also, when x = 0, t = = 0 
 

when x = 
π 

, t = = 1 
4 

Hence, the given integral becomes 
 

= 2 dt 

 
By integrating, 

 
= 2  log 

 

 

 

2 1 

+ tan−1  

 8 4 t 0
 

=  2 
 

2 
log + 

2 
tan−1 0 

− 
 

2 
log 1 − 

2  
tan−1 


  

8 4   
8 4 

 

 

= 2 

 
 2 

log 

 
+ 

2 π  

   

 
8 4 2 


 

 

t 2 
 

 

 

 

 

dt 

t(t 1) 

t 1 

t 

x4 

x4 

1 

tan x 

2t dt 

 
 

1 t.2t dt 

0 1 t4 

t 2 −   2 t + 1 

t 2 +   2 t +1 
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2 −   2 

2 +   2 

 

2 2 

1 tan2 x / 2 

 
dt 

5  5t 2 

1    tan2 x / 2 

3 

3 

0 

 

1 

 

Integration 

= 
2 

log 
4 

+ 
2 

π = 
4 

 

log + π 

 

NOTES Integrals of the Type , b2 + c2  0 

 

The substitution tan 
x 

= t, converts every rational function of sin x and cos x into a 
2 

rational function of t and we can then evaluate the integral by using the previous methods. 

π/ 2 
dx

 π dx 
 Example 4.25: Evaluate (i)  

4 + 5 cos x2 
(ii)  5 + 3 cos x 

0 

Solution: (i) Put tan 
x 

= t, then 1 sec2 
  

x 
dx = dt 

 

2 

 dx = 

 
Also, as cos x = 

 

The given integral reduces to, 

2 

2 dt 
=

 

 
= 

 

 

1 

2 
 

 
 

 

 

 
 2 dt 

 

 

 

 

 

 

 
Note, when 

 

 

 

 

 

 

 
x = 0  

 
 

t = tan 0 = 0 

 

0 2 5 − 5t2  
 

 
 (1 + t ) 4 + 

 1 + t2  

When 
 
 

x = π / 2  

t = tan π/4 = 

 

 

= 2 = 2 
 

 

= 2. 

 

= 1 log 

 

= 1 log 2 

log 
3
 

3 

 

(ii) Put tan 
x 

= t, then 1 sec2 
x 

dx = dt 
 

2 2 2 

 dx = 

 

Also as cos x = 

2 dt 
=

 

 
= 

 

The given integral reduces to, 

Note, when x = 0, t = tan 0 = 0 
 
When x = π, t = tan 
 

π 
=  


 

2  

2 dt 

 
 

2 −   2 

2 +   2 

1 

2 2 

 

a+  b cos x + c sin x 

1    tan2 x / 2 

1    tan2 x / 2 

 

 

 

 

 

 

0 9 

dt 
 

1 

2   3 3   t 
0
 

log 
3 t 

1 

3   1 

3   1 

 
 

 

2dt 
 

1    tan2 x / 2 

1    tan2 x / 2 

 

 

 

 

 

0 (1   t2 ) 5 3 
(1   t ) 

 

 
 

 
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dt 

0 5 5 t 2 3  3t 2 

1 tan 1 
t
 

 2 0 

ad bc 

c2 

 3
 1  

2 sin x 3 

 

2 sin x cos x 3 

  

 

 

 
= 2 = 2 

 
= = 

1 
tan–1  – 

1
 

  

 
= 

 

tan–1 0 

Integration 

2 2 

= π − 0 = 
π

 
2 2 

NOTES 

 

Integration of 
a cos x+  b sin x 

, (a2 + b2)(c2 + d2)  0 
c cos x+ d sin x 

We determine two constants  and  such that, 

a cos x + b sin x =  (– c sin x + d cos x) +  (c cos x + d sin x) 

where – c sin x + d cos x = 
d

 
dx 

 
(c cos x + d sin x) 

Comparing coefficients of cos x and sin x, we get 

a = d + c 

b = – c + d 
 

  = ,  = 
 

Hence, 

a cos x b sin x 

c cos x d sin x 

 
 

dx =  
−c sin x + d cos x 

dx + μ 1.dx 
c cos x + d sin x 

=  log (c cos x + d sin x) +  x 
 

 

Integration of 
 a cos x+  b sin x + c  

d cos x+ e sin x + f 

In this case, we determine three constants , , , such that 

a cos x + b sin x + c =  (d cos x + e sin x + f ) +  (–d sin x + e cos x) + v and proceed 

as in the earlier case. 

Example 4.26: Find 
4 sin x + 2 cos x + 3 

dx 
2 sin x + cos x + 3 

Solution: We determine , ,  such that, 

4 sin x + 2 cos x + 3 =  (2 sin x + cos x + 3) +  (2 cos x – sin x) +  

Comparing coefficients of sin x, cos x and the constant terms, we get 

4 = 2 – , 

2 =  + 2  

3 = 3 +  

  = 2,  = 0,  = –3 

Thus, 

4 sin x + 2 cos x + 3 = 2(2 sin x + cos x + 3) + 0 (2 cos x – 1) – 3 

 
4 sin x + 2 cos x + 3 

2 sin x + cos x + 3 

 

dx = 2 dx 

 

= 2x – 3 dx 

dt 

0 2t 2 8 

dt 
 

 

ac bd 

c2 
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 2a  

 

4a2 

x + b 

 b x + b  

Integration  
Now, solve 

 
 

2 sin x 

1 

cos x 
3 dx 

 

 
NOTES 

We put tan 
x 

= t, then, dx = 
2 

and the integral, 

 

= 
 

 
 

= 

 

= 
 

= 
 

= tan–1 (t + 1) = tan–1 

Hence, the required result is, 

2x – 3 tan–1 
 

Integration of Irrational Functions 
 

1  a x + a   n dx 

Consider the types   1 2  
1 2 

dx and  
(a + bx)n 

 
These may be found by the substitution un = 

a1 x + a2 

b1 x + b2 

 
and u = (a + bx). 

For example, let us Integrate,  dx (a  0, b2 − 4ac  0) 

 

= ( −a ) 

     
 x + b 

=  2a + 
b2 − 4ac 

 sin −1 
 

+ C  

 2 

 

 
−1 1 

8a2  
 

x + b 
Similarly (ax2 + bx + c) 2 dx =    sin−1 2a + C 

 
 

−a (b2 − 4ac)  
4a2 

If, in this case, the numerator is a linear function of x, it can be broken into two parts. 

 

 t 2 

(1   t ) 
 

2dt 

2.2t 

t2 

 

1 1 

 

 
 

 

 

t 2 3    3t 
2
 

t 2 

 

 

 

 

1 tan 
x
 
2 

1 tan 
x
 
2 

ax2 + bx + c 

 b 2 

4a2 
  

  

 

4a2 
 

 b 2 
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 

  

Example 4.27: Integrate  

 
Solution: Put, u = 

dx 

 

 

+ x or 

 

 

 
u2 − 2 

x = 
1 + 2u 

Integration 

 

 

 

 

NOTES 

 
dx = 

2(u2 + u + 2) 
 

 

(1 + 2u)2 

 
and 

 
 

x + 

 
dx 

= 2
 

x2 + x + 2 

(u2 + u + 2)du 

u(1+ 2u)
2

 

 

u2 + u + 2 
= 

A 
+ 

B 
+ 

C 
Now, 

u(1 + 2u)2 u 1 + 2u (1 + 2u)2 

 u2 + u + 2 = A (1 + 2u)2 + Bu (1 + 2u) + cu 

 
Putting u = 0, 

−1 −7 

2 
, we get A = 2, C = 

2
 

Again, comparing coefficients of x2 on both sides, 

−7 

we get, 1 = 4A + 2B  B = 
2

 

Hence, 

dx 
= 2

  2 
− 

7 
−

 
 

  

7  
du 

 
 

x + x2 + x + 2 
 

u
 2(1+ 2u) 2(1 + 2u)2 


 

 

= 4 log u − 
7 

log (1 + 2u) + 
7 

+ C 
  

 
where, u = 

2 2(1+ 2u) 

+ x 

 
 

4.5 INTEGRAL AS ANTIDERIVATIVE 

In calculus, an antiderivative, primitive integral or indefinite integral of a 

function f is a differentiable function F whose derivative is equal to the original function f. 

This can be stated symbolically as F' = f. The process of solving for antiderivatives 

is called antidifferentiation (or indefinite integration) and its opposite operation is 

called differentiation, which is the process of finding a derivative. 

Antiderivatives are related to definite integrals through the fundamental theorem 

of calculus: the definite integral of a function over an interval is equal to the difference 

between the values of an antiderivative evaluated at the endpoints of the interval. The 

discrete equivalent of the notion of antiderivative is antidifference. 

Uses and Properties 

Antiderivatives are important because they can be used to compute definite integrals, 

using the fundamental theorem of calculus: if F is an antiderivative of the integrable 

function f and f is continuous over the interval [a, b], then: 

x + x2 + x + 2 

x2 + x + 2 

x x   2 2 u2 u   2 

1   2u 

x2 + x + 2 

Check Your Progress 

7. What is the integral 

of the product of 

two functions? 

8. Which thumb rule is 

followed for finding 

the integral of the 

product of two 

functions? 

9. What is a rational 

function? 

10. Which substitution 

is done if the 

integrand consists 

of even powers of x 

only? 

 

 
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b 

 

1 

1 

Integration 

 

 

 

 

NOTES 

a   
f (x)dx = F (b) − F (a). 

Because of this, each of the infinitely many antiderivatives of a given function f is 

sometimes called the “general integral” or “indefinite integral” of f and is written using 

the integral symbol with no bounds: 

 f (x)dx. 

If F is an antiderivative of f, and the function f is defined on some interval, then every 

other antiderivative G of f differs from F by a constant: there exists a number C such 

that G(x) = F(x) + C for all x. C is called the arbitrary constant of integration. If the 

domain of F is a disjoint union of two or more intervals, then a different constant of 

integration may be chosen for each of the intervals. For instance 
 

−  
1 

+C x  0 

F (x) =  
x
 

−  
x 

+C2 x  0 

 

is the most general antiderivative of f(x) = 1/x2 on its natural domain (−,0)  (0, ). 

Every continuous function f has an antiderivative, and one antiderivative F is given by 

the definite integral of f with variable upper boundary: 
 

F ( x ) =   0
 f ( t )d t . 

Varying the lower boundary produces other antiderivatives (but not necessarily all possible 

antiderivatives). This is another formulation of the fundamental theorem of calculus. 

There are many functions whose antiderivatives, even though they exist, cannot 

be expressed in terms of elementary functions (like polynomials, exponential 

functions, logarithms, trigonometric functions, inverse trigonometric functions and their 

combinations). Examples of these are 

e−x
2 

dx, sin x2dx, 
sin x 

dx,
 

x 

 
  1 

dx, 
1nx  x

xdx. 

From left to right, the first four are the error function, the Fresnel function, the trigonometric 

integral, and the logarithmic integral function. 
 

4.6 BETA AND GAMMA FUNCTIONS 
 

In mathematics, the beta function, also called the Euler integral of the first kind, is 

a special function defined by 

B(x, y) = 
1

t x−1(1− t) y−1dt 
0 

 

for Re(x), Re( y)  0. 

The beta function was studied by Euler and Legendre and was given its name 

by Jacques Binet; its symbol Β is a Greek capital β rather than the similar Latin capital B. 

x 

  
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 

 

 

 

n=1   

+ + + 

Properties 

The beta function is symmetric, meaning that 

B(x, y) = B(y, x). 

When x and y are positive integers, it follows from the definition of the gamma 

function  that: 

B(x, y) = 
(x −1)!( y −1)! 

(x + y −1)! 

It has many other forms, including: 

B(x, y) = 
(x)( y) 

(x + y) 

 

B(x, y) = 2 
 /2 

(sin )
2 x−1 

(cos )2 y−1d , Re( x)  0, Re( y)  0 
0 

 

B(x, y) = 2 
 /2 

(sin )
2 x−1 

(cos )2 y−1d , Re( x)  0, Re( y)  0 
0 

Integration 

 

 

 

 

NOTES 

 

B(x, y) = 0
 

t x−1 

(1 + t)
x+ y 

dt, Re(x)  0, Re( y)  0 

 

    (n− y ) 
B(x, y) = n . 

n=0 x + n 
 

    (n− y ) 
B(x, y) = n . 

n=0 x + n 
 

x + y   xy 
−1

 

B(x, y) = 
xy 

1+ 
n(x + y + n) 


 

 

The Beta function satisfies several interesting identities, including 

B(x, y) = B(x, y +1) + B( x +1, y) 
 

B(x +1, y) = B(x, y)  

 

B(x, y +1) = B(x, y)  

x 
 

 

x + y 

 

y 
 

 

x + y 
 

B(x, y)  (t → t x+y−1) = (t → t x−1)  (t → t y−1) 

B(x, y)  B(x + y,1 − y) =
  

 
x sin( y) 

x  1, y  1 

 
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+ 

 
2 

 

 
k 

 

 

Integration where t → t x is a truncated power function and the star denotes convolution. 

The lowermost identity above shows in particular 
 1  

= 
  

 . Some of these identities, 

NOTES e.g. the trigonometric formula, can be applied to deriving the volume of an n-ball 

in Cartesian coordinates. 

Euler’s integral for the beta function may be converted into an integral over 

the Pochhammer contour C as 

(1 − e2i )(1− e2i )B( ,  ) = 
C 

t−1(1 − t) −1dt. 

This Pochhammer contour integral converges for all values of α and β and so 

gives the analytic continuation of the beta function. 

Just as the gamma function for integers describes factorials, the beta function 

can define a binomial coefficient after adjusting indices: 
 

 n  
=

 

  

1 
 

 

(n +1)B(n − k +1, k +1) 

Moreover, for integer n, B can be factored to give a closed form, an interpolation 

function for continuous values of k: 
 

 n  
= (−1)n n!

 sin(k) 
.
 

 
k 

  
n    

(k − i) 
     i=0 

The beta function was the first known scattering amplitude in string theory, first 

conjectured by Gabriele Veneziano. It also occurs in the theory of the preferential 

attachment process, a type of stochastic urn process. 

Gamma Function 

In mathematics, the gamma function (represented by the capital Greek letter Γ) is an 

extension of the factorial function, with its argument shifted down by 1, to real and 

complex numbers. That is, if n is a positive integer: 

Γ(n) = (n – 1)!. 

The gamma function is defined for all complex numbers except the non-positive 

integers. For complex numbers with a positive real part, it is defined via a convergent 

improper integral: 

(t) = 
 

xt−1e− xdx. 
0 

 

This integral function is extended by analytic continuation to all complex numbers 

except the non-positive integers (where the function has simple poles), yielding 

the meromorphic function we call the gamma function. In fact the gamma function 

corresponds to the Mellin transform of the negative exponential function: 

(t) = {Me−x}(t). 

The gamma function is a component in various probability-distribution functions, 

and as such it is applicable in the fields of probability and statistics, as well as 

combinatorics. 

 
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 

  

  

 

 

1 

1 

 

 

The notation Γ(t) is due to Legendre. If the real part of the complex number t is 

positive (Re(t) > 0), then the integral 

(t) = 
 

xt−1e−xdx. 
0 

 

converges absolutely, and is known as the Euler integral of the second kind (the 

Euler integral of the first kind defines the Beta function). Using integration by parts, we 

see that the gamma function satisfies the functional equation: 

(t + 1) = t(t). 

Combining this with Γ(1) = 1, we get: 

(n) = 1 2  3 (n −1) = (n −1)! 

for all positive integers n. 

The identity Γ(t) = Γ(t+1)/t can be used (or, yielding the same result, analytic 

continuation can be used) to extend the integral formulation for Γ(t) to a meromorphic 

function defined for all complex numbers t, except t = ”n for integers n e” 0, where the 

function has simple poles with residue (“1)n/n!. 

It is this extended version that is commonly referred to as the gamma function. 

Relationship between Gamma Function and Beta Function 

To derive the integral representation of the beta function, write the product of two 

factorials as 

Integration 

 

 

 

 

NOTES 

 

(x)( y) = 
 

e−uux−1du    
 

e− y−1d 
0 0 

 

= 
     

e−u − ux−1 y−1dud. 
0     0 

Changing variables by u = f(z, t) = zt and  = g (z,t) = z(1 − t) shows that this is 
 

(x)( y) =  =0 

=  =0 

t =0 

t =0 

e−z (zt)x−1(z(1 − t))y−1 J (z,t) dtdz 

e−z (zt)x−1(z(1 − t)) y−1 zdtdz 

=  =0 
e− z zx+  y−1dz 

1
 

t =0 
t x−1(1 − t ) y−1dt, 

where is the absolute value of the Jacobian determinant of 

 and  . 

Hence 

(x)( y) = (x + y)B(x, y). 

The stated identity may be seen as a particular case of the identity for the integral 

of a convolution. Taking 

f (u ) := e−uux−11 and g (u ) := e−uu y−11 , one has: 

(x)( y) = (ℝ  
f (u)du )(ℝ 

g (u)du ) = ℝ 
( f  g)(u)du = B(x, y)(x + y). 

ℝ+ ℝ+ 
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−  +  

Integration 

 

 

 

 

NOTES 

 
 

4.7 IMPROPER INTEGRAL 
 

 

In calculus, an improper integral is the limit of a definite integral as an endpoint of the 

interval(s) of integration approaches either a specified real number or or or, in 

some cases, as both endpoints approach limits. Such an integral is often written 

symbolically just like a standard definite integral, perhaps with infinity as a limit of 

integration. 

Specifically, an improper integral is a limit of the form 
 

lim b f (x)dx, 
lim b f (x)dx, 

b→ a 

or of the form 

 
lim c f (x)dx, 
c→b      a 

a→− a 

 
lim b f (x)dx. 
c→a      c 

in which one takes a limit in one or the other (or sometimes both) endpoints (Apostol 

1967, §10.23). When a function is undefined at finitely many interior points of an interval, 

the improper integral over the interval is defined as the sum of the improper integrals 

over the intervals between these points. 

By abuse of notation, improper integrals are often written symbolically just like 

standard definite integrals, perhaps with infinity among the limits of integration. When 

the definite integral exists (in the sense of either the Riemann integral or the more 

advanced Lebesgue integral), this ambiguity is resolved as both the proper and improper 

integral will coincide in value. 

Often one is able to compute values for improper integrals, even when the function 

is not integrable in the conventional sense (as a Riemann integral, for instance) because 

of a singularity in the function, or poor behavior at infinity. Such integrals are often 

termed “properly improper”, as they cannot be computed as a proper integral. 

Types of Integrals 

There is more than one theory of integration. From the point of view of calculus, 

the Riemann integral theory is usually assumed as the default theory. In using improper 

integrals, it can matter which integration theory is in play. 

• For the Riemann integral (or the Darboux integral, which is equivalent to it), 

improper integration is necessary both for unbounded intervals (since one cannot 

divide the interval into finitely many subintervals of finite length) and for unbounded 

functions with finite integral (since, supposing it is unbounded above, then the 

upper integral will be infinite, but the lower integral will be finite). 

• The Lebesgue integral deals differently with unbounded domains and unbounded 

functions, so that often an integral which only exists as an improper Riemann 

integral will exist as a (proper) Lebesgue integral, such as  
  1  

dx. On the other 
1 x2 

hand, there are also integrals that have an improper Riemann integral but do not 

have a (proper) Lebesgue integral, such as  
 sin x 

dx.  The Lebesgue theory 

0 x 

does not see this as a deficiency: from the point of view of measure 
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t →  

1 

i i 

theory, 
 sin x

dx =  −  and cannot be defined satisfactorily. In some situations, 
Integration 

0 x 

however, it may be convenient to employ improper Lebesgue integrals as is the 

case, for instance, when defining the Cauchy principal value. The Lebesgue integral 

is more or less essential in the theoretical treatment of the Fourier transform, 

with pervasive use of integrals over the whole real line. 

• For the Henstock–Kurzweil integral, improper integration is not necessary, and 

this is seen as a strength of the theory: it encompasses all Lebesgue integrable 

and improper Riemann integrable functions. 

 
NOTES 

 

 

Improper Integral of  e – x
2 

dx 
1 

 

 

Study the convergence of e− x
2
dx

 

1 

 

We cannot evaluate the integral directly, e− x
2

 

We note that 
 

x  1  x2  x 

 −x2  −x 

 e− x2  e− x 

Now, 

 

 

 

does not have an antiderivative. 

 

 t 

e− x dx =lim 

1 1 

 

e−xdx 

lim 

t→ 

= c−1 

(e−1 − e−t ) 

 

 
and therefore converges. It follows that 

theorem. 

 

e− x
2   

converges by the comparison 
1 

 

4.8 APPLICATIONS OF INTEGRAL CALCULUS 

(LENGTH, AREA, VOLUME) 

Let y = f(x) be a continuous function shown as a curve (refer Figure 4.1). To find the 

area under this curve in the interval (a, b) take a small strip of width x
2 
– x

1 
= x , its 

height being f(x ). The area of this strip is f(x ), x . If we similarly take n strips of 
1 1 1 

width x (i = 1, 2, ......., n) and n being the corresponding heights f(x ) (i = 1, 2, ..... ,n) 
i i 

we have n thin rectangles, each of area, 

f(x ) x , i = 1, 2, ..., n 

= 
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i i 

b 

Integration The total of all these area is given by, 
 

 

 
NOTES 

 

 

 f (x)x 

i =1 

This is not exactly the area under the curve, but it can be, if the widths of the rectangles 

are taken sufficiently small, i.e., if n is very large or as n tends to infinity. The rectangles 

will become thinner (almost lines) and we can write the area between (a, b) under the 

curve y = f(x) as the limit, 

 

A 

 

Fig. 4.1 Continuous Function y = f(x) 
 

The area under a curve is thus expressed as a discrete sum. 

