RGUCET 2023
MASTER OF SCIENCE IN STATISTICS
Full Marks: 100
Time: 2 Hours

Roll No. \square

Day and Date of Examination
Signature of Invigilator(s)
Signature of Candidate

General Instructions:

please read all the instructions carefully before making any entry.

1. DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE TOLD TO DO SO.
2. Candidate must write his/her Roll Number on the space provided.
3. This Test Booklet contains 100 Multiple Choice Questions (MCQs). Each question carries 1 mark. There shall be negative marking of 0.25 against each wrong attempt.
4. Please check the Test Booklet to verify that the total pages and total number of questions contained in the test booklet are the same as those printed on the top of the first page. Also check whether the questions are in sequential order or not.
5. Candidates are not permitted to enter into the examination hall 15 minutes after the commencement of the entrance test or leave the examination hall before 30 minutes of end of examination.
6. Making any identification mark in the OMR Answer Sheet or writing Roll Number anywhere other than the specified places will lead to disqualification of the candidate.
7. Candidates shall maintain silence inside and outside the examination hall. If candidate(s) is/are found violating the instructions mentioned herein or announced in the examination hall, they will be summarily disqualified from the entrance test.
8. In case of any dispute, the decision of the Entrance Test Committee, RGU shall be final and binding.
9. The OMR Answer Sheet consists of two copies, the Original copy and the Student's copy.

1	Choose the correct spelling from the following options.				d	Appointmen t
	a) Appointtment	b) Apointme nt	c) Appointman t	d) Appointment		
2	Choose the incorrect pairs from the following options.				d	mousemouses
	a) knife-knives	b) womanwomen	c) deerdeer	d) mousemouses		
3	Yesterday was the ___ day of our trip.				C	worst
	a) most worse	b) more worse	c) worst	d) worse		
4	Choose the option that is nearest in the meaning to 'gigantic'.				d	very big
	a) very small	b) very good	c) very bad	d) very big		
5	Choose the opposite of 'literate' from the following options.				a	illiterate
	a) illiterate	b) unliterate	c) deliterate	d) misliterate		
6	Jone can't drive ___ he has a license.				b	unless
	a) if	b) unless	c) although	d) yet		
7	Choose the one, which can be substituted for the given phrase "Ready to believe anything"				a	Credulous
	a) Credulous	b) Incredulo us	c) incredible	d) Credible		
8	Choose the one, which can be substituted for the given sentence "List of issues to be discussed at a meeting"				C	Agenda
	a) Time-Table	b) Plan	c) Agenda	d) Schedule		
9	Which is the Synonyms of word 'DECEITFUL'?				b	Fraudulent
	a) Fair	b) Fraudule nt	c) Honest	d) None of these		

10	Select the word which match same as the group of words given 'a family of young animals'								

19	Silk is obtained from						d	cocoon
	a) adult insect	b) pupa			egg	d) cocoon		
20	The most important live stocks of India are						C	 buffaloes
	a) cattle \& dog	b) $\operatorname{dog} \&$ cat		c) cattle \& buffaloes		d) elephant \& cattle		
21	Which bridge connect Dibrugarh in Assam and Pasighat in Arunachal Pradesh?						C	Bogibeel
	a) Naini b) Coronation	b) Coronation		c) Bogibeel		d) Pamban		
22	As the Chief Minister of which North Eastern state was Conrad Sangma sworn-in?						C	Meghalaya
	a) Assam		b) Odish		c) Meghalaya	d) Nagaland		
23	Name the person who climbed Mt. Everest for the record $27^{\text {th }}$ time, breaking his own record.						b	Kami Rita Sherpa
	a) Pasang Daw		b) Kami Rita Sherpa		c) Apa Sherpa	d) Tenzing Norgay		
24	In the year 2023, total how many persons have been honoured with Padma Awards?						b	106 persons
	a) 128 persons		b) 106 persons		c) 39 persons	d) 6 persons		
25	In $1^{\text {st }}$ December 2022, which country took over the G20 Presidency?						a	India
	a) India		b) German		c) Indonesia	d) Pakistan		