In the limit we can write the area in the continuous form, 

A = a
 f (x)dx 

 

The similarities between the expressions Lim 
n 

f (xi ) xi and 
b 

f (x) dx may be noted. 
a 

The discrete quantitites f(x ) and x , have their continuous counterparts f(x) and dx and 

the discrete summation sign  is replaced by the continuous summation sign  . The 

area under the curve y = f(x) between the limits a, b can thus be written as a definite 

integral, 
 

Area abBA =  a   
f (x)dx = F (b) − F (a) 

Example 4.28: Evaluate a definite integral as the limit of a sum by proving, 
 b exdx = [ex ]b = eb − ea 

a 
a 

Solution: The procedure from the first principle is applied to get the limit of the 
sum. Let the interval (a, b) be divided into n subintervals each of size h at points 

n 

 

 
 

 

b 
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r r 

 eh     − 

1 

4 

a, a + h, a + 2h, .... , a + nh, where h = 
b − a 

→  as n → 0. 
n 

Let, t = a + rh, f(t ) = f(a + rh) = ea + rh = ea.erh 
 

n n n 

Integration 

 

 

 

 
NOTES 

S
n 

=  f (tt ) r    = (ea .erh )h = eah erh 
r =1 r =1 r =1 

 

=  eah 
eh + e2h +  ..... + enh  

 

a h (e
nh 1) heh 

b  a    

= e .h.e 
(eh 1) 

(e 
eh 1 

1) (  b a nh) 

 

= (eb − ea )eh. 
h 

eh −1 
 

h →   
As 

n →  
S

n
 

= (eb − ea )(eh )
  h   

→ eb − ea 
  

 

Since, Lim eh
 

n 

1 , Lim 
h 

1 
h eh 1 

Example 4.29: Find the area bounded by the x-axis and the curve y = x2 between 

x = 1 and x = 3. 
 

 

 

 

 

 

 

 

 

 

 

 
X 

 

 
3  x3 

3

 33 13 2 

Solution: 1 
x2dx =   

 3 1 

= − = 8 
3 8 3 

Example 4.30: Find the area under the curve, 

y = 1 < x < 4 
 

Solution:  xdx = 
 2 

x
3

2 

 

 
= 

2 4
3

2 − 32  = 
2 

 7 = 
14

 

1  3 1
 3  1 

 3 3 

 

10 

 
 

 
 

y= x
2
 

 

 
 

   

4 
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b 

b 

a 

 

Integration 

 

 

 

 

NOTES 

Sign Convention 

If the function y = f(x) is positive in the interval (a, b) and the curve is above the x-axis 

then a   
f (x)dx is positive. 

If y = f(x) is negative in the interval (a, b) and the curve is below x-axis then, a   
f (x)dx 

is negative. 

If y = f(x) changes sign in the interval and the curve crosses the x-axis, the area is 

the algebraic sum of a positive area and a negative area. 

 For example, to find the area of the ellipse x2 

+ 
y2 

 
 

 =  , consider the ellipse divided into 

a2 b2 
1 

4 equal parts (refer Figure 4.2). The area of part Oab is, 
 

 

 

 

 

 

 

 

 

 
 

X 

 

 

0   
ydx 

Fig. 4.2 Part Oab of Ellipse 

 

= 
a b 

a2 − x2 dx 
0 a 

 

b πa2 πab 
= 

a   4 
= 

4 

 Area of the ellipse =  ab. 

We can also prove that the area between 0 and 2 of the curve 4y = x3 + x–2 is the sum 

of two areas (refer Figure 4.3). 
 

 

 

 

 

 

 

 

 

 

 

 
X 

 

 

Fig. 4.3 Curve 4y = x2 + x – 2 
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b 

 

 

r 

r 

x 

1 2 5 
+ 

13 
= 

9 
 

  

Integration 

| f (x) | dx 
0 1 

| f ( x) | dx =  

16 16 8 
 

Here the algebraic sum of a positive area and a negative area is taken. 

Limits of Integration Infinity 
NOTES 

 

If f(x) is continuous over a < x < b, we define 

the limit exists. 

f (x)dx 
a 

Lim 
b 

b 

f (x)dx provided 
a 

Similarly, 

 

and, 

−  
f (x)dx  

− 

 

 

 

f (x)dx 

 

 
 
= Lim 

a 

 

 
a1 f (x) dx 
a 

 

 

 
Lim 
b 

 

 

 

 
 

b 

f (x) dx 
a1 

If f(x) has one or more points of discontinuity over a < x < b, or at least one of the limits 

of integration is  as in the above cases, we have an improper integral. 
 

For example,  −x −e−x 
e sin xdx =  

 

(sin x + cos x) 
0  2 0 

This may be evaluated by writing, 
 

 
Lim 
b 

e 
[sin x 

2 

Note: e– = 0, sin  or cos  lie between ±1 and e0 = 1. 
 

4.9 MULTIPLE INTEGRALS 
 

4.9.1 The Double Integrals 

Let f (x, y) be a function of the two real variables defined at every point (x, y) in the 

region R of the (x, y) plane, bounded by a closed curve C. Let the region R be subdivided 

in any manner, into n subregions (denoted as) A, A , A , ......, A . Let (x , y ) be any 
2 3 

point in the subregion A . Let S denote the sum, 
n r      r 

 
 

 

i.e., S =  f (xr , yr )Ar 

r =1 

If the limit of the sum S exists, as n →  and as each sub region A →0, and the limit 
is independent of the manner in which the region R is subdivided and the points (x

r
, y

r
) 

chosen in the region A
r
, then that limit is called the double integral of f(x, y) over the 

region R. It is denoted as  R  f (xr yr )dA 
 

Thus,  f ( xr , yr )dA = 
R 

n 

LTn→  f (xr , yr )Ar 
1 

 

The double integral  f (xr , yr )dA is often denoted as  f (x, y)dxdy . 
R R 

n 

= Lim f (x)dx 
 

a a 

cos x]b 
1 

(0   1) 
 

 

 

 

 



Self-Instructional 

Material 238 
 

    

Integration 

 

 

 

 

NOTES 

It can be shown that, if f(x, y) is a continuous function of x and y in the region R, then the 

limit of S exists independent of the mode of subdivision of R and points chosen in the 

sub-regions. 

The following are some properties of the double integral. 

(i)  f (x, y) + g(x, y)dA =  f (x, y)dA +  g(x, y)dA 
R R R 

 

(ii)  kf (x, y)dA = k  f (x, y)dA for any constant k. 
R R 

 

(iii)  f (x, y)dA =   f (x, y)dA +   f (x, y)dA 
R R1 R2 

If the region R is composed of the two disjoint regions R
1 
and R

2
. 

4.9.2  Evaluation of Double Integrals in Cartesian and Polar 

Coordinates 

The evaluation of certain double integrals becomes easier by effecting a change in the 

variables. Sometimes when the change is effected from Cartesian coordinates to polar 

coordinates, the integral reduces to a simpler form. For example, when the integral is a 

function of x2 + y2. the transformation x = r cos, y = r sin makes it function of r2. 
 

 

 

 
O 

 

Fig. 4.4 Segment ACDBA 

To transform to polar coordinates we put x = r cos, y = r sin. 

Regarding the elements of area dA, considering the area ACDBA as a rectangle (refer 

Figure 4.4), 

dA = arc AB. AC 

= r d. dr = r dr d 

Hence, (x ,  y)dx dy = f (r cosθ, r sin θ)r dr dθ 
R R 

 

Where R is the region of integration. 

Note: The boundaries of the region R will to be expressed in polar coordinates to facilitate 

the fixing of limits of integration. 

Example 4.31: Evaluate   
      

e
–(x2 + y2 )

dx dy.   Let I =   
      

e
–(x2 + y2 )

dx dy , x varies from 0 
0     0 0     0 

to  and y also varies from 0 to . Hence, the region of integration is the area in the first 

quadrant of the (x, y) plane. 

Solution: Put x = r cos, y = r sin, dx dy = r dr d 

To cover the region, draw a radius vector OP as shown in the Figure. By turning this 

radius vector from x-axis to y-axis, the region of integration can be covered. 

 
dr 

 

d 
  dr C 
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  

  

a    a 

a    a 

 

y 
Integration 

 

 P 

 =  

 
 

NOTES 
 

 

O  =  x 
 

Hence, r varies from 0 to  and  varies from 0 to 
π
 

2 
 

 I = 
 /2     

e−(r2 cos2 +  r2 sin2 )r drd  

0 0 
 

= 
 /2     

e
– r

2 

r drd  
0 0 

 

 
 /2 

 
  /2        – r 2    

 
=   d    e

–r
2  

r dr =  d   d  
e 

 
0 0 0 0  –2  

  
 

 
/2  1   – r2       

 
  

 –1   
 =   

 
– 

2 
e 


 = 

2 
0 −  

2 
 = 

4
 

0    
 

 

Example 4.32: Evaluate 0  y 

xdxdy 
by changing to polar coordinates. 

x2 + y2 
 

Solution:  Let I =  0  y 

xdxdy 

x2 + y2 

 

 
 

The region of integration is the triangle OAB (refer Figure). 

This region is covered by turning the radius vector OP from OA to OB. 

At O, r = 0, and at P, r = a sec  

Since P lies on the line x = a, i.e., r cos  = a,  varies from 0 to 
π 

. 
4 

 

 
/ 4 I = 

a sec  r cos  r dr d  
 

0      0 r 2 

 

=   
 /4 

 
a sec  

cos  dr d  =
 /4 

cos r 
a sec  

d  
0 0 0 0 

 

= a  
 / 4 

d   = a 
 / 4   

=  
a

 
0 0 4 

0 
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 a  g  

( x)    

 dy 
2

 

1 

1 

Integration 

 

 

 

 

NOTES 

4.9.3 Evaluation of Area Using Double Integrals 

Double integrals are evaluated as repeated integrals. 

y 

 

 

 

 

 

 
x 

 
Fig. 4.5 Closed Curve C 

 

Let L and M be the points on C having minimum and maximum ordinates (say c, d ) and 

let P and Q be the points on C having the minimum and maximum abscissae (say a, b ) 

as shown in Figure 4.5. 

Let x =  (y) and x =  (y) be the equations of curves LPM and LQM (portions of C). 

Let y = g
1 
(x) and y = g

2
(x) be the equations of curves PLQ and PMQ (again portions 

of C). 

It can be shown that, if f(x, y) is a continuous function of x and y in the region R, then the 

value of the double integral is, 

 f (x, y) dA   or  f (x, y) dx dy 
 

...(4.1) 
R R 

 

This is equal to the value of the repeated integral. 
 

b g2 ( x)    

dx f (x, y)dy 
1 

 

And also the value of the repeated integral, 

d  ( x)    

f (x, y)dx 

...(4.2) 

 

 
 

...(4.3) 
c 1 ( x)    

These results enable us to evaluate double integrals as repeated integrals. For this reason, 

i.e., equality of Equations (4.1), (4.2) and (4.3) can be interpreted as double integrals; in 

fact, they are also referred to as double integrals. Note that Equation (4.2) and (4.3) 

have the same value under the conditions on f(x, y) specified above (continuity of f(x, y) 

in the region R). 

Notes: 

 g2 ( x )  
1. Referring to the Figure 4.5  g  ( x)    

f (x, y)dy
 

dx  can be interpreted as the limit L, of 

 1  

the sum  f (xr , yr )Ar , obtained by subdividing the strip AB (of width dx) into 

b g2 ( x)    

sub regions  A
r  

and the integral  a  
dxg  ( x)    

f (x, y)dy can be interpreted as the limit 

of sum of limits like L, obtained by considering all the strips parallel to AB and 

covering the region R. 
 

d 2 ( x)    

Similarly, c   
dy  ( x )    

f (x, y)dx can also be interpreted, the strips considered being 

parallel to CD (i.e., x-axis). 

y = d  

 

y = c 

 x = a x = b 

 

 

  

  
 

1 2 
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 4   

2. These interpretations are helpful in determining the limits when a double integral 

over an area is to be written as an equivalent repeated integral, and also in finding out 

the region of evaluation of a double integral given in the form of a repeated integral. 

3. When the region of integration R is the rectangle bounded by x = x
1
, x = x

2
, 

y = y , y = y , the double integral f (x, y)dA is evaluated as the repeated integral 

Integration 

 

 

 

 
NOTES 

1 2  
R 

 
x2 

dx 
y2 

f (x, y)dy or as  
y2 

dy 
x2 

f (x, y)dx (repeated integrals with constant limits). 
x1 y1 y1 x1 

 

Example 4.33: Evaluate 1    x  xdy dx and indicate the region of integration. 

0 x2    

x2  + y2  
1 

dx 
x x dy 

 

Solution:  Let I denote the given integral. Then, I = 0 x2    

x2  + y2 written as repeated 

integral showing the order of integration – first with respect to y followed with respect to 

x). This shows that limits for integration with respect to y are determined by the curves 

y = x2, a parabola and y = x, a straight line respectively. The subsequent integration is 

with respect to x between x = 0 and x = 1. Thus the region of integration is the area of 

the (x, y) plane included between the parabola y = x2, the straight line y = x and the 

ordinates x = 0 and x = 1. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Now, I = 

1 x 
 1 

tan−1 
y 

 
 

  

y = x    dx 
0       x y  

2

 

  y = x    

 
=  

1 

tan−1 (1) – tan –1 x dx = 
1  π 

– tan −1 x
 

dx 

0   0  4 

 

 

= 
 πx 

 

– 
 

x tan−1 x – x 

 

1 

1 + x 


1

 

2 
dx  

0 

 

(Integrating by parts) 

 

 x 
 

 
– x tan−1 x + 

1 
1

 

log(1 + x2 ) = 
 

– 
 

+ 
1 

log 2 = log 

 4 2 0 4 4 2 

The region of integration is indicated in the Figure by shading. 

x = 0 
 

(1, 1) 

x = 1 

 

 = 



Self-Instructional 

Material 243 
 

n 

Integration 

 

 

 

 

NOTES 

Area of a Region of Double Integration 

 

The integral  dx dy gives the area of the region R. This is evident from the fact that 
R 

 

 dx dy  or  dA is the limit of the sum Ar  
as n →  and this sum is the sum of the 

R R 1 

area into which R is subdivided. 
 

2 2 2 

Example 4.34: Evaluate by double integration the area enclosed by the curve x 3 + y 3 = a 3 . 

Solution: Required area = 4 × Area enclosed in the first quadrant 
 

a (a2 / 3 – x2/ 3 )3/ 2 

=  4 dx dy = 40  
dx0 

dy 
A 

Note that the order of integration is first with respect to y and limits for y are evaluated 
2 2 2 

by solving for y the boundary curves y = 0 and x 3 + y 3 = a 3 in terms of x and the limits 

for x are the least and greatest values of x so that the ordinate at x sweeps the area in 

the first quadrant. 

y 

 

 

 

 

 

x 

 

 

 

 

 
 

3 
a  2 2 2 

  

 Required area = 4  a 3 – x 3 
 dx, which on putting x = a sin3  becomes, 

0   

 
 

 
 

 
. 1.3.1 .  3 

 = 4 2 3a2 sin2 cos4  d  = 12a2  =  a2 
0 6.4.2 2 8 

Example 4.35: By double integration, evaluate the area enclosed by the parabola 

y2 = 4ax and x2 = 4ay 

y 

 

P is (x, 4ax) 

 

 
  

 
 

 (4a, 4a) 
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ax 

 

b    d      f 

Solution: The two parabolas are shown in the Figure. 

To find the points at which the parabola intersect, we solve the equation y2 = 4ax and x2 

x2 

= 4ay. From the second, y = 
4a 

which, on substitution into the first gives, 

Integration 

 

 

 

 

NOTES 

x4 

16a2 

 
= 4ax or x 

 
4 – 64a3 x = 0 

 

i.e., 
 

i.e., 

 x = 0, x = 4a; 

x(x3 – 16a3 ) = 0 

 

x(x – 4a)(x2 + 4ax + 16a2 ) = 0 

x2 + 4ax + 16a2 = 0 does not give any real value for x. 

 Points of intersection are (0, 0), (4a, 4a) (refer Figure) 
 

Required area =  A  dx dy = 0
 

4ax 

dx 
x

2 
/4a 

dy 

Note that the order of integration is first with respect to y followed by integration with 

x4 

respect to x. Limits for y are the y coordinates of Q and P (refer Figure), i.e., 
4a 

and 

. Limits for x are the minimum and maximum values of x so that the strip PQ 

sweeps the area A. These values are 0 and 4a. 

  Required area =  
4a 

 y 
4ax  

dx 
0 

 

4a  

x2 /4a  

x2   4 
 

x3 
4a 

=   2 –  dx =  ax3/ 2 – 
 

0     4a   3 12a 0
 

 

 4 64a3  16 2 
=  

3
 a.4a. 

– 
12a 

 = 
3 

a
 

  

4.9.4 Evaluation of Triple Integrals 

The concepts and notation explained above can be extended to integrals of functions of 

three variables. 
 

Thus, a  c   e   
g(x, y, z)dxdydx denotes the result of integrating g(x, y, z) with respect to 

x (treating y and z as parameters) from e to f, integrating the result with respect to y 

(treating z as a parameter) between c and d and integrating that result to z between 

a and b. Note that dx dy dz by its left to right order indicates the order of integration. 

The corresponding limits are taken in the reverse order, i.e., e, f for x; c, d for y and a, 

b for z. 

 

4a 

4a 
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4    2    3 

   

  
3 

l c a 

i 

dy f (x, y, z)dx 

Integration 

Example 4.36: Evaluate  0  1  0
 

 

x2 yz dz dx dy . 
 

 
NOTES 

Solution: Let I = 4 2 3 x2 yz dz dx dy 
0    1     0 

 

 
4 2  x

2 
y z

2 
3

 
= dy dx x yz dz =  4 2 3    

2
 

dy   dx 
 

 

0 1 0 0 1  2 0
 

 
4 2 9  3  

= dy x2 y dx = 4 x3 y dy 
  0 1   2 0  

2 
 

 1 

 
4 21 21  y2 

4

 

=  0 y dy = 2 2 
 

2 
 dy = 84 

 0 
 

Note: In the above problem, the integrated x2yz is the product of the three functions x2, y 

and z each being a function of only one variable. It can be verified that I is the product of 

the three integrals 
2 

x2dx, 
4 

y dy 
1 0 

 

and 0  
z dx . 

In general, if f(x, y, z) = f
1
(x).f

2
(y). f

3
(z), i.e., if f(x, y, z) can be expressed as the product of 

three functions, each involving only one variable and if a, b, c, d, l, m are constants, then, 
 

m    d     b m    d     b 

l    c   a   
f (x, y, z) dx dy dz   =  l    c   a   

f1 (x) f2 ( y) f3 (z) dx dy dz 

=  (
m  

f3 (z) dz )(
d   

f2 ( y) dy )(
b  

f1 (x) dx) 
 

4.9.5 Evaluation of Volume Using Triple Integrals 

Triple integrals are defined in a manner similar to that of double integrals. Let f(x, y, z) be 

a function of three real variables x, y, and z continuous over the region of space, say V, 

enclosed by a closed surface S. Let V be divided into subregions V and let (x , y , z ) be 

any point in V . Let L denote the sum, 
i i     i     i 

 f ( xi , yi , zi ) Vi 
i 

 

Under the condition on f(x, y, z) stated above, the limits of the sum L can be shown to 

tend to a limit as the number of subregions tends to infinity in such a way that each 

subregion shrinks to a point and that the limit is independent of the mode of subdivision of 

V and the choice of points (x
i
, y

i
, z

i
) in V

i 
if f(x, y, z) is continuous in the region V. This 

limit is called the triple integral of f(x, y, z) over the region V. It is denoted as, 

 f (x, y, z)dV   or  f (x, y, z)dx dy dz 
V V 

 

This triple integral can be evaluated as a repeated integral. 
 

 ( y, z) 

 
z2 

dz 
f2 ( z ) 

 
2 

z1 

 
 or 

x2 

dz 

f1 ( z )   

 
 h2 ( x ) 

1  1  ( y , z ) 

 
 g2 ( x, y) 

 x  dy  g ( x, y) 
f (x, y, z)dz 

Self-Instructional 1 h1 ( x) 1 

2 
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1– x2 – y2 

1− x2 

1− x2 

1 

1 

All these are similar as in the case of double integrals. 

The limits of the integration can be fixed by knowing the region of integration V and its 

boundary S, again in a manner similar to that of double integrals. 

Integration 

Finally, we note that the triple integral  dV or  dx dy dz gives the volume of the NOTES 
V V 

region V (enclosed by S). 

Example 4.37: Evaluate  xyz dx dy dz taken over the positive octant of the sphere 
V 

x2 + y2 + z2 = 1. 

Solution: From any point P on the surface drop PQ perpendicular to (x, y) plane. This 

perpendicular is moved from M, a point on the x-axis to N, a point on the curve of 

intersection of the sphere and (x, y) plane. This process generates a plane. This plane is 

moved from O to A to cover the whole region enclosed by the sphere, in the positive 

octant. 
 

 

 

 

 

 

 

 

 

 

At P, z = and at Q, z = 0 
 

At M, y = 0 and at N, y = 

At O, x = 0 and at A, x = 1 

Hence,  xyz dx dy dz = 0 0 0
 xyz dz dy dx 

 

The order of integration adopted and the corresponding method of fixing the limits are to 

be noted carefully. 
 

=   
1 1− x2  xyz

2  
 0 0    

2   
 dy dx 

 
=  0 0 

 0 

1 
xy(1 – x 

2 

 
 

2 − y2 

 

 
) dy dx 

1 1 
2 3 

=  
2 0 0 

(xy – x y − xy ) dy dx 

 

 2 3    2 4 1− x2 

= 
1 1  xy 

 
 

– 
x y 

– 
xy  

dx
 

 

2 0  2 2 4 

 

 0 

1 1  x(1 – x2 ) – x3 (1 – x2 ) x(1 – x2 )2  1 =  
2 0 

 
2 – 

4 
 dx = 

48
 

  

 

 

 
 

   

Q N 

 

 

 

1− x2 – y2 

 

1− x2 
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 

2 

2 

 

 

n 

Integration 

 

 

 

 

NOTES 

 
 

4.10 FOURIER SERIES 
 

 

Drichlet’s Conditions 

Let the function f(x) be defined in the interval (c, c + 2l). This function can be expanded 

as an infinite trigonometric series of the form 
a

0   + 
   

(a  cos 
n 

x + b  sin 
n 

x) 

n =1 l 

n 
l 

, 

if the following conditions called Drichlet’s conditions are satisfied. 

1. f(x) is single valued, periodic with period 2l and finite in (c, c + 2l). 

2. f(x) is continuous or piecewise continuous with finite number of finite discontinuities 

in (c, c + 2l). 

3. f(x) can have finite number of maxima and minima in the given range. 

Following are the values of certain definite integrals which you require in deriving Fourier 

series. 

If m and n ar positve integers or zeros, 
 

c + 2π  sin nx 
c +2 π

 

1.  
c 

cos nxdx = 
 n

  = 0 ...(4.4) 
c 

 

c +2  – cos nx 
c +2 π

 

2.  
c 

sin nxdx = 
 n  

 

= – 
1 

cos(2nπ + nc) – cos nc 
n 

= – 
1 
cos nc – cos nc = 0 ...(4.5) 

n 
 

c + 2π  
1 c +2π  

3.  
c 

cos mx cos nxdx =   
 c 

(cos(m + n)x + cos(m − n)x)dx = 0 by (4.4) ...(4.6) 
 

 

c +2π 
1 

c+ 2  

4.  
c 

sin mx cos nxdx =   
 c 

(sin(m + n)x + sin(m − n)x)dx = 0 by (4.5) ...(4.7) 
 

 

c + 2    
1 

c +2  

5.  
c 

sin mx sin nxdx =   (cos(m − n)x − cos(m + n)x)dx = 0 by (4.4) ...(4.8) 
 c  

Results (4.6), (4.7) and (4.8) are for m  n. 

6. If m = n in result (4.6) and n  0, then you have 
 

c +2     c + 2    

cos2 nxdx = 
1 

c 2  (1 + cos 2nx)dx =  
c 

...(4.9) 

7. If m = n in result (4.7) and n  0, then you have 

c + 2    
1 

c + 2    

Self-Instructional 

sin2 nxdx = 
c 

2  (1 – cos 2nx)dx =  
c 

...(4.10) 

2 

2 

c 



Material 247 
 

 
π 

 

 
π 

 

 

   
 

 

l  

l 

 

Change of Interval 

You have seen the Fourier expansion of f(x) defined in the interval (c, c + 2). In 

practice, we often require to find a Fourier series expansion of a function f(x) which is 

not of length 2 but some other interval, say 2l. 

You know that Fourier series expansion of f(x) in (c, c + 2) is 

Integration 

 

 

 

 

NOTES 

 

 

 
 

1 
c +2    

 

f(x) = 
a0 +

 

2 

 

 

(a 
n=1 

n cos nx + bn sin nx) , 

where a
n 
=  

c 
 
 

1 
c + 2    

f (x) cos nxdx for n = 0, 1, 2, 3,... and 

b
n 
=  f ( x) sin nx dx for n = 1, 2, 3,... 

c 

To expand f(x) as Fourier series in the interval (–l, l) let us define a new variable 

y = 
x 

 x = 
ly 

 

 
and limits, 

l  

when x = –l y = – 

and x = l y =  
 

Hence, the function 

series is, 

f 
 yl  

is defined in the interval (–, ) and corresponding Fourier 
  

f 
 yl  

=
 

  

a0 +
 

2 
(a 
n=1 

n cos ny + bn sin ny) ...(4.11) 

 

1   yl  
where a

n 
= 

  
f  

 
cos ny dy 

 

 
and b

n 
= 

−     

 
1 

f 
 yl  

sin ny dy 

−   

To find the Fourier series of f(x) in (–l, l) you revert to the variable x 

π x yl π 

i.e., y = 
l 

 x = 
π 

and dy = 
l 

dx 

Then Equation (4.11) becomes 
 

a0 +
 

 
 

 
 

a cos 
n 

x + b sin 
n 

x 

 

 
f(x) = 

2
   n 

l
 n 

l 
 

 
with 

n =1   

 

 
1 l n 

a
n 
=  f (x) cos 

−l 

 
1 l n 

b
n 

= f (x) sin 
−l 

x dx for n = 0, 1 ,2,. .... and 

 

x dx 

 

 

 

 

 

Self-Instructional 

 

 

 

l 

l 
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l 

l 

 

1 

l 

l 

 
 

Integration If f(x) is an even function b
n 
= 0 

 

 

NOTES 

 
f(x) = 

a0 +
 

2 

 

 

 an 

n =1 

 

cos 
n 

x 
l 

1 2l n 

where a
n 

=  f ( x) cos 
0 

 

If f(x) is an odd function a
n 
= 0 

x dx for n = 0, 1, 2,.... 

 
 f(x) = 

 

 

 bn 

n=1 

 

sin 
n 

x 
l 

 

2 l n 

where b
n 

=  f (x) sin 
0 

xdx for n = 1, 2, 3,.... 

Example 4.38: Find the Fourier series of period 2l for the function f(x) = x(2l – x) in (0, 2l) 
 

 

Deduce the sum of 
 

Solution: 

Let 

1 
− 

1 

12 22 + 
1 

– .... 
32 

a0 +
 

 
 

 a cos 
n 

x +  


 

 
 

b sin 
n 

x 
 

f(x) = 
2
  n 

n=1 
 n 
n=1 

...(1) 

 

1 2l n 

a
n 

=  f (x) cos 
0 

 

 

  

x dx 

 

 
n    

 
 

 

 
 

 n     
 

 

 

 
n 

2l

 

 
 

1   sin x   – cos x   – sin 
x  

= (2lx – x2 ) 
 l 

 – (2l – 2x)  l  + (–2)  l  
 

l  n   l 

 n2 2 

 
l 2

 
n3 3 


 

  
l3  

 

    0 

 

1 l 2  n   
2l

 

=  
l n2 2  


2(l − x) cos  

l
 x 

0 

 

= 
2l 


 

n2 2 
−2l cos 2n− 2l  = – 

4l 2 
 

 

n2 2 

a
0 
cannot be deduced from a

n
. So 

 
2l 

a =  x(2l – x)dx = 
1  2l x2 

 
x3 

2l 

–  = 
4 

l2 
0 l 

0
 

l    2 3 0 
3 

1 2l n 

b
n 

=  f (x) sin 
0 

x dx 

12l n 

Self-Instructional 

=  x(2l – x) sin 
0 

xdx 

 

 

l 

l 

l 

l l 

l 

 

l 

l 
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n n 

  

 n 

 n 

 2 2 2  

  

l   

l  

 

 

 

l 

 
 

− cos 
n 

x 

    

2l

  – sin x   cos x  

Integration 

= 
1 (2lx – x2 ) 


 

 
 

l  
– (2l – 2x)  

 
 

l  + (–2)  
 

 

l  
 

 

l  n 

  

l 
 

  n 
2

         n 
3            NOTES 

 
  

 l3  

    l       l      0 

= 0 − 2  
n33  (1 − 1) = 0 

Using the values of a
0
, a

n
, b

n 
in Equation (1), we get 

2 2 4l 2  1 n 
 

f(x) = 
3 

l   – 2    2 
cos x 

n=1 

....(2) 

 

To deduce 
1 

–  
1 

+ 
1 

12 22 32 – ...... put x = l in Equation (2) 

 
2 2 4l 2  1 

 

l(2l – l) = 
3 

l   – 2    2 
cos n 

n=1 

 

2 2 2 
 

 

–4l 2    1 1 1  

l   – 
3 

l = – + – + ......... 
2      1 2 3  

 

l 2 
 

 –2  
 

  

1 1 1 
 

3 
 

4l 2 

 

= – 
1

2 
+ 

2
2   

– 
3

2 
+ ......... 

π2 1 
+

 
 

  

 
1 1 1 

 

12   
= 

12 

– – + .... 
22 32 42 

Example 4.39: Find the Fourier series expansion of f(x) = |x|, –1 < x < 1 

Solution: 

Here, 2l = 2  l = 1 
 

a0 +
 

 
 

 
 

a cos 
n 

x + b sin 
n 

x 

 

 
Let f(x) = 

2
   n 

l
 n 

l 
 

n =1   

f(x) = |x| is an even function in the interval (–1, 1) 

So b
n 

= 0 

 f(x) = 
a0 +

 

2 

 

 

 an 

n=1 

cos 
nπ 

x 
l 

...(1) 

 

1 
1 1 

a
0 
= f (x)dx = 2 f (x) dx, since f(x) is an even function and l = 1 

–1 0 

 

1 

= 2 x dx = 1 
0 

 

1 1 n 
a

n 
= f (x) cos 

−1 

 
x dx 

 

l 
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n2 2 

... 

1 
0  

Integration  
1 

= 2  f (x) cos n x dx (Since f(x) is an even function and l = 1) 
−1 

 
NOTES 

 
1 

= 2 x cos n x dx 
0 

 

1   sin n x   – cos n x  
= 2  x  

n 
 –  n2 2  

    0 

= 
2    

cos n x
1   

= 
2 

(–1)n – 1 

n2 2 0 n2 2   

= 0 when n is even. 

–4  

= 
n 

2 
π

2 when n is odd. 

Substituting a
0
, a

n 
in Equation (1) 

1 
+ 

  
 

 

–4   
cos n x 

 
 

f(x) = 
2
   

n=1   

= 
1 

–
 4 cos x 

+ 
cos 2x 

+ 
cos 3x 

+   
 

2 2    12 22 32 

 

Example 4.40: Expand f(x) in Fourier series in the interval (–2, 2) when 

f(x) =  –2  x  0 

f(x) =  0  x  2 

Solution: 

Let 

 

 

 f(x) = 

 
a

0   + 
   

 
a  cos 

n 
x + b  sin 

n 
x 


 

 
 

 

 

 ...(1) 
2 

  n 
l 

n 
l 

 

 

Here, 2l = 4  l = 2 

where 

n =1   

 

 
1 2 n 

a
n 

=  f (x) cos 
−2 

x dx 

 
 n 

2

 

 
 1 2 n 

 
  1  sin 

2 
x   

  

= 
2  

cos 
2
 x dx = 

2 
 

n 

 

0   
 2 0 

1 2  n   
2 

1 
=  

 
sin 

2 
x = 

n 
sin n – sin 0 

2 n 

Though a
n 
= 0, a

0 
may exist. 

1 
2 

 0 

a
0 

=  f (x) dx 
−2 

 
0 

= 
2  

 
0 dx + 

 

2 

1dx = 0 + 
2 

1 
[x]2 = 1 

2 
−2 0 

2 

2 

1 

2 
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2  

2  

1   

– 

 
b

n 
= 

1 
0 

f (x) sin 
−2 

n 
x dx 

2 

Integration 

1 
0 

= sin 
−2 

n 
x dx 

2 

 
NOTES 

 

 
– cos 

n 
x 


 2 

 
  

 
–1  

 
 

 
n 

2

 
 

= 
2 

 
n 


 

= 
n 

cos  
2
 x


   0 

 2 0 

1 
= 

n 
(–1)n  – 1 

 
= 0 if n is even 

2 

= 
n 

if n is odd 

 
1 

+ 
2  

 
  

1 
sin 

n 
x 

 

f(x) = 
2
  

n=1,3,5,... 

= 
1 

+ 
2 

sin 
x 

+ 
1 

sin 
3 

x + 
1 

sin 
5 

x + ...

 

2   2 3 2 5 2  
 

4.11 APPLICATIONS OF INTEGRATION IN 

ECONOMICS 
 

This section will discuss the applications of integration in economics. 

4.11.1 Marginal Revenue and Marginal Cost 

In this section, we take up various examples to illustrate how integration proves helpful 

in different problems relating to Commerce and Economics. 

Example 4.41: Suppose the marginal cost of a product is given by 25 + 30x – 9x2 and 

fixed cost is known to be 55. Find the total cost and average cost functions. 

Solution. We know that 

 

MC = 
d  

(TC) . 
dx 

Thus, TC =  MC dx + k 

 TC =  (25 + 30x − 9x2 ) dx + k 

 TC = 25x + 15x2 – 3x3 + k. 

Since, fixed cost is 55 and TC = FC when x = 0, 

(total cost is the fixed cost or initial cost when number of units produced is zero), 

we find that 55 = k. 

Thus, TC = 25x + 15x2 – 3x3 + 55 

AC by definition is 
TC

 
x 

= 25 + 15x − 3x2 + 
55 

. 
x 

 

2 

n 2 
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dx2 

3 

Integration Example 4.42: If the marginal revenue is given by 15 – 2x – x2, find the total revenue 

and demand function. Find also the maximum revenue. 

Solution. We know that, 

NOTES 
 

MR = 
d  

(TR) 
dx 

 TR =  MR dx + k 

Thus, TR =  (15 − 2x − x2 

 

 
 
) dx + k 

 

= 15x − x2 − 
x
 
3 

 

 

+ k . 

At x = 0, TR = 0, and thus k = 0. 

Hence, TR = 15x − x
2 

− 
x 

. 
3 

If p is the demand function, then 

TR = px (definition) 

TR x2 
 p = 

x 
= 15 − x − 

3 
. 

Again, for maximum revenue 

d  
(TR) 

dx 
= 0  15 – 2x – x2 = 0 

 x = – 5, 3. 

Since, x = – 5 is not possible, we take x = 3. 

 
Now, 

 
 d 2 

d 2 (TR) 
 

 

dx2 

 

 
= – 2 – 2x 

  (TR)  
 x = 3 

= – 2 – 6 = – 8 < 0 

 there is a max. at x = 3. 

i.e., revenue is max. when x = 3. 

Also then, maximum revenue = 15  3 − 9 − 
27

 
3 

 

 

 

= 27. 

Example 4.43: ABC Co. Ltd. has approximated the marginal revenue function for one 

of its products by MR = 20x – 2x2. The marginal cost function is approximated by 

MC = 81 – 16x + x2. 

Determine the profit maximizing output and the total profit at the optimal output. 

Solution. Profit  is maximum if MR = MC 

i.e., if 20x – 2x2 = 81 – 16x + x2 

or, 3x2 – 36x + 81 = 0 

or, x2 – 12x + 27 = 0 

or, (x – 3) (x – 9) = 0 

x = 3, 9. 

3 
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2 
0 

  

0 

For max. profit, we should have, 
d 

2
 

 

dx 

Integration 

 
i.e., d 2R 

 
d 2C 

  

dx2 dx2 NOTES 

 
d 

(MR)   
d  

(MC) 

dx dx 

i.e., 20 – 4x < – 16 + 2x 

or, 6x – 36 > 0 

or, x > 6. 

Thus, we take x = 9 (out of the two values of x) for maximum profit. 

Now, profit  = R – C 
9 d 

9 
 dR dc  

So, at x = 9, profit =  dx 
(R − C)dx =  

dx 
− 

dx 
 dx 

0 0 

9 

=  (MR − MC)dx 
0 

9 

=  (20x − 2x2 − 81 +16x − x2 )dx 
0 

9 

=  (− 3x2 + 36x + 81)dx 
0 

=  − x3 + 18x2 − 81x
9

 

= – 729 + 1458 – 729 = 0. 

Thus, profit maximizing value is 9 and the total profit is zero. 

Note: We have used the definite integral idea above. We could also proceed as: 

 = TR – TC =  MR −  MC 

= (20x − 2x2 )dx − (81 − 16x + x2)dx 

= (− 3x2 + 36x + 81)dx 

 Profit = – x3 + 18x2 – 81x 

and thus profit at the optimal output 9, is 

– 93 + 18.92 – 18.9= – 729 + 1458 – 729 = 0. 

Example 4.44: The marginal cost function of manufacturing x pairs of shoes is 

6 + 10x – 6x2. The total cost of producing a pair of shoes is Rs 12. Find the total average 

cost function. 

Solution. We have, 

MC = 6 + 10x – 6x2 

 TC = (6 + 10x − 6x
2 

)dx + k 

= 6x + 5x2 – 2x3 + k. 
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Integration 

 

 

 

 

NOTES 

For one pair of shoes TC = 12 

i.e., for x = 1, TC = 12 

Thus, 12 = 6 + 5 – 2 + k  k = 3. 

Hence, TC = 6x + 5x2 – 2x3 + 3 
 

Again AC = 
TC 

x 
= 6 + 5x − 2x

2 
+ 

3
 

x 

which gives the average cost function. 

4.11.2 Consumer and Producer Surplus 

Suppose, p is the price that a consumer is willing to pay for a quantity x of a certain 

commodity, then p and x are related to each other through the demand function and we 

express this by saying that p = f (x). The graph of this is generally sloping downwards as 

demand decreases when price is increased (with increase in price, the consumer is 

inclined to buy less). 

Again, suppose now that p is the price that a producer wishes to charge for 

selling a quantity x of a particular commodity. Then, p and x are related to each other 

through what is called the supply curve p = g(x). This is generally sloping upwards as 

when the price increases, the producer is inclined to supply more. 

If the two curves (supply and demand) intersect, we say economic equilibrium 

is attained. The point of intersection is then called the equilibrium point. It is, of 

course, not essential that the two curves intersect (i.e., economic equilibrium is achieved). 

y 

 

 

 

 

 

 

x 

 

If the point of intersection N has coordinates (x0, p0) then p0 (the market price) is 

the price which both the consumer and the producer are ready to pay and accept 

respectively for the quantity x0 of the commodity. The total revenue in that case is p0 × 

x0. 

Sometimes, it happens that a consumer is ready to pay, say, Rs 50 for a certain 

commodity but gets it for, say, Rs 40 in the market and thus earns (saves) Rs 10. This gain 

to the consumer is termed as the consumer surplus. It is shown by the shaded portion in 

Figure 4 and is given by the formula 

x0 

CS =  f (x)dx − ( p0  x0 ) 
0 

 

 
where, of course, we know the integral 

x0 

 f (x)dx  represents the area enclosed 
0 

by the curve p = f (x), the x-axis and the ordinate NK (x = x0) i.e, the area STOKNS in 

the figure. This is, in fact, total revenue that would have been generated because of the 

willingness of some consumers to pay more. 
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 − 
2 

 

 

 
 

1 

Again p0 × x0 is the area of the rectangle TOKN and represents the actual 

revenue achieved. The difference is thus the surplus. 

Similarly, sometimes there are producers who are willing to charge less than the 

market price (to increase sales) which the consumer actually pays. The gain of this to 

the producer is called Producer Surplus (PS). It is shown by the shaded portion in the 

Figure 5 and is given by the formula. 

x0 

PS = ( p0  x0 ) −  g(x)dx 
0 

where, p = g(x) is the supply curve. 

y 

Integration 

 

 

 

 

NOTES 

 

 

 

 

 

 

x 

 

It is the difference of the total revenue actually achieved and the revenue that 

would have been generated by the willingness of some producers to charge less. 

Example 4.45: Given the demand function p = 45 − 
x
 

2 

 

find consumer surplus when 

p0 = 32.5, x0 = 25. 

Solution. We have, 

 

 

 
CS = 

 

 
25 


 

 45 
 

 
 

x  
dx − (32.5)  25 

 
0 

 

=  


45x − 

 

 

x
2 

25 

 
0 

 
 
− 812.5 

= 45  25 − 
25  25 

− 812.5 
4 

= 156.25 

Example 4.46: Given the demand function pd = 4 – x2 and the supply function 
ps = x + 2. Find CS and PS (assuming pure competition). 

Solution. For market equilibrium, ps = pd 

 x + 2 = 4 – x2 

 x = – 2, 1 

Since, –ve value of x is not possible, we have, x = 1. 

Since, for x = 1, p = 3, we have, x0 = 1, p0 = 1. 

Hence, 

 
CS =  (4 − x2 )dx − 3  =  


4x − 

0  

x
3 

1 

 
0 

− 3 = 
2 

. 
3 

 

 
 

 

 

4  

3  
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 
 

 
4  


8

 

= 
  

Integration Also  
1  x2 

 


1 
1

 

PS = 3 −  (x + 2)dx = 3 −  
2
 + 2x

   
= . 2 

 

NOTES 
0  

which give the required values. 