Domain

26	The number of possible samples of size n out of N population units without replacement is				a	$\binom{N}{n}$
	a) $\binom{N}{n}$	b) $\binom{n}{N}$	c) $n^{2} \quad$ d	d) n !		
27	If each and every unit of a population has an equal chance of being included in the sample, it is known as:				d	unrestricted sampling
	a) restricted sampling	b) purposive sampling	c) subjective sampling	d) unrestricted sampling		
28	The selected items of a sample resulted in the same value pertaining to a character. The variance of the sample is:				b	0
	a) 1	b) 0	c) positive infinity	d) not determinable		
29	If $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a population $N\left(0, \sigma^{2}\right)$, the sufficient statistic for σ^{2} is:				b	$\sum X_{i}^{2}$
	a) $\sum X_{i}$	b) $\sum X_{i}^{2}$	c) $\left(\sum X_{i}\right)^{2}$	d) $\left(\sum X_{i}\right)^{3}$		
30	If the expected value of an estimator is not equal to its parametric function $\tau(\theta)$, it is said to be a:				b	biased estimator
	a) unbiased estimator	b) biased estimator	c) consistent estimator	d) All of the above		
31	If $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a population $N\left(0, \sigma^{2}\right)$, the estimator $\frac{\sum X_{i}}{n}$ is:				d	All of the above
	a) a BAN estimator for μ	b) a consistent estimator for μ	c) an unbiased estimator of μ	d) All of the above		
32	If $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a population $N\left(0, \sigma^{2}\right)$, the maximum likelihood estimate of σ is:				C	
	a) $\frac{\sum X_{i}}{n}$	b) $\frac{\sum x_{i}^{2}}{n}$	c) $\sqrt{\frac{\sum X_{i}^{2}}{n}}$	d) $\sqrt{\sum X_{i}^{2}} / n$		$\sqrt{\frac{\sum X_{i}^{2}}{n}}$
33	If X is a random variable and a is a constant. The correct expectation from the list is				d	$\mathrm{E}(\mathrm{aX})=\mathrm{aE}(\mathrm{X})$
	a) $E(a X)=X$	b) $E(a X)=a$	c) $E(a X)=a X$	d) $E(a X)=a E(X)$		

34	If X is a random variable, $E\left(e^{t X}\right)$ is known as:				b	moment generating function
	a) characteristic function	b) momentgenerating function	c) probability generating function	d) probability mass function		
35	If X is a random variable with mean μ, the $E(X-\mu)^{r}$ is called:				C	$r^{t h}$ central moment
	a) variance	b) $r^{\text {th }}$ raw moment	c) $r^{t h}$ central moment	d) second central moment		
36	If X and Y are two random variables such that their expectations exist and $P(x \leq y)=1$, then				a	$E(X) \leq E(y)$
	a) $E(X) \leq E(y)$	$\begin{aligned} & \text { b) } E(X) \geq \\ & E(y) \end{aligned}$	$\begin{aligned} & \text { c) } E(X)< \\ & E(y) \end{aligned}$	d) $E(X)=E(y)$		
37	1. The expectation of a random variable X is given by:				a	$\begin{aligned} & \sum x f(x) \\ & \int x f(x) d x \end{aligned}$
	$\text { 2. } \begin{aligned} & \text { a) } \\ & \quad \sum x f(x), \\ & \int x f(x) d \end{aligned}$	$\begin{aligned} & \text { b) } \sum x f(x), \\ & \int x^{2} f(x) d x \end{aligned}$	$\begin{aligned} & \text { c) } \sum x^{2} f(x), \\ & \int x f(x) d x \end{aligned}$	$\begin{aligned} & \text { d) } \sum x^{2} f(x), \\ & \int x^{2} f(x) d x \end{aligned}$		
38	3. The variance of a random variable X is given by				b	$\mathrm{E}\left(X^{2}\right)-[E(X)]^{2}$
	4. a) $E\left(X^{2}\right)$	$\begin{aligned} & \text { b) } \mathrm{E}\left(X^{2}\right)- \\ & {[E(X)]^{2}} \end{aligned}$	c) $E(X)$	d) $[E(X)]^{2}$		
39	5. The number of students in a class is an example of				b	discrete variable
	6. a) continu ous variabl e	b) discrete variable	c) definite variable	d) qualitative variable		
40	The term regression was introduced by:				b	Sir Francis Galton
	a) R.A. Fisher	b) Sir Francis Galton	c) Karl Pearson	d) Spearman		
41	If X and Y are two variates, there can be at most:				b	two regression line
	a) one regression line	b) two regression line	c) three regression line	d) four regression line		
42	If in a regression equation $Y=\beta_{0}+\beta_{1} X+\varepsilon, \varepsilon \sim \operatorname{iid} N\left(0, \sigma^{2}\right)$ the					