0 

Example 4.47: Under a monopoly, the quantity sold and market price are determine by 

the demand function. If the demand function for a profit maximizing monopolist is 

p = 274 – x2 and MC = 4 + 3x, find CS. 

Solution. We are given that p = 274 – x2. 

 TR = p × x = 274x – x3 

 MR = 
d 

(TR) = 274 – 3x2 
dx 

Now, the monopolist maximizes profit at 

MR = MC. 

i.e., 274 – 3x2 = 4 + 3x 

 3(x2 + x – 90) = 0 

 x = 9, – 10 

Since, x = – 10 is not possible, we have, 

x0 = 9, also then p0 = 193. 

Hence, 

9 

CS =  (274 − x2 )dx − 193  9 = 486. 
0 

Example 4.48: Find the consumer surplus at equilibrium price, if the demand function is 

D = 
25 

− 
p 

4 8 
and supply function is p = 5 + D. 

Solution. We have, p = 5 + D 

= 5 + 
 25 

− 
p  

  

 p = 10 

and thus D = 5. 

So the equilibrium price p = 10, and D = 5. 

5 

Hence, CS =  (50 − 8D)dD − 10  5, 
0 

 

 

 

D = 

 

 

 

 
25 

− 
p 


 

4 8 

 

 

 
p = 50 − 8D


 

 

 50D − 8D2 
5
 

 
 

 
− 50 

 2 
 
0 

= 250 – 150 – 50 = 100 

which is the required value. 
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1 

4.11.3 Economic Lot Size Formula 

In an earlier chapter we discussed inventory control problems assuming that amount of 

inventory remains same throughout the production run. But in actual practice, since 

goods are being sold all through, the amount of inventory goes on decreasing and so the 

cost of keeping it also decreases, We discuss now this type of situation. 

Suppose, a contractor has an order of supplying goods at a uniform rate R per unit 

of time. His one production run takes t units of time where t is supposed to be fixed for 

each production. We assume that production time is negligible and so there is no delay in 

fulfilling the demand as long as a new run is started whenever inventory is zero. The 

zero inventory, in fact, is a signal for the start of next production run. The cost of holding 

inventory is proportional to the amount of inventory and the time for which it is kept. 

Suppose time is measured along x-axis and inventory along y-axis. 

Y 

Integration 

 

 

 

 

NOTES 

 

 
B 

 

Rt 
y 

X 

O d x A 

t 

In the beginning, the inventory is Rt and at the end of a production run it is zero. 

Let B be the point (0, Rt) and A be (t, 0). 

Suppose at any instant x, inventory is y. 

We can safely assume that for small change in time, say, dx, it remains same. 

The cost of holding y units of inventory for dx units of time will be equal to c1 y 

dx, where, c1 is the fixed cost of holding one unit of inventory for one unit of time. 

The cost of holding inventory throughout a production 
 

t t 

=  c1 y dx = c1  ydx (c1 being fixed is constant) 
0 0 

 

Equation of line AB is 
x 

+ 
y 

= 1 
t Rt 

or, y = Rt – xR 

Thus, cost of holding inventory Rt 

t 

= c1  (Rt − xR)dx 
0 

 x
2 t 

= c Rtx − R 
 2 0 

= 
1 

c Rt2 . 

2 
1 

Suppose, now that c2 is the cost of step-up per production run, then total cost 

c = 
1 

c Rt2 + c 

2 
1 2 
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2c2 

c1R  

2c2 R
 

c1 

2c2 

c1R  

c1R  

2c2 

a 

1 

Integration 
Hence, average cost AC = 

1 
c Rt + 

c2 . 
2 t 

For AC to be max. or min. 

NOTES 
 

 

 
or, 

dA 

dt 

1 
c R − 

c2
 

 
  

 

= 0. 

 
= 0 

2  1 t2 

 

or, t = 

 

Since, for this value of t, 

The value gives a min. 

 

 
d 2 A 

 
 

dt 2 

 

= 
2c2  0 .

 

t3 

Hence, t = gives minimum cost. 
 

The quantity produced q, in one production run is Rt. 

Hence, q = Rt 

 

 q = 

for minimum cost. 
 

This quantity produced, i.e., is called optimum run size and the equation. 

 

q = 
 

is called Economic Lot Size Formula. 

The minimal average cost 

= 
1 

c R + c = 
2 

1 2 

 

4.12 SUMMARY 
 

• Integration is the reverse process of differentiation. Differentiation and integration 

cancel each other. 

• Integral of sum/difference of two functions is equal to the sum/difference of 

integral of the two functions. 

• In the method of substitution, we express the given integral in terms of another 

integral in which the independent variable x is changed to another variable t 

through some suitable relation x = (t). 

• If f (x) is a function such that  f (x) d (x) = g(x) then the definite integral 

 

 

 

Self-Instructional 

b 

 f (x)dx is defined by 
a 

b 

 f (x)dx = g(x)b = g(b)– g(a) where, a and b are 
a 

2c2 

c1R  

2c2 R
 

c1 

2c2 R
 

c1 

 

Check Your Progress 

11. Write the sign 

conventions 

followed in finding 

the area under the 

curve. 

12. How can you find 

the area of a region 

of double 

integration? 

13. Define integrals of 

functions of three 

variables. 

14. What is the Fourier 

series in the 

expansion of f(x) in 

(c, c + 2)? 
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 
  

two real numbers, and are called respectively, the lower and the upper limits of 

the integral. 

• Partial fractions are used to find the integrals of rational functions while substitution 

is used to find the integrals of irrational functions. 

• If the integrand consists of even powers of x only, then the substitution 

x2 = t is helpful while resolving into partial fractions. 

• The area under the curve y = f(x) between the limits a, b can be written as a 

b 

definite integral,  f (x)dx = F (b)– F (a) . 
a 

Integration 

 

 

 

 

NOTES 

n 

• If the limit of the sum S =  f (xr , yr ) Ar exists, as n →  and as each sub 
r =1 

region Ar→0, and the limit is independent of the manner in which the region R 

is subdivided and the points (xr, yr) chosen in the region Ar, then that limit is called 

the double integral of f(x, y) over the region R. 

• The evaluation of certain double integrals becomes easier by effecting a change 

in the variables. Double integrals are evaluated as repeated integrals. 
 

b d f 

•   g(x, y, z) dxdydz denotes the result of integrating g(x, y, z) with respect to 
a c e 

x (treating y and z as parameters) from e to f, integrating the result with respect 

to y (treating z as a parameter) between c and d and integrating that result to z 

between a and b. 

• If the function f(x) is defined in the interval (c, c + 2l) then this function can be 

expanded as an infinite trigonometric series of the form 

a0 +
 

2 

 n 
 an cos 

l
 n x + bn sin 

l
 x 

 
if the Drichlet’s conditions are satisfied. 

n=1  

• Drichlet’s conditions are- f(x) is single valued, periodic with period 2l and finite in 

(c, c + 2l); f(x) is continuous or piecewise continuous with finite number of finite 

discontinuities in (c, c + 2l); f(x) can have finite number of maxima and minima in 

the given range. 
 

4.13 KEY TERMS 
 

• Integrand: If f(x) is the differential with respect to x of a function g(x) then f(x) 

is called the integrand 

• Indefinite integral: When we are not giving a definite value to the integral, then 

the integral is referred to as indefinite integral 

• Definite integral: When we give the lower and upper limits to the integral which 

are both real numbers, then it is referred to as definite integral 

f (x) 

• Rational function: A function of the type 
g(x) 

, where f (x) and g (x) are 

polynomials in x, is called a rational function 
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a 

a 

x 

Integration 

 

 

 

 

NOTES 

 
 

4.14 ANSWERS TO ‘CHECK YOUR PROGRESS’ 
 

 

 

1. If
 d 

g(x) = f (x) 
dx 

Then, f (x) dx = g(x) + c 
 

Where c is some constant, called the constant of integration. 
 

2. Let 
d
 

dx 

Then, 

g(x) = f (x) 

 
dx = g(x) [By definition] 

 

  
d 

f (x) dx =   
d 

dx  dx 
[g(x)] = f (x) 

Which proves the result. 

3. Suppose f (x) is a function such that 

f (x) dx = g(x) 

 

The definite integral dx is defined by 
 

dx = g (x) b = g(b) – g(a) 
 

where, a and b are two real numbers, and are called respectively, the lower and 

the upper limits of the integral. 

4. A definite integral equals zero when the limits of integration are identical, 

a   
f (x) dx 

a 

= [ f (x)] = f (a) − f (a) = 0 
a 

The area on a single point is zero because the width dx of the rectangle, is zero. 

5. The directed length of the interval of integration is given by, 
b 

a  
dx   =  b – a 

6. If one of the limits is the variable itself, the definite integral becomes equal to the 

indefinite integral of the function, 

a   
f (x)dx 

 

= f(x)– f(a) = f(x)+ C 

Where C = –f(a) is a constant. 

7. Integral of the product of two functions 

= First function × Integral of the second – Integral of (Differential of first × 

Integral of the second function). 

8. One thumb rule may be followed by remembering a keyword ‘ILATE’. I-means 

inverse function, L-means logarethmic, A-means algebraic, T-means trigonometric 

and E-means exponential. 

f (x) 
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b 

b 

b    d     f 

 

 

9. A function of the type 

rational function. 

f (x) 
 

 

g(x) 

 

, where f (x) and g(x) are polynomials in x, is called a 
Integration 

10. If the integrand consists of even powers of x only, then the substitution x2 = t is 

helpful while resolving into partial fractions. 

11. If the function y = f(x) is positive in the interval (a, b) and the curve is above the 

x-axis then a   
f (x)dx is positive. 

If y = f(x) is negative in the interval (a, b) and the curve is below x-axis then, 

a   
f (x)dx is negative. 

If y = f(x) changes sign in the interval and the curve crosses the x-axis, the area 

is the algebraic sum of a positive area and a negative area. 

12. The integral  dx dy gives the area of the region R. This is evident from the fact 
R 

NOTES 

 
 

 

that  dx dy  or  dA is the limit of the sum Ar  
as n →  and this sum is the 

R R 1 

sum of the area into which R is subdivided. 

13.  a  c   e   
g(x, y, z)dxdydx denotes the result of integrating g(x, y, z) with respect to 

x (treating y and z as parameters) from e to f, integrating the result with respect 

to y (treating z as a parameter) between c and d and integrating that result to z 

between a and b. Note that dx dy dz by its left to right order indicates the order 

of integration. The corresponding limits are taken in the reverse order, i.e., e, f for 

x; c, d for y and a, b for z. 

14. Fourier series expansion of f(x) in (c, c + 2) is 

f(x) = 

1 
c +2    

a0 +
 

2 (a 
n=1 

n cos nx + bn sin nx) , 

where a
n 

= 

1 
c + 2    

 f (x) cos nxdx for n = 0, 1, 2, 3,... and 
c 

b
n 

=  f ( x) sin nx dx for n = 1, 2, 3,... 
c 

 
 

4.15 QUESTIONS AND EXERCISES 

Short-Answers Questions 

1. What is the relation between integration and differentiation? 

2. Define constant of integration. 

3. Define definite integrals. 

4. What are indefinite integrals? 

n 

 

 
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x – 
 

 

 

/2   

(i) sin x dx 
 

 

(x    1)2 

tan  

tan 

2  

Integration 

 

 

 

 

NOTES 

5. What is the method of substitution? 

6. How is the integration of rational and irrational functions done? 

7. Write some applications of integrals. 

8. Define double integral. 

9. How do you find area using triple integral? 

10. What are Drichlet’s conditions? 

Long-Answers Questions 

1. Integrate the following functions with respect to x: 

1 

(i) (ii) 
 

2. Evaluate the following integrals: 

 
0 

 

(iii) 

 
(iv) dx 

2 

 

(v) (v) 

 
3. Evaluate 

dx (vi) 

 
dx 

 

1  

4. Evaluate using Integration (i) 
1
 

x2 

x 1  

x 
(ii) 

(iii) sec x cosec x 
log tan x 

1 

5. Integrate, (i) 
x2 1 

(ii) (iii) 

 

6. Show that 
x2  2x 

x2 

3 
dx = 

5 
 

1 

+ sin h−1 x 
 

7. Prove the following: 
 2a a a 

(i) 0      
f (x)dx  =  0   

f (x)dx + 0
 f (2a − x)dx 

 

 
 a a 

(iii) 0   
f (a + x)dx  =  0

 
f (−x)dx 

8. Find the area under the curve: 

(i) y = x2 + 4x + 5, –2 < x < 1 

x2 

+
 

 

(ii) y = 
2 

1 , 0 < x < 4 

(iii) y = 9 – x2, 1 < x < 3 

(iv) y = a2 – x2, 0 < x < 1 

(ii) 

/4   

sin2 x dx 

 

(ii) 
 
f (x)dx 

 

 
q x)dx 

 

3 
1
 
dx 
 

 

 

 
 

 
 

 

x2 

 

 
 

 

x2 x2 
 

x x 

x3 

x8 
  a2 x2 )3   

x2 + 1 
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 dxdydz  

 

a    a 

a a − y 2 2 

+ = 

    

9. Evaluate the following by changing to polar coordinates. Integration 

(i)   x2dxdy 
2 2 3/ 2 

(ii) 
a

 

0     y (x + y ) 0  0 

 

(iii)  
     dxdy 

 
 

0     0 (x2 + y2 + a2 )2 

 

(iv)  
2 2 x− x2 

0    0 

x dx dy 

x2 + y2 
NOTES 

(v) (v) 0  0 

2    2 

(x + y )dy dx 

10. Evaluate (x + y)
2 
dx dy over the area bounded by the ellipse 

x2 y2 

9 4 
1 .

 

11. Find, by double integration, the area between the parabola y2 = 4ax and the line y 
= x. 

12. Prove that    (x
2  

+ y
2 
)dx dy , evaluated over the region R formed by the lines 

1 

y = 0, x = 1, y = x is 
3 

. 

13. Evaluate  for all positive values of x, y, z for which the inte- 

gral is real. 

14. Find the volume of the sphere x2 + y2 + z2 = a2 by triple integration. 

 
15. Given is f(x) = 

 

= 
π 

4 

−π 
in – < x < 0 

 

 
in 0 < x <  and f(x + 2) = f(x) for all x. 

Expand in Fourier series. 
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Linear Programming 

 

 

 

 

NOTES 

 
 

5.0 INTRODUCTION 

In this unit, you will learn about the use of linear programming in decision-making. For a 

manufacturing process, a production manager has to take decisions as to what quantities 

and which process or processes are to be used so that the cost is minimum and profit is 

maximum. Currently, this method is used in solving a wide range of practical business 

problems. The word ‘linear’ means that the relationships are represented by straight 

lines. The word ‘programming’ means following a method for taking decisions 

systematically. 

You will understand the extensive use of Linear Programming (LP) in solving 

resource allocation problems, production planning and scheduling, transportation, sales 

and advertising, financial planning, portfolio analysis, corporate planning, etc. Linear 

programming has been successfully applied in agricultural and industrial applications. 

You will learn a few basic terms like linearity, process and its level, criterion 

function, constraints, feasible solutions, optimum solution, etc. The term linearity implies 

straight line or proportional relationships among the relevant variables. Process means 

the combination of one or more inputs to produce a particular output. Criterion function 

is an objective function which is to be either maximized or minimized. Constraints are 

limitations under which one has to plan and decide. There are restrictions imposed upon 
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Linear Programming 

 

 

 

 

NOTES 

decision variables. Feasible solutions are all those possible solutions considering given 

constraints. An optimum solution is considered the best among feasible solutions. 

You will also learn to formulate linear programming problems and put these in a 

matrix form. The objective function, the set of constraints and the non-negative constraint 

together form a linear programming problem. In this unit, you will also learn the methods 

of solving a Linear Programming Problem (LPP) with two decision variables using the 

graphical method. All linear programming problems may not have unique solutions. You 

may find some linear programming problems that have an infinite number of optimal 

solutions, unbounded solutions or even no solution. 

Finally, you will learn about the canonical or standard form of LPP. In the standard 

form, irrespective of the objective function, namely maximize or minimize, all the 

constraints are expressed as equations. Moreover, the Right Hand Side (RHS) of each 

constraint and all variables are non-negative. The simplex method and M method are the 

methods of solution by iterative procedure in a finite number of steps using matrix. 

 
 

5.1 UNIT OBJECTIVES 

After going through this unit, you will be able to: 

• Understand the significance of linear programming 

• Know the terms associated with a linear programming problem 

• Learn how to formulate a linear programming problem 

• Form a matrix of a linear programming problem 

• Explain the applications and limitations of linear programming problems 

• Solve a linear programming problem with two variables using the graphical method 

• Describe linear programming problems in canonical form 

• Solve linear programming problems using the simplex method 

• Solve linear programming problems using the M method 
 

5.2 INTRODUCTION TO LINEAR PROGRAMMING 

PROBLEM 
 

Decision-making has always been very important in the business and industrial world, 

particularly with regard to the problems concerning production of commodities. Which 

commodity/commodities to produce, in what quantities and by which process or processes, 

are the main questions before a production manager. English economist Alfred Marshall 

pointed out that the businessman always studies his production function and his input 

prices and substitutes one input for another till his costs become the minimum possible. 

All this sort of substitution, in the opinion of Marshall, is being done by businessman’s 

trained instinct rather than with formal calculations. But now there does exist a method 

of formal calculations often termed as Linear Programming. This method was first 

formulated by a Russian mathematician L.V. Kantorovich, but it was developed later in 

1947 by George B. Dantzig ‘for the purpose of scheduling the complicated procurement 

activities of the United States Air Force’. Today, this method is being used in solving a 
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wide range of practical business problems. The advent of electronic computers has 

further increased its applications to solve many other problems in industry. It is being 

considered as one of the most versatile management tools. 

5.2.1 Meaning of Linear Programming 

Linear Programming (LP) is a major innovation since World War II in the field of business 

decision-making, particularly under conditions of certainty. The word ‘Linear’ means 

that the relationships are represented by straight lines, i.e., the relationships are of the 

form y = a + bx and the word ‘Programming’ means taking decisions systematically. 

Thus, LP is a decision-making technique under given constraints on the assumption that 

the relationships amongst the variables representing different phenomena happen to be 

linear. In fact, Dantzig originally called it ‘programming of interdependent activities in a 

linear structure’ but later shortened it to ‘Linear Programming’. LP is generally used in 

solving maximization (sales or profit maximization) or minimization (cost minimization) 

problems subject to certain assumptions. Putting in a formal way, ‘Linear Programming 

is the maximization (or minimization) of a linear function of variables subject to a constraint 

of linear inequalities.’ Hence, LP is a mathematical technique designed to assist the 

organization in optimally allocating its available resources under conditions of certainty 

in problems of scheduling, product-mix, and so on. 

5.2.2 Fields Where Linear Programming can be 

Used 

The problem for which LP provides a solution may be stated to maximize or minimize for 

some dependent variable which is a function of several independent variables when the 

independent variables are subject to various restrictions. The dependent variable is usually 

some economic objectives, such as profits, production, costs, work weeks, tonnage to be 

shipped, etc. More profits are generally preferred to less profits and lower costs are 

preferred to higher costs. Hence, it is appropriate to represent either maximization or 

minimization of the dependent variable as one of the firm’s objective. LP is usually 

concerned with such objectives under given constraints with linearity assumptions. In 

fact, it is powerful to take in its stride a wide range of business applications. The applications 

of LP are numerous and are increasing every day. LP is extensively used in solving 

resource allocation problems. Production planning and scheduling, transportation, sales 

and advertising, financial planning, portfolio analysis, corporate planning, etc., are some 

of its most fertile application areas. More specifically, LP has been successfully applied 

in the following fields: 

(i) Agricultural Applications: LP can be applied in farm management problems as 

it relates to the allocation of resources, such as acreage, labour, water supply or 

working capital in such a way that is maximizes net revenue. 

(ii) Contract Awards: Evaluation of tenders by recourse to LP guarantees that the 

awards are made in the cheapest way. 

(iii) Industrial Applications: Applications of LP in business and industry are of most 

diverse kind. Transportation problems concerning cost minimization can be solved 

by this technique. The technique can also be adopted in solving the problems of 

production (product-mix) and inventory control. 

Thus, LP is the most widely used technique of decision-making in business and industry 

in modern times 

in various fields 

as stated above. 
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NOTES 



Self-Instructional 

Material 269 
 

Linear Programming 
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5.3 COMPONENTS OF LINEAR PROGRAMMING 

PROBLEM 
 

 

The following are the components of linear programming problem: 

5.3.1 Basic Concepts and Notations 

There are certain basic concepts and notations to be first understood for easy adoption 

of the LP technique. A brief mention of such concepts is as follows: 

(i) Linearity: The term linearity implies straight line or proportional relationships 

among the relevant variables. Linearity in economic theory is known as constant 

returns which means that if the amount of input doubles, the corresponding output 

and profit are also doubled. Linearity assumption, thus, implies that if two machines 

and two workers can produce twice as much as one machine and one worker; 

four machines and four workers twice as much as two machines and two workers, 

and so on. 

(ii) Process and Its Level: Process means the combination of particular inputs to 

produce a particular output. In a process, factors of production are used in fixed 

ratios, of course, depending upon technology and as such no substitution is possible 

with a process. There may be many processes open to a firm for producing a 

commodity and one process can be substituted for another. There is, thus, no 

interference of one process with another when two or more processes are used 

simultaneously. If a product can be produced in two different ways, then there 

are two different processes (or activities or decision variables) for the purpose of 

a linear program. 

(iii) Criterion Function: Criterion function is also known as objective function which 

states the determinants of the quantity either to be maximized or to be minimized. 

For example, revenue or profit is such a function when it is to be maximized or 

cost is such a function when the problem is to minimize it. An objective function 

should include all the possible activities with the revenue (profit) or cost coefficients 

per unit of production or acquisition. The goal may be either to maximize this 

function or to minimize this function. In symbolic form, let ZX denote the value of 

the objective function at the X level of the activities included in it. This is the total 

sum of individual activities produced at a specified level. The activities are denoted 

as j =1, 2,..., n. The revenue or cost coefficient of the jth activity is represented 

by C
j
. Thus, 2X

1
, implies that X units of activity j = 1 yields a profit (or loss) of 

C
1 

= 2. 

(iv) Constraints or Inequalities: These are the limitations under which one has to 

plan and decide, i.e., restrictions imposed upon decision variables. For example, a 

certain machine requires one worker to be operated upon; another machine requires 

at least four workers (i.e., > 4); there are at most 20 machine hours (i.e., < 20) 

available; the weight of the product should be say 10 lbs, and so on, are all examples 

of constraints or why are known as inequalities. Inequalities like X > C (reads 

X is greater than C or X < C (reads X is less than C) are termed as strict inequalities. 

The constraints may be in form of weak inequalities like X  C (reads X is less 

than or equal to C) or X  C (reads C is greater than or equal to C). Constraints 

may be in the form of strict equalities like X = C (reads X is equal to C). 
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Let b
i 
denote the quantity b of resource i available for use in various production 

processes. The coefficient attached to resource i is the quantity of resource i 
required for the production of one unit of product j. 

(v) Feasible Solutions: Feasible solutions are all those possible solutions which can 

be worked upon under given constraints. The region comprising of all feasible 

solutions is referred as Feasible Region. 

(vi) Optimum Solution: Optimum solution is the best of the feasible solutions. 

5.3.2 General Form of the Linear Programming Model 

Linear Programming problem mathematically can be stated as under: 

Choose the quantities, 

Linear Programming 

 

 

 

 

NOTES 

X
j 
> 0 (j = 1,..., n) ...(5.1) 

This is also known as the non-negativity condition and in simple terms means that 

no X can be negative. 

To maximize, 
 

 

 

 
Subject to the constraints, 

 

 

Z = C j X j 
j=1 

 

...(5.2) 

 

 

(i = 1,...,m) ...(5.3) 

 
The above is the usual structure of a linear programming model in the simplest possible 

form. This model can be interpreted as a profit maximization situation where n production 

activities are pursued at level X
j 
which have to be decided upon, subject to a limited 

amount of m resources being available. Each unit of the jth activity yields a return C and 
uses an amount a

ij 
of the ith resource. Z denotes the optimal value of the objective 

function for a given system. 

Assumptions or the Conditions to be Fulfilled Underlying the LP Model 

LP model is based on the assumptions of proportionality, additivity, certainty, continuity 

and finite choices. 

Proportionality is assumed in the objective function and the constraint inequalities. 

In economic terminology this means that there are constant returns to scale, i.e., if one 

unit of a product contributes ̀  5 toward profit, then 2 units will contribute ̀  10, 4 units 

` 20, and so on. 

Certainty assumption means the prior knowledge of all the coefficients in the 

objective function, the coefficients of the constraints and the resource values. LP model 

operates only under conditions of certainty. 

Additivity assumption means that the total of all the activities is given by the sum 

total of each activity conducted separately. For example, the total profit in the objective 

function is equal to the sum of the profit contributed by each of the products separately. 

Continuity assumption means that the decision variables are contiunous. 

Accordingly the combinations of output with fractional values, in case of product-mix 

problems, are possible and obtained frequently. 

n 

 

aij X j 
j 1 

bi 

Check Your Progress 

1. What is linear 

programming? 

2. What is meant by 

criterion function in 

linear programming? 

3. Mention two areas 

where linear 

programming finds 

application. 

4. What are 

constraints in linear 

programming? 

5. What is a solution 

in linear 

programming 

problem? 

6. What is a ‘basic 

solution’ of an 

LPP? 

7. What is basic and 

non-basic variables? 

8. What do you 

understand by basic 

feasible solution? 
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Finite choices assumption implies that finite number of choices are available to a 

decision-maker and the decision variables do not assume negative values. 
 

5.4 FORMULATION OF LINEAR PROGRAMMING 

PROBLEM 
 

 

This section will discuss the process of formulation of linear programming problem: 

5.4.1 Graphic Solution 

The procedure for mathematical formulation of an LPP consists of the following steps: 

Step 1: The decision variables of the problem are noted. 

Step 2: The objective function to be optimized (maximized or minimized) as a linear 

function of the decision variables is formulated. 

Step 3: The other conditions of the problem, such as resource limitation, market constraints, 

interrelations between variables, etc., are formulated as linear inequations or equations 

in terms of the decision variables. 

Step 4: The non-negativity constraint from the considerations is added so that the negative 

values of the decision variables do not have any valid physical interpretation. 

The objective function, the set of constraints and the non-negative constraint 

together form a linear programming problem. 

5.4.2 General Formulation of Linear Programming Problem 

The general formulation of the LPP can be stated as follows: 

In order to find the values of n decision variables X
1
, X

2
, ..., X

n 
to maximize or 

minimize the objective function. 

Z = C1 X1 + C2 X 2 +… + Cn Xn 

a11X1 + a12 X 2 + + a1n Xn (, =, )b1  

... (5.4) 

a X + a X + + a   X (, =, )b 

 

21     1 22      2 2n      n 2  
:  
a X + a X + + a X (, =, )b   


 

i1     1 

: 

i 2     2 in      n i      
 
 

... (5.5) 

am1 X1  + am 2 X 2  + + amn X n ( = )bm  

Here, the constraints can be inequality  or  or even in the form an equation (=) 

and finally satisfy the non-negative restrictions: 

X1  0, X 2  0… Xn  0 

5.4.3 Matrix Form of Linear Programming Problem 

The LPP can be expressed in the matrix form as follows: 

Maximize or minimize Z = CX → Objective function 

Subject to AX ( = ) B → Constant equation 

B > 0, X  0 → Non-negativity restrictions 

... (5.6) 
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Where, X = ( X1, X 2 , , Xn ) 

C = (C1, C2 , ,Cn ) 

 
b1 
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B = b2 A 

bm 

 

Example 5.1: A manufacturer produces two types of models M
1 
and M

2
. Each model 

of the type M
1 
requires 4 hours of grinding and 2 hours of polishing; whereas each model 

of the type M
2 
requires 2 hours of grinding and 5 hours of polishing. The manufacturers 

have 2 grinders and 3 polishers. Each grinder works 40 hours a week and each polisher 

works for 60 hours a week. The profit on M
1 
model is ̀  3.00 and on model M

2 
is ̀  4.00. 

Whatever is produced in a week is sold in the market. How should the manufacturer 

allocate his production capacity to the two types of models, so that he may make the 

maximum profit in a week? 

Solution: 

Decision variables: Let X
1 
and X

2 
be the number of units of M

1 
and M

2
. 

Objective function: Since the profit on both the models are given, we have to 

maximize the profit, viz., 

Max Z = 3X
1 

+ 4X
2
 

Constraints: There are two constraints: one for grinding and the other for polishing. 

The number of hours available on each grinder for one week is 40 hours. There 

are 2 grinders. Hence, the manufacturer does not have more than 2 × 40 = 80 hours for 

grinding. M
1 
requires 4 hours of grinding and M

2 
requires 2 hours of grinding. 

The grinding constraint is given by, 

4 X1 + 2 X 2  80 

Since there are 3 polishers, the available time for polishing in a week is given by 

3 × 60 = 180. M
1 
requires 2 hours of polishing and M

2 
requires 5 hours of polishing. 

Hence, we have 2X
1 
+ 5X

2 
 180 

Thus, we have, 

Max Z = 3X
1 
+ 4X

2
 

Subject to 4 X1 + 2 X 2  80 

2 X1 + 5 X 2  180 

X1 , X 2  0 

Example 5.2: A company manufactures two products A and B. These products are 

processed in the same machine. It takes 10 minutes to process one unit of product A and 

2 minutes for each unit of product B and the machine operates for a maximum of 35 

hours in a week. Product A requires 1 kg and B 0.5 kg of raw material per unit, the 

supply of which is 600 kg per week. The market constraint on product B is known to be 

800 units every week. Product A costs ̀  5 per unit and is sold at ̀  10. Product B costs 

` 6 per unit and can be sold in the market at a unit price of ̀  8. Determine the number 

of units of A and B that should be manufactured per week to maximize the profit. 

a
11

a
12 

a
1n 

a
21

a
22 

a
2n 

 

a
m1

a
m2 

a
mn 
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Solution: 

Decision variables: Let X
1 
and X

2 
be the number of products of A and B. 

Objective function: Cost of product A per unit is ̀  5 and is sold at ̀  10 per unit. 

 Profit on one unit of product A = 10 – 5 = 5 

 X
1 
units of product A, contributes a profit of ̀  5X

1 
from one unit of product. 

Similarly, profit on one unit of B = 8 – 6 = 2 

:. X
2 
units of product B, contribute a profit of ̀  2X

2
. 

 The objective function is given by, 

Max Z = 5 X1 + 2 X 2 

Constraints: Time requirement constraint is given by, 

10X1 + 2 X 2  (35 60) 

10X1 + 2 X 2  2100 

Raw material constraint is given by, 

X1 + 0.5X 2  600 

Market demand on product B is 800 units every week. 

 X  800 

The complete LPP is, 

Max Z = 5 X1 + 2 X 2 

Subject to, 10 X1 + 2 X 2  2100 

X1 + 0.5 X 2  600 

X 2  800 

X1 , X 2  0 

Example 5.3: A person requires 10, 12 and 12 units of chemicals A, B and C, respectively 

for his garden. A liquid product contains 5, 2 and 1 units of A, B and C respectively per 

jar. A dry product contains 1, 2 and 4 units of A, B, C per carton. If the liquid product 

sells for ` 3 per jar and the dry product sells for ` 2 per carton, what should be the 

number of jar that needs to be purchased, in order to bring down the cost and meet the 

requirements? 

Solution: 

Decision variables: Let X
1 
and X

2 
be the number of units of liquid and dry 

products. 

Objective function: Since the cost for the products are given, we have to minimize 

the cost. 

Min Z = 3X
1 
+ 2X

2
 

Constraints: As there are three chemicals and their requirements are given, we 

have three constraints for these three chemicals. 
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5 X1 + X 2  10 

2 X1 + 2 X 2  12 

X1 + 4 X 2  12 

Hence, the complete LPP is, 

Min Z = 3X
1 
+ 2X

2
 

Subject to, 
 

5X1 + X 2  10 

2 X1 + 2 X 2  12 

X1 + 4 X 2  12 

X1 , X 2   0 

Example 5.4: A paper mill produces two grades of paper, X and Y. Because of raw 

material restrictions, it cannot produce more than 400 tonnes of grade X and 300 tonnes 

of grade Y in a week. There are 160 production hours in a week. It requires 0.2 and 0.4 

hours to produce a tonne of products X and Y respectively with corresponding profits of 

` 200 and ` 500 per tonne. Formulate this as a LPP to maximize profit and find the 

optimum product mix. 

Solution: 

Decision variables: Let X
1 
and X

2 
be the number of units of the two grades of 

paper, X and Y. 

Objective function: Since the profit for the two grades of paper X and Y are 

given, the objective function is to maximize the profit. 

Max Z = 200X
1 
+ 500X

2
 

Constraints: There are two constraints one with reference to raw material, and 

the other with reference to production hours. 

Max Z = 200X
1 
+ 500X

2
 

Subject to, 

Linear Programming 
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X1  400 

X 2  300 

0.2 X1 + 0.4 X 2  160 

Non-negative restriction X
1
, X

2 
 0 

Example 5.5: A company manufactures two products A and B. Each unit of B takes 

twice as long to produce as one unit of A and if the company were to produce only A it 

would have time to produce 2000 units per day. The availability of the raw material is 

enough to produce 1500 units per day of both A and B together. Product B requiring a 

special ingredient, only 600 units of it can be made per day. If A fetches a profit of 

` 2 per unit and B a profit of ̀  4 per unit, find the optimum product mix by graphical 

method. 

Solution: Let X
1 
and X

2 
be the number of units of the products A and B, respectively. 



Self-Instructional 

Material 274 
 

2 

2 

Linear Programming 

 

 

 

 

NOTES 

The profit after selling these two products is given by the objective function, 

Max Z = 2X
1 
+ 4X

2
 

Since the company can produce at the most 2000 units of the product in a day and 

product B requires twice as much time as that of product A, production restriction is 

given by, 

X1 + 2 X 2  2000 

Since the raw material is sufficient to produce 1500 units per day of both A and B, 

we have X1 + X 2  1500. 

There are special ingredients for the product B we have X  600. 

Also, since the company cannot produce negative quantities X
1
 

X  0. 

 
 0 and 

Hence, the problem can be finally put in the form: 

Find X
1 
and X

2 
such that the profits, Z = 2X

1 
+ 4X

2 
is maximum. 

Subject to, X1 + 2 X 2  2000 

X1 + X 2  1500 

X 2  600 

X1 , X 2  0 
 

Example 5.6: A firm manufacturers three products A, B and C. The profits are ` 3, 

` 2 and ̀  4 respectively. The firm has two machines and the following is the required 

processing time in minutes for each machine on each product. 
 

  
A 

Product 

B 

 
C 

Machines C 4 3 5 

D 3 2 4 

 

Machine C and D have 2000 and 2500 machine minutes respectively. The firm 

must manufacture 100 units of A, 200 units of B and 50 units of C, but not more than 150 

units of A. Set up an LP problem to maximize the profit. 

Solution: Let X
1
, X

2
, X

3 
be the number of units of the product A, B, C respectively. 

Since the profits are ̀  3, ̀  2 and ̀  4 respectively, the total profit gained by the 

firm after selling these three products is given by, 

Z = 3X1 + 2 X 2 + 4 X 3 

The total number of minutes required in producing these three products at machine 

C is given by 4X
1 
+ 3X

2 
+ 5X

3 
and at machine D is given by, 

3X
1 
+ 2X

2 
+ 4X

3
. 

The restrictions on the machine C and D are given by 2000 minutes and 2500 

minutes. 

4 X1 + 3X 2 + 5 X 3  2000 

3X1 + 2 X 2 + 4 X 3  2500 
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1 2 3 

Also, since the firm manufactures 100 units of A, 200 units of B and 50 units of C, 

but not more than 150 units of A, the further restriction becomes, 

100  X1  150 

200  X 2  0 

50  X 3  0 

Hence, the allocation problem of the firm can be finally put in the following form: 

Find the value of X
1
, X

2
, X

3 
so as to maximize, 

Z = 3X
1 
+ 2X

2 
+ 4X

3
 

Subject to the constraints, 

4 X1 + 3X 2 + 5 X 3  2000 

3X1 + 2 X 2 + 4 X 3  2500 

100  X1  150, 200  X 2  0,50  X 3  0 

Example 5.7: A peasant has a 100 acres farm. He can sell all potatoes, cabbage or 

brinjals and can increase the cost to get Re 1.00 per kg for potatoes, Re 0.75 a head for 

cabbage and ̀  2.00 per kg for brinjals. The average yield per acre is 2000 kg of potatoes, 

3000 heads of cabbage and 1000 kg of brinjals. Fertilizers can be bought at Re 0.50 per 

kg and the amount needed per acre is 100 kg each for potatoes and cabbage and 50 kg 

for brinjals. Manpower required for sowing, cultivating and harvesting per acre is 5 

man-days for potatoes and brinjals and 6 man-days for cabbage. A total of 400 man- 

days of labour is available at ` 20 per man-day. Solve this example as a linear 

programming model to increase the peasant’s profit. 

Solution: Let X
1
, X

2
, X

3 
be the area of his farm to grow potatoes, cabbage and brinjals 

respectively. The peasant produces 2000X
1 
kg of potatoes, 3000X

2 
heads of cabbage 

and 1000X
3 
kg of brinjals. 

 The total sales of the peasant will be, 

= ̀  (2000X
1 
+ 0.75 × 3000X

2 
+ 2 × 1000X

3
) 

 Fertilizer expenditure will be, 

= ` 20 (5X
1 

+ 6X
2 
+ 5X

3
) 

:. Peasant’s profit will be, 

Z = Sale (in ̀ ) – Total expenditure (in ̀ ) 

= (2000X
1 
+ 0.75 × 3000X

2 
+ 2 × 1000X

3
) – 0.5 × [100(X

1 
+ X

2
) + 50X

2
] 

–20 × (5X
1 

+ 6X
2 
+ 5X

3
) 

Z = 1850X
1 
+ 2080X

2 
+ 1875X

3
 

Since the total area of the farm is restricted to 100 acres, 

X + X + X  100 

Also, the total man-days manpower is restricted to 400 man-days. 

5 X1 + 6 X 2 + 5 X 3  400 
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Hence, the peasant’s allocation problem can be finally put in the following form: 

Find the value of X
1
, X

2 
and X

3 
so as to maximize, 

Z = 1850X
1 
+ 2080X

2 
+ 1875X

3
 

Subject to, 
 

X1 + X 2 + X 3  100 

5X1 + 6 X 2 + 5X 3  400 

X1 , X 2 , X 3  0 

Example 5.8: ABC company produces two products: juicers and washing machines. 

Production happens in two different departments, I and II. Juicers are made in department 

I and washing machines in department II. These two items are sold weekly. The weekly 

production should not cross 25 juicers and 35 washing machines. The organization always 

employs a total of 60 employees in two departments. A juicer requires two man-weeks 

labour, while a washing machine needs one man-week labour. A juicer makes a profit of 

` 60 and a washing machine contributes a profit of ̀  40. How many units of juicers and 

washing machines should the organization make to achieve the maximum profit? Formulate 

this as an LPP. 

Solution: Let X1 and X2 be the number of units of juicers and washing machines to be 

produced. 

Each juicer and washing machine contributes a profit of ` 60 and ̀  40. Hence, 

the objective function is to maximize Z = 60X
1 
+ 40X

2
. 

There are two constraints which are imposed: weekly production and labour. 

Since the weekly production cannot exceed 25 juicers and 35 washing machines, 

therefore 

X1  25 

X 2  35 

A juicer needs two man-weeks of hard works and a washing machine needs 

one man-week of hard work and the total number of workers is 60. 

2X + X  60 

Non-negativity restrictions: Since the number of juicers and washing machines 

produced cannot be negative, we have X
1
  0 and X  0. 

Hence, the production of juicers and washing machines problem can be finally 

put in the form of a LP model as given below: 

Find the value of X
1 
and X

2 
so as to maximize, 

Z = 60X
1 
+ 40X

2
 

Subject to, 

X1  25 

X 2  35 

2 X1 + X 2  60 

and, X1, X 2  0 

2 
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5.5 APPLICATIONS AND LIMITATIONS OF LINEAR 

PROGRAMMING PROBLEM 
 

 

The applications of linear programming problems are based on linear programming matrix 

coefficients and data transmission prior to solving the simplex algorithm. The problem 

can be formulated from the problem statement using linear programming techniques. 

The following are the objectives of linear programming: 

• Identify the objective of the linear programming problem, i.e., which quantity is to 

be optimized. For example, maximize the profit. 

• Identify the decision variables and constraints used in linear programming, for 

example, production quantities and production limitations are taken as decision 

variables and constraints. 

• Identify the objective functions and constraints in terms of decision variables 

using information from the problem statement to determine the proper coefficients. 

• Add implicit constraints, such as non-negative restrictions. 

• Arrange the system of equations in a consistent form and place all the variables 

on the left side of the equations. 

Applications of Linear Programming 

Linear programming problems are associated with the efficient use of allocation of 

limited resources to meet desired objectives. A solution required to solve the linear 

programming problem is termed as optimal solution. The linear programming problems 

contain a very special subclass and depend on mathematical model or description. It is 

evaluated using relationships and are termed as straight-line or linear. The following are 

the applications of linear programming: 

• Transportation problem 

• Diet problem 

• Matrix games 

• Portfolio optimization 

• Crew scheduling 

Linear programming problem may be solved using a simplified version of the simplex 

technique called transportation method. Because of its major application in solving 

problems involving several product sources and several destinations of products, this 

type of problem is frequently called the transportation problem. It gets its name from its 

application to problems involving transporting products from several sources to several 

destinations. The formation is used to represent more general assignment and scheduling 

problems as well as transportation and distribution problems. The two common objectives 

of such problems are as follows: 

• To minimize the cost of shipping m units to n destinations. 

• To maximize the profit of shipping m units to n destinations. 

The goal of the diet problem is to find the cheapest combination of foods that will 

satisfy all the daily nutritional requirements of a person. The problem is formulated as a 

linear program where the objective is to minimize cost and meet constraints which require 

that nutritional needs be satisfied. The constraints are used to regulate the number of 

calories and amounts of vitamins, minerals, fats, sodium and cholesterol in the diet. 

Linear Programming 

 

 

 

 

NOTES 
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Game method is used to turn a matrix game into a linear programming problem. It 

is based on the Min-Max theorem which suggests that each player determines the choice 

of strategies on the basis of a probability distribution over the player’s list of strategies. 

The portfolio optimization template calculates the optimal capital of investments 

that gives the highest return for the least risk. The unique design of the portfolio optimization 

technique helps in financial investments or business portfolios. The optimization analysis 

is applied to a portfolio of businesses to represent a desired and beneficial framework 

for driving capital allocation, investment and divestment decisions. 

Crew scheduling is an important application of linear programming problem. It 

helps if any airline has a problem related to a large potential crew schedules variables. 

Crew scheduling models are a key to airline competitive cost advantage these days 

because crew costs are the second largest flying cost after fuel costs. 

Limitations of Linear Programming Problems 

Linear programming is applicable if constraints and objective functions are linear, but 

there are some limitations of this technique which are as follows: 

• All the uncertain factors, such as weather conditions, growth rate of industry, 

etc., are not taken into consideration. 

• Integer values are not taken as the solution, e.g., a value is required for fraction 

and the nearest integer is not taken for the optimal solution. 

• Linear programming technique gives those practical-valued answers that are really 

not desirable with respect to linear programming problem. 

• It deals with one single objective in real life problem which is more limited and the 

problems come with multi-objective. 

• In linear programming, coefficients and parameters are assumed as constants but 

in realty they do not take place. 

• Blending is a frequently encountered problem in linear programming. For example, 

if different commodities are purchased which have different characteristics and 

costs, then the problem helps to decide how much of each commodity would be 

purchased and blended within specified bound so that the total purchase cost is 

minimized. 

 
 

5.6 SOLUTION OF LINEAR 

PROGRAMMING PROBLEM 

The linear programming problems can be solved as follows: 

5.6.1 Graphical Solution 

Simple linear programming problem with two decision variables can be easily solved by 

graphical method. 

Procedure for Solving LPP by Graphical Method 

The steps involved in the graphical method are as follows: 

Step 1: Consider each inequality constraint as an equation. 
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1 2 

1 2 

1 2 

1 2 

2 1 

1 2 1 2 

Step 2: Plot each equation on the graph as each will geometrically represent a 

straight line. 

Step 3: Mark the region. If the inequality constraint corresponding to that line is 

, then the region below the line lying in the first quadrant (due to non-negativity of 

variables) is shaded. For the inequality constraint  sign, the region above the line in the 

first quadrant is shaded. The points lying in the common region will satisfy all the constraints 

simultaneously. The common region, thus obtained, is called the feasible region. 

Step 4: Allocate an arbitrary value, say zero, for the objective function. 

Step 5: Draw the straight line to represent the objective function with the arbitrary 

value (i.e., a straight line through the origin). 

Step 6: Stretch the objective function line till the extreme points of the feasible 

region. In the maximization case, this line will stop farthest from the origin and passes 

through at least one corner of the feasible region. In the minimization case, this line will 

stop nearest to the origin and passes through at least one corner of the feasible region. 

Step 7: Find the coordinates of the extreme points selected in Step 6 and find the 

maximum or minimum value of Z. 

Note: As the optimal values occur at the corner points of the feasible region, it is enough to 

calculate the value of the objective function of the corner points of the feasible region and select 

the one which gives the optimal solution, i.e., in the case of maximization problem, optimal point 

corresponds to the corner point at which the objective function has a maximum value and in the 

case of minimization, the corner point which gives the objective function the minimum value is the 

optimal solution. 

Example 5.9: Solve the following LPP by graphical method. 

Minimize Z = 20X
1 

+ 10X
2 

Subject to, X + 2X  40 

3X + X  30 

4X + 3X  60 

X , X  0 

Solution: Replace all the inequalities of the constraints by equation, 

X + 2X = 40 If X = 0  X = 20 

If X = 0  X = 40 

:. X
1 

+ 2X
2 
= 40 passes through (0, 20) (40, 0) 

3X
1 
+ X

2 
= 30 passes through (0, 30) (10, 0) 

4X
1
+ 3X

2 
= 60 passes through (0, 20) (15, 0) 

Plot each equation on the graph. 
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The feasible region is ABCD. 

C and D are points of intersection of lines. 

X
1
+ 2X

2 
= 40, 3X

1
+ X

2 
= 30 

And, 4X
1
+ 3X

2
= 60 

On solving, we get C (4, 18) and D (6, 12) 

Corner Points Value of Z = 20X
1 

+ 10X
2
 

A (15, 0) 300 

B (40, 0) 800 

C (4, 18) 260 

D (6, 12) 240 (Minimum value) 

 The minimum value of Z occurs at D (6, 12). Hence, the optimal solution is 

X
1 
= 6, X

2
= 12. 

Example 5.10: Find the maximum value of Z = 5X
1 
+ 7X

2 

Subject to the constraints, 

X
1 

+ X
2 

 4 

3X
1 
+ 8X

2 
 24 

10X
1 
+ 7X

2 
 35 

X
1
, X

2 
> 0 

Solution: Replace all the inequalities of the constraints by forming equations. 

X
1 

+ X
2 

= 4 passes through (0, 4) (4, 0) 

3X
1 
+ 8X

2 
= 24 passes through (0, 3) (8, 0) 

10X
1 
+ 7X

2 
= 35 passes through (0, 5) (3.5, 0) 

Plot these lines in the graph and mark the region below the line as the inequality of 

the constraint is  and is also lying in the first quadrant. 

X1 
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The feasible region is OABCD. 

B and C are points of instruction of lines, 

X
1 
+ X

2 
= 4, 10X

1 
+ 7X

2 
= 35 

And, 3X
1 
+ 8X

2 
= 24, 

On solving we get, 

B (1.6, 2.3) 

C (1.6, 2.4) 

Corner Points Value of Z = 5X
1 
+ 7X

2
 

O (0, 0) 0 

A (3.5, 0) 17.5 

B (1.6, 2.3) 25.1 

C (1.6, 2.4) 24.8 (Maximum value) 

D (0, 3) 21 

 The maximum value of Z occurs at C (1.6, 2.4) and the optimal solution is 

X
1 
= 1.6, X

2 
= 2.4. 

Example 5.11: A company makes 2 types of hats. Each hat A needs twice as much 

labour time as the second hat B. If the company is able to produce only hat B, then it can 

make about 500 hats per day. The market limits daily sales of the hat A and hat B to 150 

and 250 hats. The profits on hat A and hat B are ` 8 and ` 5, respectively. Solve 

graphically to get the optimal solution. 

Solution: Let X
1 
and X

2 
be the number of units of type A and type B hats respectively. 

Maximize Z = 8X
1 
+ 5X

2
 

Subject to, 2X
1 
+ 2X

2 
 500 

X
1 
 150 

X
2 
 250 

X
1
, X

2 
 0 

X2 

C 

B 

O 
X1 
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Linear Programming First rewrite the inequality of the constraint into an equation and plot the lines in 

the graph. 

 

NOTES 

2X
1 
+ X

2 
= 500 passes through (0, 500) (250, 0) 

X
1 

= 150 passes through (150, 0) 

X
2 

= 250 passes through (0, 250) 

We mark the region below the lines lying in the first quadrant as the inequality of 

the constraints are . The feasible region is OABCD. B and C are points of intersection 

of lines: 

2X
1 
+ X

2 
= 500, where X

1 
= 150 and X

2 
= 250 

On solving, we get B (150, 200) 

C (125, 250) 
 

X2 

 

 

 

 

 

 
D (0, 250) 

 

C (125, 250) X2 = 250 

 

B (150, 200) 

 

 

 
 

O 400 500 X1 

 

 

 

 

 

Corner Points Value of Z = 8X
1 
+ 5X

2
 

O (0, 0) 0 

A (150, 0) 1200 

B (150, 200) 2200 

C (125, 250) 2250 (Maximum Z = 2250) 

D (0, 250) 1250 

The maximum value of Z is attained at C (125, 250) 

 The optimal solution is X
1 
= 125, X

2 
= 250 

Therefore, the company should produce 125 hats of type A and 250 hats of type 

B in order to get the maximum profit of ̀  2250. 

Example 5.12: By graphical method solve the following LPP: 

Maximize Z = 3X
1 
+ 4X

2
 

Subject to, 5X
1 
+ 4X

2 
 200 

3X
1 
+ 5X

2 
 150 

X
1

 =
 1

5
0
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1 2 

1 2 

1 2 

1 2 

1 2 

1 2 

 

 

 

 
Solution: 

5X + 4X  100 

8X + 4X  80 

and X , X  0 

Linear Programming 
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Feasible region is given by OABCD.  

Corner Points Value of Z = 3X
1 

+ 4X
2
 

O (20, 0) 60 

A (40, 0) 120 

B (30.8, 11.5) 138.4 (Maximum value) 

C (0, 30) 120 

D (0, 25) 100 

 The maximum value of Z is attained at B (30.8, 11.5) 

 The optimal solution is X = 30.8, X = 11.5 

Example 5.13: Use graphical method to solve the following LPP: 

Maximize, Z = 6X
1 
+ 4X

2
 

Subject to, –2X + X  2 

X – X  2 

3X + 2X  9 

X , X  0 

Solution: 

X2 

C (0, 30) 

(0, 25) D 

(0, 0) 
X1 

X2 

– – X1 
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1 2 

1 2 

1 2 

1 2 

1 2 
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The feasible region is given by ABC. 

Corner Points Value of Z = 6X
1 

+ 4X
2
 

A (2, 0) 12 

B (3,0) 18 

C (13/5, 3/5) 
90 

= 18 (Maximum value) 
5 

The maximum value of Z is attained at C (13/5, 3/5) 

 The optimal solution is X = 13/5, X = 3/5 

Example 5.14: Use graphical method to solve the following LPP. 

Minimize, Z = 3X
1 
+ 2X

2
 

Subject to, 5X + X  10 

X + X  6 

X + 4X 12 

X , X  0 

Solution: Corner Points  Value of Z = 3X
1 
+ 2X

2
 

A (0, 10) 

B (1, 5) 

C (4, 2) 

 20 

13 (Minimum value) 

16 

D (12, 0)  36 

 X2  
   

 

 

 

 

 

 
X1 

 

 

 

 

Since the minimum value is attained at B (1, 5), the optimum solution is, 

X
1 

= 1, X
2 
= 5 

Note: In this problem, if the objective function is maximization then the solution is 

unbounded, as maximum value of Z occurs at infinity. 

Some More Cases 

There are some linear programming problems which may have: 

(i) A unique optimal solution 

(ii) An infinite number of optimal solutions 

(iii) An unbounded solution 

(iv) No solution 
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1 2 

1 2 

Following examples will illustrate these cases. 

Example 5.15: Solve the following LPP by graphical method. 

Maximize Z = 100X
1 
+ 40X

2 

Subject to, 5X + 2X  1000 

3X + 2X  900 

X + 2X  500 

and X + X  0 

Linear Programming 

 

 

 

 

NOTES 

Solution: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The solution space is given by the feasible region OABC. 

Corner Points Value of Z = 100X
1
+ 40X

2
 

O (0, 0) 0 

A (200, 0) 20,000 

B (125, 187.5) 20,000 (Maximum value of Z) 

C (0, 250) 10,000 

 The maximum value of Z occurs at two vertices A and B. 

Since there are infinite number of points on the line, joining A and B gives the 

same maximum value of Z. 

Thus, there are infinite number of optimal solutions for the LPP. 

Example 5.16: Solve the following LPP. 

Maximize Z = 3X
1 
+ 2X

2
 

Subject to, X
1 

+ X
2 

 1 

X
1 

+ X
2 

 3 

X
1
, X

2 
 0 

Solution: The solution space is unbounded. The value of the objective function at the 

vertices A and B are Z (A) = 6, Z (B) = 6. But, there exist points in the convex region for 

which the value of the objective function is more than 8. In fact, the maximum value of 

Z occurs at infinity. Hence, the problem has an unbounded solution. 
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When there is no feasible region formed by the constraints in conjunction with 

non-negativity conditions, no solution to the LPP exists. 

Example 5.17: Solve the following LPP. 

Maximize Z = X
1 
+ X

2
 

Subject to the constraints, 

X + X  1 

–3X + X  3 

X , X  0 

Solution: There being no point (X
1
, X

2
) common to both the shaded regions, we cannot 

find a feasible region for this problem. So, the problem cannot be solved. Hence, the 
problem has no solution. 

5.6.2 Some Important Definitions 

The following are some of the important definitions: 

1. A set of values X
1
, X

2 
... X

n 
which satisfies the constraints of the LPP is called its 

solution. 

2. Any solution to a LPP which satisfies the non-negativity restrictions of the LPP is 

called its feasible solution. 

3. Any feasible solution which optimizes (minimizes or maximizes) the objective 

function of the LPP is called its optimum solution. 
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4. Given a system of m linear equations with n variables (m < n), any solution which 

is obtained by solving m variables keeping the remaining n – m variables zero is 

called a basic solution. Such m variables are called basic variables and the remaining 

variables are called non-basic variables. 

5. A basic feasible solution is a basic solution which also satisfies all basic variables 

are non-negative. 

Basic feasible solutions are of following two types: 

(i) Non-degenerate: A non-degenerate basic feasible solution is the basic 
feasible solution which has exactly m positive X

i 
(i = 1, 2, ..., m), i.e., none of 

the basic variables is zero. 

(ii) Degenerate: A basic feasible solution is said to be degenerate if one or 

more basic variables are zero. 

6. If the value of the objective function Z can be increased or decreased indefinitely, 

such solutions are called unbounded solutions. 

5.6.3 Canonical or Standard Forms of LPP 

The general LPP can be put in either canonical or standard forms. 

In the standard form, irrespective of the objective function, namely maximize or 

minimize, all the constraints are expressed as equations. Moreover, RHS of each constraint 

and all variables are non-negative. 

Characteristics of the Standard Form 

The following are the characteristics of the standard form: 

(i) The objective function is of maximization type. 

(ii) All constraints are expressed as equations. 

(iii) Right hand side of each constraint is non-negative. 

(iv) All variables are non-negative. 

In the canonical form, if the objective function is of maximization, all the constraints 

other than non-negativity conditions are ‘’ type. If the objective function is of minimization, 

all the constraints other than non-negative conditions are ‘’ type. 

Characteristics of the Canonical Form 

The following are the characteristics of the canonical form: 

(i) The objective function is of maximization type. 

(ii) All constraints are of ‘’ type. 

(iii) All variables X
i 
are non-negative. 

Notes: 

1. Minimization of a function Z is equivalent to maximization of the negative expression of 

this function, i.e., Min Z = –Max (–Z). 

2. An inequality in one direction can be converted into an inequality in the opposite direction 

by multiplying both sides by (–1). 

3. Suppose we have the constraint equation, 

a
11 

X
1
+a

12
X

2 
+. ..... +a

1n 
X

n 
= b

1
 

This equation can be replaced by two weak inequalities in opposite directions. 

Linear Programming 
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11     1 12     2 m      n 1 

11     1 12     2 1n      n 1 

i 

i 

X B 

Linear Programming a X + a X +...... + a X  b 

a X + a X +...... + a   X  b 

4. If a variable is unrestricted in sign, then it can be expressed as a difference of two non- 
negative variables, i.e., X is unrestricted in sign, then X = X  – X , where X , X , X  are 

NOTES 
1 

 0. 
i i i i i i 

5. In standard form, all the constraints are expressed in equation, which is possible by 

introducing some additional variables called slack variables and surplus variables so 

that a system of simultaneous linear equations is obtained. The necessary transformation 

will be made to ensure that b  0. 

Definition of Slack and Surplus Variables 

(i) If the constraints of a general LPP be, 
n 

a
ij 

j =1 

Xi  bi (i = 1, 2, ..., m), 

then the non-negative variables S , which are introduced to convert the inequalities () to 
 

 

the equalities aij 

j =1 

Xi + Si = bi (i = 1, 2, ..., m) , are called slack variables. 

Slack variables are also defined as the non-negative variables which are added in 

the LHS of the constraint to convert the inequality ‘’ into an equation. 

(ii) If the constraints of a general LPP be, 
n 

a
ij 

j=1 

X j  bi (i = 1, 2, ..., m) , 

then, the non-negative variables S
i 
which are introduced to convert the inequalities 

n 

() to the equalities aij 

j =1 

X j – Si = bi (i = 1, 2, ..., m) are called surplus variables. 
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Surplus variables are defined as the non-negative variables which are removed 

from the LHS of the constraint to convert the inequality ‘’ into an equation. 

5.6.4 Simplex Method 

Simplex method is an iterative procedure for solving LPP in a finite number of steps. 

This method provides an algorithm which consists of moving from one vertex of the 

region of feasible solution to another in such a manner that the value of the objective 

function at the succeeding vertex is less or more as the case may be that at the previous 

vertex. This procedure is repeated and since the number of vertices is finite, the method 

leads to an optimal vertex in a finite number of steps or indicates the existence of 

unbounded solution. 

Definition 

(i) Let X
B 

be a basic feasible solution to the LPP. 

Max Z = C
X

 

Subject to A = b and X  0, such that it satisfies X = B–1b, 

Where B is the basic matrix formed by the column of basic variables. 

The vector C
B 

= (C
B1

, C
B2 

… C
Bm

), where C
Bj 

are components of C associated 

with the basic variables is called the cost vector associated with the basic 
feasible solution X

B
. 

(ii) Let X
B 

be a basic feasible solution to the LPP. 

n 
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X X 

B 

 

 
 

Max Z = C , where A = b and X  0. 

Let C
B 

be the cost vector corresponding to X
B
. For each column vector a

j 
in A

1
, 

which is not a column vector of B, let 

 
a j 

Linear Programming 

 

 

 

 

NOTES 

 

 
Then the number Z j 

 

m 

C
Bi 

a
ij 

i  1 

 
is called the evaluation corresponding to a

j 
and 

the number (Z
j 
– C

j
) is called the net evaluation corresponding to j. 

Simplex Algorithm 

For the solution of any LPP by simplex algorithm, the existence of an initial basic feasible 

solution is always assumed. The steps for the computation of an optimum solution are as 

follows: 

Step 1: Check whether the objective function of the given LPP is to be maximized 

or minimized. If it is to be minimized then we convert it into a problem of maximization 

by, 

Min Z = –Max (–Z) 

Step 2: Check whether all b
i 
(i = 1, 2, …, m) are positive. If any one of b

i 
is 

negative, then multiply the inequation of the constraint by –1 so as to get all b
i 
to be 

positive. 

Step 3: Express the problem in the standard form by introducing slack/surplus 

variables to convert the inequality constraints into equations. 

Step 4: Obtain an initial basic feasible solution to the problem in the form 

X = B–1b and put it in the first column of the simplex table. Form the initial simplex table 

shown as follows: 
 

Step 5: Compute the net evaluations Z
j 
– C

j 
by using the relation: 

Z
j 

– C
j 

= C
B 

(a
j 

– C
j
) 

Examine the sign of Z
j 
– C

j
: 

(i) If all Z
j 
– C

j 
 0, then the initial basic feasible solution X

B 
is an optimum 

basic feasible solution. 

(ii) If at least one Z
j 
– C

j 
> 0, then proceed to the next step as the solution is not 

optimal. 

Step 6: To find the entering variable, i.e., key column. 

If there are more than one negative Z
j 
– C

j 
choose the most negative of them. Let 

it be Z
r 
– C

r 
for some j = r. This gives the entering variable X

r 
and is indicated by an 

arrow at the bottom of the rth column. If there are more than one variable having the 

 

a
ij
b

j 
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Linear Programming same most negative Z
j 
– C

j
, then any one of the variable can be selected arbitrarily as 

the entering variable. 

(i) If all X
ir 
 0 (i = 1, 2, …, m) then there is an unbounded solution to the given 

NOTES 
problem. 

(ii) If at least one X
ir

 

enters the basis. 

 
> 0 (i = 1, 2, …, m), then the corresponding vector X

r
 

Step 7: To find the leaving variable or key row: 

Compute the ratio (X
Bi 

/X
kr
, X

ir
>0) 

If the minimum of these ratios be X
Bi 

/X
kr
, then choose the variable X

k 
to leave the 

basis called the key row and the element at the intersection of the key row and the key 
column is called the key element. 

Step 8: Form a new basis by dropping the leaving variable and introducing the 

entering variable along with the associated value under C
B 
column. The leaving element 

is converted to unity by dividing the key equation by the key element and all other 

elements in its column to zero by using the formula: 
 

New element = Old element – 
 Product of elements in key row and key column   

Key element 

 

  

Step 9: Repeat the procedure of Step (5) until either an optimum solution is 

obtained or there is an indication of unbounded solution. 

Example 5.18: Use simplex method to solve the following LPP: 

Maximize Z = 3X
1 
+ 2X

2
 

Subject to, X 

X 
 

 
Solution: By introducing the slack variables S

1
, S

2
, convert the problem into standard 

form. 

Max Z = 3X
1 
+ 2X

2 
+ 0S

1 
+ 0S

2
 

Subject to, X1 

X1 

X1 , 
 

  X X S S 
 

 X1  
1 2 1 2 

 
X 

 
4  

1 1 1 0 
  2 

 =      S  2 
 1 −1 0 1   

1 
 

 
 

 S2  

An initial basic feasible solution is given by, 

X
B 
= B–1b, 

Where, B = I
2
, X

B 
= (S

1
, S

2
) 

i.e., (S
1
, S

2
) = I

2 
(4, 2) = (4, 2) 

 

 
 

X 2 

X 2 

X1 , X 2 

 

 

 

X 2 S1 

X 2 S2 

X 2 , S1 , S2 
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0 

0 

0 

0 

2 

Initial Simplex Table 

Z
j 
= C

B 
a

j
 

Linear Programming 

Z − C = C  a − C = 
 0  

(1 1) − 3 = −3 
1 1 B   1 1     

   NOTES 

Z − C = C  a − C = 
 0  

(1 1) − 2 = −2 
2 2 B   2 2     

   

Z − C = C  a − C = 
 0  

(1 0) − 0 = −0 
3 3 B   3 3     

   

Z − C = C  a − C = 
 0  

(0 1) − 0 = −0 

4 4 B   4 4    
   

 
Cj 3 2 0 0 

 

CB 
 

B XB X1 X2 S1 S2 Min
 XB 

 

X1 

0 

0 

S1 

S2 

4 

2 

1 

1 

1 

–1 

1 

0 

0 

1 

4/1 = 4 

2/1 = 2 

 Zj 

Zj – Cj 

0 0 

–3 

0 

–2 

0 

0 

0 

0 

 

Since, there are some Z
j 
– C

j 
= 0, the current basic feasible solution is not optimum. 

Since, Z
1 
– C

1
= –3 is the most negative, the corresponding non-basic variable X

1
 

enters the basis. 

The column corresponding to this X
1 
is called the key column. 

 

Ratio = Min 

 

 4 
, 

2  = Min   , which corresponds to S 

 1   1  2 

 The leaving variable is the basic variable S . This row is called the key row. 
Convert the leading element X

21 
to units and all other elements in its column n, i.e., (X

1
) 

to zero by using the formula: 

New element = Old element – 
 

 Product of elements in key row and key column   
Key element 


 

  

To apply this formula, first we find the ratio, namely 

The element to be zero 
= 

1 
= 1 

Key element 1 

Apply this ratio for the number of elements that are converted in the key row. 

Multiply this ratio by key row element shown as follows: 

1 × 2 

1 × 1 

X 
Bi , X 
 

ir  
ir 
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  

  
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1 × –1 

1 × 0 

1 × 1 

Now, subtract this element from the old element. The element to be converted 

into zero is called the old element row. Finally, we have 

4 – 1 × 2 = 2 

1 – 1 × 1 = 0 

1 – 1 × –1 = 2 

1 – 1 × 0 = 1 

0 – 1 × 1 = –1 

 The improved basic feasible solution is given in the following simplex table: 

First Iteration 

Cj 3 2 0 0 
 

 

CB 

 

B 

 

XB 

 

X1 

 

X2 

 

S1 

 

S2 
Min 

XB
 

X 2 

0 

3 

S1 

X1 

2 

2 

0 

1 

2 

–1 

1 

0 

–1 

1 

2/2 = 1 

– 

 Zj 

Zj – Cj 

6 3 

0 

–3 

–5 

0 

0 

0 

0 

 

Since, Z
2 
– C

2 
is the most negative, X

2 
enters the basis. 

To find Min 
 X

B , X 
X 

i 2 
 0 


 

 i 2  

 2  
Min  

2 
 

This gives the outgoing variables. Convert the leaving element into one. This is 

done by dividing all the elements in the key row by 2. The remaining elements are 

converted to zero by using the following formula. 

Here, – 12 is the common ratio. Put this ratio 5 times and multiply each ratio by 

the key row element. 

1 
2

 

2 

1 
0
 

2 

1 
2

 

2 

–1/2 × 1 

–1/2 × –1 

Subtract this from the old element. All the row elements which are converted into 

zero are called the old elements. 
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X1 3X 2 

4 X1 X 2 

4 X1 X 2 

X1 , X 2 

12 

8 

8 

0 

X1 

 2 1 2 
  

S1 

S2 

S3 

12 

 

 

2 

   1  Linear Programming 

2 −  −  2  = 3 
  

1 – (–1/2 × 0) = 1 

–1 – (–1/2 × 2) = 0 

0 – (–1/2 × 1) = 1/2 

1 – (–1/2 × –1) = 1/2 

Second Iteration 

 

 

 
NOTES 

 

 

Since all Z
j 
– C

j 
 0, the solution is optimum. The optimal solution is Max 

Z = 11, X
1 
= 3, and X

2 
= 1. 

Example 5.19: Solve the LPP when, 

Maximize Z = 3X
1 
+ 2X

2
 

Subject to, 4 
 

 

 

 

Solution: Convert the inequality of the constraint into an equation by adding slack 

variables S
1
, S

2
, S

3
. 

Max Z = 3X
1 

+ 2X
2 

+ 0S
1 

+ 0S
2 

+ 0S
3
 

Subject to, 4 X1 

4 X1 

4 X1 

3X 2 S1 12 

X 2 S2 8 

X 2 S3 8 

X1 , X 2 , S1 , S2 , S3 0 

 
 

X X S S S3 

4 3 1 0 0 

4 1 0 1 0 

4 1 0 0 1 

1/2 

1/2 

–1/2 

1/2 

1/2 

1/2 
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1   

Linear Programming 

 

 

 

 

NOTES 

Initial Table  
 

Cj 3 2 0 0 0 

 

 

 

 

 
 

 

 
 

 Z – C 
 
is most negative, X

1
 enters the basis and the Min 

 X B , X 
X 

i1 
 0 


 

 
= Min (3, 2, 2) gives S

3 
as the leaving variable. 

 i1  

Convert the leaving element into 1, by dividing the key row elements by 4 and the 

remaining elements into 0. 

First Iteration 

Cj 3 2 0 0 0 
 

 
CB 

 
B 

 
XB 

 
X1 

 
X2 

 
S1 

 
S2 

 
S3 

Min 
X B

 

X 2 

0 S1 4 0 4 1 0 –1 4/4 = 1 

0 

3 

S2 

X1 

0 

2 

0 

1 

2 

–1/4 

0 

0 

1 

0 

–1 

1/4 

0/2 = 0 

– 

 Zj 

Zj – Cj 

6 3 

0 

–3/4 

–11/4 

0 

0 

0 

0 

3/4 

3/4 

 

 

8 
 
 

4 
 

 

1 
 

 

0 
 

 
1 

 
 

0 

 

 
8 0 12 

 

 
8 4 

 

 
4 0  

 

 
4 0 

 

 
1 2  

 

 
1 4 

 

 
0 0  

 

 
0 1 

 

 
0 1  

 

 
0 0 

 

 
   

 

 
1 1 

1 

CB B XB X1 X2 S1 S2 S3 Min 
XB

 

X1 

0 

0 

S1 

S2 

12 

8 

4 

4 

3 

1 

1 

0 

0 

1 

0 

0 

12/4 = 3 

8/4 = 2 

0 S3 8 4 –1 0 0 1 8/4 = 2 

 Zj 

Zj – Cj 

0 0 

–3 

0 

–2 

0 

0 

0 

0 

0 

0 
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Since, Z2 is the most negative, X
2 
enters the basis. 

Linear Programming 

To find the outgoing variable, find Min  
X

B 

 
, Xi 2  0  . 

i 2  

 

 
NOTES 

 4 0  
Min  , , −1 

 4 2  

First Iteration 

Therefore, S
2 
leaves the basis. Convert the leaving element into 1 by dividing the key 

row elements by 2 and the remaining elements in that column into zero using the formula, 

New element = Old element 

 Product of elements in key row and key column  –  
Key element 


 

  

C
j 

3 2 0 0 0 

C
B

 

 

B X
B

 X
1
 X

2
 S

1
 S

2
 S

3
 

Min
 X

B

 

S3 

0 S
1
 4 0 0 1 –2 1 4/1 = 4 

2 X
2
 0 0 1 0 1 

2 
– 1

2
 – 

3 X
1
 2 1 0 0 1/8 1/8 2/1/8 = 16 

 Z
j
 6 3 2 0 11/8 –5/8  

Z
j 
– C

j
 

 0 0 0 11/8 –5/8 

Second Iteration 

Since Z
5 
– C

5 
= –5/8 is the most negative, S

3 
enters the basis and, 

Min 
 XB , S 

 
= Min 

 4 
, 

2   
  

S i3 
  

1 1/18 

 

   i3    

Therefore, S
1 

leaves the basis. Convert the leaving element into one and the 

remaining elements into zero. 

Third Iteration 

Cj 3 2 0 0 0 
 

CB B XB X1 X2 S1 S2 S3 

0 

2 

S3 

X2 

4 

2 

0 

0 

0 

1 

1 

1/2 

–2 

–1/2 

1 

0 

3 X1 3/2 1 0 –1/8 3/8 0 

 Zj 

Zj – Cj 

17/2 3 

0 

2 

0 

5/8 

5/8 

1/8 

1/8 

0 

0 

Since all Z – C  0, the solution is optimum and it is given by X = 3/2, X = 2 and 
j j 1 2 

Max Z = 17/2. 

 
 

 

X 
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  

Linear Programming 

 

 

 

 

NOTES 

Example 5.20: Using simplex method solve the following LPP. 

Maximize Z = X
1 
+ X

2 
+ 3X

3
 

Subject to, 3X1 
2 X 

1 

 
 

Solution: Rewrite the inequality of the constraints into an equation by adding slack 

variables. 

Max Z = X
1 

+ X
2 

+ 3X
3 

+ 0S
1 

+0S
2
 

Subject to, 3X1 

2 X1 

Initial basic feasible solution is, 

X1 

S1 

 
X1 X 2 X 3 S1 S2 

3 2 1 1 0 

2 1 2 0 1 

1 1 3 0 0 

 
Cj 3 2 0 0 0 

 

 

CB 

 

B 

 

XB 

 

X1 

 

X2 

 

X3 

 

S1 

 

S2 
Min 

X
B

 

X 3 

0 

0 

S1 

S2 

3 

2 

3 

2 

2 

1 

1 

2 

1 

0 

0 

1 

3/1 = 3 

2/2 = 1 

 Zj 

Zj – Cj 

0 0 

–1 

0 

–1 

0 

–3 

0 

0 

0 

0 

 

 

Since Z
3 

– C
3 

= –3 is the most negative, the variable X
3 

enters the basis. The 

column corresponding to X
3 
is called the key column. 

 
To determine the key row or leaving variable, find Min 

 X B , X
 

X 
3
 
 0 


 

Min 
 3 

= 3, 
2 

= 1

 

 
  

 3  

 
1 2 

 
  

Therefore, the leaving variable is the basic variable S
2
, the row is called the key 

row and the intersection element 2 is called the key element. 

Convert this element into one by dividing each element in the key row by 2 and 

the remaining elements in that key column as zero using the formula, 

X 3 3 

X 2 2 

X1 , X 2 , X 3 0 

2 X 2 

X 2 

X 3 S1 

2 X 3 S2 

 

 

X 2 X 3  
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New element = Old element 
 

 Product of elements in key row and key column  

Linear Programming 

–  
Key element 


 

  

First Iteration 

NOTES 

 
 

 
 

Since all Z – C  0, the solution is optimum and it is given by X = 0, X = 0, 
j j 1 2 

X
3 
= 1, Max Z = 3. 

Example 5.21: Use simplex method to solve the following LPP. 

Minimize Z = X
2 
– 3X

3 
+ 2X

5
 

Subject to, 

 

 

 

 

Solution: Since the given objective function is of minimization we shall convert it into 

maximization using Min Z = –Max(–Z). 

Max Z = –X
2 

+ 3X
3 

– 2X
5
 

Subject to, 
 

 

 
 

We rewrite the inequality of the constraints into an equation by adding slack 

variables S
1
, S

2
, S

3 
and the standard form of LPP becomes, 

Max Z = –X
2 

+ 3X
3 

– 2X
5 

+ 0S
1 

+ 0S
2 

+ 0S
3
 

Subject to, 
 

 

 

 
 

 The initial basic feasible solution is given by, 

S
1
=7, S

2
=12, S

3
=10. (X

2
=X

3
=X

5
=0) 

3X 2 X 3 

 

3X 3 

 

 

8X 5 

X 2 , X 3 , X 5 

 

12 

10 

 

3X 2 X 3 

 

3X 3 

7 

12 

8X 5 10 

3X 2 X 3 

 

3X 3 

S1 

S2 

8X 5 S3 

X 2 , X 3 , X 5 , S1 , S2 , S3 

 

12 

10 

 



Self-Instructional 

Material 299  

 
 

4 3 

 

–1/2 

Linear Programming Initial Table  
 

Cj –1 3 –2 0 0 0 

 
 

 

NOTES  

 

 

 

 

 

Since, Z
2 
– C

2 
= – 3 < 0, the solution is not optimum. 

The incoming variable is X
3 
(key column) and the outgoing variable (key row) is 

given by, 
 

Min 
 XB 

 

 
X i3 

, Xi3 
 0 

 = Min 
 12 

, 
10 

 
  

Hence, S
2 
leaves the basis. 

First Iteration 

Cj –1 3 –2 0 0 0 
 

 

CB 

 

B 

 

XB 

 

X2 

 

X3 

 

X5 

 

S1 

 

S2 

 

S3 
Min 

XB
 

X 2 

0 S1 10 5/2 0 2 1 1/4 0 10/5/2=4 

3 X3 3 –1/2 1 0 0 1/4 0 – 

 S3 1 –5/2 0 8 0 –3/4 1 – 

 Zj 

Zj – Cj 

9 –3/2 

–1/2 

3 

0 

0 

2 

0 

0 

3/4 

3/4 

0 

0 

 

Since Z
1 
– C

1 
< 0, the solution is not optimum. Improve the solution by allowing 

the variable X
2 
to enter into the basis and the variable S

1 
to leave the basis. 

Second Iteration 
 

Since, Z – C  0, the solution is optimum. 
j j 

 The optimal solution is given by Max Z = 11 

X
2 

= 4, X
3 
= 5, X

5 
= 0 

 

CB 

 

B 

 

XB 

 

X2 

 

X3 

 

X5 

 

S1 

 

S2 

 

S3 
Min 

X
B

 

X 3 

0 S1 7 3 –1 2 1 0 0 – 

0 S2 12 –2 4 0 0 1 0 12/4=3 

 S3 10 –4 3 8 0 0 1 10/3=3.33 

 Zj 0 0 0 0 0 0 0  

Zj – Cj  1 –3 2 0 0 0 
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1 4 

2 3 5 

1 2 3 4 

1 2 3 4 

1 2 3 4 

1 2 3 4 1 2 3 

 Min Z = –Max (–Z) = –11 

 Min Z = –11, X  = 4, X = 5, X = 0 

Example 5.22: Solve the following LPP using simplex method. 

Maximize Z = 15X
1 
+ 6X

2 
+ 9X

3 
+ 2X

4
 

Subject to, 2X + X + 5X + 6X  20 

3X + X + 3X + 25X  24 

7X + X  70 

X , X , X , X  0 

Solution: Rewrite the inequality of the constraint into an equation by adding slack 

variables S
1
, S

2
, and S

3
. The standard form of LPP becomes, 

Max Z = 15X
1 
+ 6X

2 
+ 9X

3 
+ 2X

4 
+ 0S

1 
+ 0S

2 
+ 0S

3 

Subject to, 2X
1 

+ X
2 

+ 5X
3 
+ 6X

4 
+ S

1 
= 20 

3X
1 

+X
2
+ 3X

3 
+ 25X

4 
+ S

2 
= 24 

7X
1
+ X

4 
+ S

3 
= 70 

X , X , X , X , S , S , S  0 

The initial basic feasible solution is, S
1 
= 20, S

2 
= 24, S

3 
= 70 

(X
1 

= X
2 
= X

3 
= X

4 
= 0 non-basic) 

The intial simplex table is given by, 

Cj 15 6 9 2 0 0 0 
 

 

CB 

 

B 

 

XB 

 

X1 

 

X2 

 

X3 

 

X4 

 

S1 

 

S2 

 

S3 
Min 

XB
 

X1 

0 S1 20 2 1 5 6 1 0 0 20/2=10 

0 S2 24 3 1 3 25 0 1 0 24/3=8 

 S3 70 7 0 0 1 0 0 1 70/7=10 

 Zj 0 0 0 0 0 0 0 0  

Zj – Cj  –15 –6 –9 –2 0 0 0 

 As some of Z – C  0, the current basic feasible solution is not optimum. 

Linear Programming 

 

 

 

 

NOTES 

j j 

Z
1 
– C

1 
= –15 is the most negative value, and hence, X

1 
enters the basis and the variable 

S
2 
leaves the basis. 

First Iteration 

Cj 15 6 9 2 0 0 0 
 

 

CB 

 

B 

 

XB 

 

X1 

 

X2 

 

X3 

 

X4 

 

S1 

 

S2 

 

S3 
Min 

XB
 

X 2 

0 S1 4 0 1/3 3 –32/3 1 –2/3 0 4/1/3=12 

15 X1 8 1 1/3 1 25/3 0 1/3 0 8/1/3=24 

 S3 14 0 –7/3 –7 –172/3 0 –7/3 1 – 

 Zj 

Zj – Cj 

120 15 

0 

5 

–1 

15 

6 

125 

123 

0 

0 

5 

5 

0 

0 
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j j 

1 3 

1 2 

1 2 3 

1 2 3 

1 2 3 1 2 3 

Linear Programming 

 

 

 

 

NOTES 

Since Z
2 
– C

2 
= –1 < 0; the solution is not optimal, and therefore, X

2 
enters the 

basis and the basic variable S
1 
leaves the basis. 

Second Iteration 

Cj 15 6 9 2 0 0 0 
 

 

CB 

 

B 

 

XB 

 

X1 

 

X2 

 

X3 

 

X4 

 

S1 

 

S2 

 

S3 
Min 

XB
 

X 2 

0 S1 4 0 1/3 3 –32/3 1 –2/3 0 4/1/3=12 

15 

 

X1 

S3 

8 

14 

1 

0 

1/3 

–7/3 

1 

–7 

25/3 

–172/3 

0 

0 

1/3 

–7/3 

0 

1 

8/1/3=24 

– 

 Zj 120 15 5 15 125 0 5 0  

Zj – Cj  0 –1 6 123 0 5 0 

Since all Z – C  0, the solution is optimal and is given by, 

Max Z = 132, X
1 
= 4, X

2 
= 12, X

3 
= 0, X

4 
= 0 

Example 5.23: Solve the following LPP using simplex method. 

Maximize Z=3X
1 

+ 2X
2 

+ 5X
3 

Subject to, X + 2X + X  430 

3X + 2X  460 

X + 4X    420 

X , X , X  0 

Solution: Rewrite the constraint into an equation by adding slack variables S
1
, S

2
, S

3
. 

The standard form of LPP becomes, 

Maximize Z = 3X
1 
+ 2X

2 
+ 5X

3 
+ 0S

1 
+ 0S

2 
+ 0S

3
 

Subject to, X
1 

+ 2X
2 

+ X
3 

+ S
1 

= 430 

3X
1 

+ 2X
3 

+ S
2 

= 460 

X
1 

+ 4X
2 

+ S
3 

= 420 

X , X , X , S , S , S  0 

The initial basic feasible solution is, 

S
1 

= 430, S
2 

= 460, S
3 

= 420 (X
1  

= X
2  

= X
3 

= 0) 

Initial Table 

C
j 

3 2 5 0 0 0 

C
B

 B X
B

 X
1

 X
2

 X
3

 S 
1
 S 

2
 S 

3
 Min 

X
B

 

X 3 

0 S 
1
 430 1 2 1 1 0 0 430/1=430 

0 S 
2
 460 3 0 2 0 1 0 460/2=230 

0 S 
3
 420 1 4 0 0 0 1  

 Z
j
 0 0 0 0 0 0 0  

Z
j 
– C

j
  –3 –2 –5 0 0 0 
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2 

0 

Since some of Z – C  0, the current basic feasible solution is not optimum. Since Linear Programming 
j j 

Z
3 
– C

3 
= –5 is the most negative, the variable X

3 
enters the basis. To find the variable 

leaving the basis, find 

Min 
 XB , X 

 
 

 0 
 

= Min
 430 

= 430,
 460 

= 230 

  NOTES 

 i3    
1 2 

 

 X i3    

 The variable S leaves the basis. 

First Iteration 

C
j 

3 2 5 0 0 0 
 

C
B

 B X
B

 X
1

 X
2

 X
3

 S 
1
 S 

2
 S 

3
 Min 

X
B

 

X 2 

0 S 
1
 200 –1/2 2 0 1 1/2 0 200/2=100 

5 X
3

 230 3/2 0 1 0 1/2 0  

0 S 
3
 420 1 4 0 0 0 1 420/4=105 

 Z
j
 1150 15/2 0 0 0 5/2 0  

Z
j 
– C

j
  9/2 –2 0 0 5/2 0 

Since Z
2 
– C

2 
= –2 is negative, the current basic feasible solution is not optimum. 

Therefore, the variable X
2 
enters the basis and the variable S

1 
leaves the basis. 

M Method 

In simplex algorithm, the M Method is used to deal with the situation where an infeasible 

starting basic solution is given. The simplex method starts from one Basic Feasible 

Solution (BFS) or the intense point of the feasible region of a Linear Programming 

Problem (LPP) presented in tableau form and extends to another BFS for constantly 

raising or reducing the value of the objective task till optimality is reached. Sometimes 

the starting basic solution may be infeasible, then M method is used to find the starting 

basic feasible solution (refer Example 5.23) each time it exists. 

Example 5.24: Find a starting basic feasible solution each time it exists for the following 

LPP where there is no starting identity matrix using M method. 

Maximize, X = CTX 

Subject to, AX = b, X  0; Where b > 0. 

Solution: To get a starting identity matrix, we add artificial variables X
a1

, X
a2

, ……, 

X
am

. The consequent values for the artificial variables can be M for maximization problem 

(where M is adequately large). This constant M will check artificial variables that will 

arise with positive values in the final optimal solutions. Now the LPP becomes, 

Max Z = CTX − M . 1TX 

Subject to, AX + I
m
X

a 
= b, 

X  0 
Where X

a 
= (X

a1
, X

a2
, ……, X ) and 1 is the vector of all ones. Here, X = 0 and 

T 
 

X
a 
= b is the feasible starting basic feasible solution. For solving AX + I

m
X

a 
= b, which is 

a solution to AX = b we have to drive and take X
a 
= 0. 

am 

a 
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1 2 

1 2 

1 2 3 4 

0 1 2 4 5 

Linear Programming 

 

 

 

 

NOTES 

Example 5.25: Using the linear programming given in the above example, solve the 

following LPP: 

Maximize, X
0 
= X

1 
+ X

2
 

Subject to, 2X + X  4 

X
1 

+ 2X
2 

= 6 

X , X  0 

Solution: Add surplus variable X
3 
and artificial variables X

4 
and X

5
, and then rewrite the 

equation as given below: 

2X + X − X + X = 4 

X
1 

+ 2X
2 

+ X
5 

= 6 

X − X − X + M X + M X = 0 

The columns corresponding to X
4 
and X

5 
form an identity matrix. This can be represented 

in tableau form as, 
 

 X1 X2 X3 X4 X5 b 

X4 2 1 −1 1 0 4 

X5 1 2 0 0 1 6 

X0 −1 −1 0 M M 0 

In the above table the row X
0 
has the reduced cost coefficient for basic variables X

4 
and 

X
5 
which are not zero. First eliminate these nonzero entries to have the initial tableau. 

 

 X1 X2 X3 X4 X5 b 

X4 2 1 −1 1 0 4 

X5 1 2 0 0 1 6 

X0 −(1 + 3M) −(1 + 3M) M 0 0 −10 M 

The artificial variable becomes non-basic and can be dropped in subsequent calculations. 

Now the tableau becomes: 
 

 X1 X2 X3 X5 b 

X1 1 1/2 −1/2 0 2 

X5 0 3/2 1/2 1 4 

X0 0 −(1 + 3M)/2 −(1 + M)/2 0 2 − 4 M 

Eliminating artificial variables we get, 
 

 X1 X2 X3 b 

X1 1 0 −2/3 2/3 

X2 0 1 1/3 8/3 

X0 0 0 −1/3 10/3 

Now all the artificial variables are eliminated and X = [2/3, 8/3, 0]T is an initial basic 

feasible solution. Iterating again we get we following final optimal tableau: 
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Linear Programming 

 

 

 

 

 

 
5.7  

 

 
Hence, the optimal solution is X = (6, 0, 8)T with X = 6. 

 

SUMMARY 

• Decision-making has always been very important in the business and industrial 

world, particularly with regard to the problems concerning production of 

commodities. 

• English economist Alfred Marshall pointed out that the businessman always studies 

his production function and his input prices and substitutes one input for another 

till his costs become the minimum possible. 

• Linear Programming (LP) is a major innovation since World War II in the field of 

business decision-making, particularly under conditions of certainty. 

• The word ‘Linear’ means that the relationships are represented by straight lines, 

i.e., the relationships are of the form y = a + bx and the word ‘Programming’ 

means taking decisions systematically. 

• LP is a decision-making technique under given constraints on the assumption that 

the relationships amongst the variables representing different phenomena happen 

to be linear. 

• The problem for which LP provides a solution may be stated to maximize or 

minimize for some dependent variable which is a function of several independent 

variables when the independent variables are subject to various restrictions. 

• The applications of LPare numerous and are increasing every day. LPis extensively 

used in solving resource allocation problems. Production planning and scheduling, 

transportation, sales and advertising, financial planning, portfolio analysis, corporate 

planning, etc., are some of its most fertile application areas. 

• The term linearity implies straight line or proportional relationships among the 

relevant variables. Linearity in economic theory is known as constant returns 

which mean that if the amount of input doubles, the corresponding output and 

profit are also doubled. 

• Process means the combination of particular inputs to produce a particular output. 

In a process, factors of production are used in fixed ratios, of course, depending 

upon technology and as such no substitution is possible with a process. 

• Criterion function is also known as objective function which states the determinants 

of the quantity either to be maximized or to be minimized. 

• LP model is based on the assumptions of proportionality, additivity, certainty, 

continuity and finite choices. 

• The applications of linear programming problems are based on linear programming 

matrix coefficients and data transmission prior to solving the simplex algorithm. 

• The problem can be formulated from the problem statement using linear 

programming techniques. 

NOTES 

Check Your Progress 

9. When is an 

objective function 

minimized? When is 

it maximized? 

10. What is meant by a 

feasible solution? 

11. What is a feasible 

region? 

12. What is an optimal 

solution? 

13. What are non- 

degenerate and 

degenerate type 

basic feasible 

solutions? 

14. Define the simplex 

method. 

15. How is a leaving 

element converted 

to unity in a 

simplex algorithm? 

16. What is the role of 

the slack variable? 

17. When M method is 

used? 

 X1 X2 X3 b 

X1 1 2 0 6 

X3 0 3 1 8 

X0 0 1 0 6 
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NOTES 

• Linear programming problems are associated with the efficient use of allocation 

of limited resources to meet desired objectives. A solution required to solve the 

linear programming problem is termed as optimal solution. 

• Linear programming problem may be solved using a simplified version of the 

simplex technique called transportation method. Because of its major application 

in solving problems involving several product sources and several destinations of 

products, this type of problem is frequently called the transportation problem. 

• The goal of the diet problem is to find the cheapest combination of foods that will 

satisfy all the daily nutritional requirements of a person. 

• The problem is formulated as a linear program where the objective is to minimize 

cost and meet constraints which require that nutritional needs be satisfied. 

• The portfolio optimization template calculates the optimal capital of investments 

that gives the highest return for the least risk. The unique design of the portfolio 

optimization technique helps in financial investments or business portfolios. 

• Crew scheduling is an important application of linear programming problem. It 

helps if any airline has a problem related to a large potential crew schedules 

variables. 

• The general LPP can be put in either canonical or standard forms. 

• In the standard form, irrespective of the objective function, namely maximize or 

minimize, all the constraints are expressed as equations. Moreover, RHS of each 

constraint and all variables are non-negative. 

• In the canonical form, if the objective function is of maximization, all the constraints 

other than non-negativity conditions are ‘’ type. If the objective function is of 

minimization, all the constraints other than non-negative conditions are ‘’ type. 

• Simplex method is an iterative procedure for solving LPP in a finite number of 

steps. This method provides an algorithm which consists of moving from one 

vertex of the region of feasible solution to another in such a manner that the value 

of the objective function at the succeeding vertex is less or more as the case may 

be that at the previous vertex. 

• In simplex algorithm, the M Method is used to deal with the situation where an 

infeasible starting basic solution is given. 

• The simplex method starts from one Basic Feasible Solution (BFS) or the intense 

point of the feasible region of a Linear Programming Problem (LPP) presented in 

tableau form and extends to another BFS for constantly raising or reducing the 

value of the objective task till optimality is reached. 

 
 

5.8 KEY TERMS 
 

 

 

 

 

 

 

 

 

 

 
 

Self-Instructional 

• Linear programming: A decision-making technique under a set of given 

constraints and is based on the assumption that the relationships amongst the 

variables representing different phenomena are linear 

• Decision variables: Variables that form objective function and on which the 

cost or profit depends 

• Linearity: Straight line or proportional relationships among the relevant variables. 

Linearity in economic theory is known as constant return 

• Process: The combination of one or more inputs to produce a particular output 
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• Criterion function: An objective function which states the determinants of the 

quantity to be either maximized or minimized 

• Constraints: Limitations under which planning is decided. Restrictions imposed 

on decision variables 

• Feasible solution: Any solution to a LPP which satisfies the non-negativity 

restrictions of the LPP 

• Feasible region: The region comprising all feasible solutions 

• Optimal solution:Any feasible solution which optimizes (minimizes or maximizes) 

the objective function of the LPP 

• Proportionality: An assumption made in the objective function and constraint 

inequalities. In economic terminology this means that there are constant returns 

to scale 

• Certainty: Assumption that includes prior knowledge of all the coefficients in the 

objective function, the coefficients of the constraints and the resource values. LP 

model operates only under conditions of certainty. 

• Additivity: An assumption which means that the total of all the activities is given 

by the sum total of each activity conducted separately 

• Continuity: An assumption which means that the decision variables are continuous 

• Finite choices: An assumption that implies that finite numbers of choices are 

available to a decision-maker and the decision variables do not assume negative 

values 

• Solution: A set of values X , X , ..., X which satisfies the constraints of the LPP 

• Basic solution: In a given system of m linear equations with n variables 

(m < n), anysolution which is obtained by solving m variables keeping the remaining 

n – m variables zero is called a basic solution 

• Basic feasible solution: A basic solution which also satisfies the condition in 

which all basic variables are non-negative 

• Canonical form: It is irrespective of the objective function. All the constraints 

are expressed as equations and right hand side of each constraint and all 

variables are non-negative 
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NOTES 

• Slack variables: If the constraints of a general LPP be given as a X 

 b
i 
(i = 1, 2, ..., m; j = 1, 2, ..., n), then the non-negative variables Si is 

introduced to convert the inequalities ‘’ to the equalities are called slack 

variables 

• Surplus variables: If the constraints of a general LPP be a X  b 

(i = 1, 2, ..., m; j = 1, 2, ..., n), then non-negative variables Si introduced to 

convert the inequalities ‘’ to the equalities are called surplus variables 

 

5.9 ANSWERS TO ‘CHECK YOUR PROGRESS’ 
 

1. Linear programming is a decision-making technique under a set of given constraints 

and is based on the assumption that the relationships amongst the variables 

representing different phenomena are linear. 

2. Criterion function is objective function which states the determinants of the quantity, 

to be either maximized or minimized. 

i 

i 
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3. Linear programming finds application in agricultural and various industrial problems. 

4. Constraints are limitations under which planning is decided, these are restrictions 

imposed on decision variables. 

5. Solution of a linear programming is a set of values X
1
, X

2
, ..., X

n
, satisfying the 

constraints of the LPP is called its solution. 

6. In a given a system of m linear equations with n variables (m < n), any solution 

which is obtained by solving m variables keeping the remaining n – m variables 

zero is called a basic solution. 

7. In a given a system of m linear equations with n variables (m < n), where m 

variables are solved, keeping remaining n – m variables zero, m variables are 

called basic variables and the remaining variables are called non-basic variables. 

8. Basic feasible solution is a basic solution which also satisfies the condition in 

which all basic variables are non-negative. 

9. An objective function is maximized when it is a profit function. It is minimized 

when it is a cost function. 

10. Feasible solution of a LPP is a solution that satisfies the non-negativity restrictions 

of the LPP. 

11. Feasible region is the region comprising all feasible solutions. 

12. Optimal solution of a LPP is a feasible solution which optimizes (minimizes or 

maximizes) the objective function of the LPP. 

13. Non-degenerate and degenerate solutions are basic feasible solutions. In a problem 

which has exactly m positive variables, Xi (i = 1, 2, ..., m), i.e., none of the basic 

variables is zero, then it is called non-degenerate type and if one or more basic 

variables are zero, such basic feasible solution is said to be degenerate type. 

14. Simplex method is an iterative procedure for solving LPP in a finite number of 

steps. This method provides an algorithm which consists of moving from one 

vertex of the region of feasible solution to another in such a manner that the value 

of the objective function at the succeeding vertex is less or more as the case may 

be that at the previous vertex. 

15. The leaving element is converted to unity by dividing the key equation by the key 

element and all other elements in its column to zero by using the formula: 

New element 

= Old element – 
 Product of elements in key row and key column   

Key element 

 

  

16. By introducing slack variable, the problem is converted into standard form. 

17. M method is used to find the starting basic feasible solution each time it exists 

when an infeasible starting basic solution is given. 
 

5.10 QUESTIONS AND EXERCISES 
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Short-Answer Questions 

1. What is meant by proportionality in linear programming? 

2. What do you understand by certainty in linear programming? 
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3. What is meant by continuity in linear programming? 

4. What are finite choices in the context of linear programming? 

5. What are the basic constituents of an LP model? 

6. What is the canonical form of a LPP? 

7. What are characteristics of the canonical form? 

8. What are slack variables? Where are they used? Explain in brief. 

9. What do you understand by surplus variables? 

10. What is the simplex method? 

11. Does every LPP solution have an optimal solution? Explain. 

12. What is the importance of the M method? 

Long-Answer Questions 

1. A company manufactures 3 products A, B and C. The profits are: ` 3, ̀  2 and 

` 4 respectively. The company has two machines and given below is the required 

processing time in minutes for each machine on each product. 
 

 Products 

Machines A B C 

I 4 3 5 

II 2 2 4 

Machines I and II have 2000 and 2500 minutes respectively. The company must 

manufacturers 100 A’s 200 B’s and 50 C’s but no more than 150 A’s. Find the 

number of units of each product to be manufactured by the company to maximize 

the profit. Formulate the above as a LP Model. 

2. A company produces two types of leather belts A and B. A is of superior quality 

and B is of inferior quality. The respective profits are ̀  10 and ̀  5 per belt. The 

supply of raw material is sufficient for making 850 belts per day. For belt A, 

a special type of buckle is required and 500 are available per day. There are 700 

buckles available for belt B per day. Belt A needs twice as much time as that 

required for belt B and the company can produce 500 belts if all of them were of 

the type A. Formulate a LP Model for the given problem. 

3. The standard weight of a special purpose brick is 5 kg and it contains two 
ingredients B

1 
and B

2
, where B

1 
costs ̀  5 per kg and B

2 
costs ̀  8 per kg. Strength 

considerations dictate that the brick contains not more than 4 kg of B
1 

and a 

minimum of 2 kg of B
2 
since the demand for the product is likely to be related to 

the price of the brick. Formulate the given problem as a LP Model. 

4. Egg contains 6 units of vitamin A per gram and 7 units of vitamin B per gram and 

12 units of vitamin B per gram and costs 20 paise per gram. The daily minimum 

requirement of vitamin A and vitamin B are 100 units and 120 units respectively. 

Find the optimal product mix. 

5. In a chemical industry two products A and B are made involving two operations. 

The production of B also results in a by product C. The product A can be sold at 

` 3 profit per unit and B at ̀  8 profit per unit. The by product C has a profit of 

` 2 per unit but it cannot be sold as the destruction cost is Re 1 per unit. Forecasts 

show that upto 5 units of C can be sold. The company gets 3 units of C for each 

units of A and B produced. Forecasts show that they can sell all the units of A and 
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B produced. The manufacturing times are 3 hours per unit for A on operation one 

and two respectively and 4 hours and 5 hours per unit for B on operation one and 

two respectively. Because the product C results from producing B, no time is 

used in producing C. The available times are 18, and 21 hours of operation one 

and two respectively. How much of A and B need to be produced keeping C in 

mind, to make the highest profit. Formulate the given problem as LP Model. 

6. A company produces two types of hats. Each hat of the first type requires as 

much labour time as the second type. If all hats are of the second type only, the 

company can produce a total of 500 hats a day. The market limits daily sales of 

the first and second type to 150 and 250 hats. Assuming that the profits per hat 

are ̀  8 for type B, formulate the problem as a linear programming model in order 

to determine the number of hats to be produced of each type so as to maximize 

the profit. 

7. A company desires to devote the excess capacity of the three machines lathe, 

shaping machine and milling machine to make three products A, B and C. The 

available time per month in these machinery are tabulated below: 

Machine Lathe Shaping Milling 

Available    

Time/Month 200 hrs l00 hrs 180 hrs 

The time taken to produce each unit of the products A, B and C on the machines 

is displayed in the table below. 

 Lathe Shaping Milling 

Product A hrs 6 2 4 

Product B hrs 2 2 – 

Product C hrs 3 _ 3 

The profit per product would be ̀  20, ̀  16 and ̀  12 respectively on product A, B 

and C. 

Formulate a LPP to find the optimum product-mix. 

8. An animal food company must produce 200 kg of a mixture consisting of 
ingredients X

1 
and X

2 
daily. X

1 
costs ` 3/- per kg and X

2 
` 8/- per kg. No more 

than 80 kg of X
1 
can be used and at least 60 kg of X

2 
must be used. Formulate a 

LP model to minimize the cost. 

9. Solve the following by graphical method: 

(i) Max Z = X
1 

– 3X
2
 

Subject to, X
1 

+ X
2 
 300 

X
1 

– 2X
2 
 200 

2X
1 

+ X
2 
 100 

X
2 
 200 

X
1
, X

2 
 0 

(ii) Max Z = 5X + 8Y 

Subject to, 3X + 2Y  36 

X + 2Y  20 

3X + 4Y  42 

X, Y  0 



Self-Instructional 

Material 309  

1 2 3 

1 2 3 

(iii) Max Z = X – 3Y 

Subject to, X + Y  300 

X – 2Y  200 

X + Y  100 

Y  200 

and X, Y  0 

10. Solve graphically the following LPP: 

Max Z = 20X1 + 10X2 

Subject to, X
1 

+ 2X
2 

 40 
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3X
1 

+ X
2 

 30 

4X
1 
+ 3X

2 
 60 

and X
1
, X

2 
 0 

11. A company produces two different products A and B. The company makes a 

profit of ̀  40 and ̀  30 per unit on A and B respectively. The production process 

has a capacity of 30,000 man hours. It takes 3 hours to produce one unit of A and 

one hour to produce one unit of B. The market survey indicates that the maximum 

number of units of product A that can be sold is 8000 and those of B is 12000 

units. Formulate the problem and solve it by graphical method to get maximum 

profit. 

12. Solve graphically the following LPP: 

Min Z = 3X – 2Y 

Subject to, –2X + 3Y  9 

X – 5Y  –20 

X, Y  0 

(i) Min Z = –6X
1 
– 4X

2
 

Subject to, 2X
1 
+ 3X

2 
 30 

3X
1 
+ 2X

2 
 24 

X
1 

+ X
2 
 3 

X
1
, X

2 
 0 

(ii) Max Z = 3X
1 

– 2X
2
 

Subject to, X
1 

+ X
2 
 1 

2X
1 
+ 2X

2 
 4 

X
1
, X

2 
 0 

(iii) Max Z = –X
1 

+ X
2
 

Subject to, X
1 

– X
2 
 0 

–3X
1 

+ X
2 
 3 

X
1
, X

2 
 0 

13. Using simplex method, find non-negative values of X
1
, X

2 
and X

3 
when 

(i) Max Z = X
1 
+ 4X

2 
+ 5X

3 

Subject to the constraints, 

3X + 6X + 3X  22 

X + 2X + 3X  14 and 

3X
1

 + 2X
2
  14 
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1 2 

1 2 

1 2 

1 2 

1 2 

1 2 

1 2 

1 2 

1 2 

1 2 3 

1 2 3 

1 2 3 

1 2 3 

1 2 3 

1 2 3 

1 2 3 

1 2 3 

1 2 3 

1 2 3 
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(ii) Max Z = X
1 

+ X
2 

+ 3X
3
 

Subject to, 3X + 2X + X  2 

2X + X + 2X  2 

X , X , X  0 

(iii) Max Z = 10X
1 
+ 6X

2 

Subject to, X + X  2 

2X + X  4 

3X + 8X  12 

X , X  0 

(iv) Max Z = 30X
1 
+ 23X

2 
+ 29X

3 

Subject to the constraints, 

6X + 5X + 3X  52 

6X + 2X + 5X  14 

X , X , X  0 

(v) Max Z = X
1 
+ 2X

2 
+ X

3
 

Subject to, 2X + X – X  –2 

–2X + X – 5X  6 

4X + X + X  6 

X , X , X  0 

14. A manufacturer is engaged in producing 2 products X and Y, the contribution 

margin being ̀  15 and ̀  45 respectively. A unit of product X requires 1 unit of 

facility A and 0.5 unit of facility B. A unit of product Y requires 1.6 units of facility 

A, 2.0 units of facility B and 1 unit of raw material C. The availability of total 

facility A, B and raw material C during a particular time period are 240, 162 and 

50 units respectively. 

Find out the product-mix which will maximize the contribution margin by simplex 

method. 

15. A firm has available 240, 370 and 180 kg of wood, plastic and steel respectively. 

The firm produces two products A and B. Each unit of A requires 1, 3 and 2 kg of 

wood, plastic and steel respectively. The corresponding requirement for each unit 

of B are 3, 4 and 1 respectively. If A sells for ̀  4, and B for ̀  6, determine how 

many units of A and B should be produced in order to obtain the maximum gross 

income. Use the simplex method. 

16. Solve the following LPP applying M method: 

Maximize Z = 3X
1 
+ 4X

2
 

Subject to, 2X + X  600 

X + X  225 

5X + 4X  1000 

X + 2X  150 

X , X  0 
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