	variance of $\hat{\beta}_{1}$ is:				b	$\sigma^{2} / s_{x x}$
	a) $\sigma^{2} /(n-2)$	b) ${ }^{2} / s_{x x}$	c) σ^{2} / n	d) σ^{2}		
43	The unit of the correlation coefficient is				c	non-exist
	a) $\mathrm{kg} / \mathrm{cc}$	b) cm	c) non-exist	d) cm^{2}		
44	The range of multiple correlation coefficients is:				a	0 to 1
	a) 0 to 1	b) 0 to ∞	c) -1 to 1	d) $-\infty$ to ∞		
45	The significance of a slope coefficient for a simple linear regression can be tested by				b	t-test
	a) Chi-square test	b)t-test	c) z-test	d) KS test		
46	If $\operatorname{Var}(X+Y)=\operatorname{Var}(X-Y)$, then the correlation between X and Y is equal to:				d	0
	a) 1	b) $1 / 2$	c) $1 / 4$	d) 0		
47	The measure of association usually deals with:				a	attributes
	a) attributes	b) quantitative factors	c) variables	d) number		
48	The total N of all the frequencies is known as the class of:				a	zero order
	a) zero order	b) first order	c) second order	d) third order		
49	With two attributes one can have in all:				d	nine class frequencies
	a) two class frequencies	b) four class frequencies	c) eight class frequencies	d) nine class frequencies		
50	With three attributes A, B, and C, the frequency (β) in terms of positive attribute frequencies is:				b	N -(B)
	a) $\mathrm{N}-(\mathrm{A})-(\mathrm{B})-$ (C)	b) $\mathrm{N}-$ (B)	c) $\mathrm{N}-(\mathrm{A})-(\mathrm{C})$	d) N -(AC)		
51	If for two attributes A and B , the relation $(\alpha \beta)=\frac{(\alpha)(\beta)}{N}$ holds, the attributes (α) and (β) are:				C	independent
	a) positively associated	b) negatively associated	c) independent	d) no conclusion		

52	If class frequencies between two attributes A and B hold the inequality, $(A B)(a b)>(a B)(A b)$, then the value of Q is:				d	any value between 0 and 1
	a) 1	b) -1	c) 0	d) any value between 0 and 1		
53	If all A's are B's, the coefficient of colligation is equal to:				C	1
	a) 0	b) -1	c) 1	d) infinity		
54	Out of 200 persons in a locality, 100 were vaccinated to prevent TB. Out of 50 patients, 10 were vaccinated. The coefficient of association Q between vaccination and prevention fromf TB is:				a	5/7
	a) $5 / 7$	b) $5 / 11$	c) $-5 / 11$	d) $-5 / 7$		
55	The numerical value of the coefficient of contingency is:				d	All of the above
	a) lies between 0 and 1	b) never attain the value 1	c) can never be negative	d) All of the above		
56	Interpolation is a technique for				a	obtaining most likely missing links
	a) obtaining most likely missing links	b) finding the relationship between two variables	c) comparing the two series	d) estimation of parameter		
57	Interpolation means estimating a value that lies:				b	within the given range of arguments
	a)outside the given range of arguments	b)within the given range of arguments	c) outside the range of the dependent variable	d) all		
58	Interpolation and extrapolation are the same in the series that					both determine most likely estimate
	a) both results in the same value	b) both are complementary to each other	c) both determine the most likely estimate	d) both are supplementary to each other	c	
59	The graphic method of interpolation is:				d	All of the above
	a) simple	b) nonalgebraical	c) not fully reliable	d) All of the above		

69	The mean and variance of a binomial distribution are 8 and 4 respectively. Then $P(X=1)$ is equal to				a)	$\frac{1}{2^{12}}$
	a) $\frac{1}{2^{12}}$	b) $\frac{1}{2^{4}}$	c) $\frac{1}{2^{6}}$	d) $\frac{1}{2^{8}}$		
70	In hypergeometric distribution, H. G. (N, k, n) if $N \rightarrow \infty, \frac{k}{N} \rightarrow p$, the hypergeometric distribution reduces to				a)	binomial distribution
	a) binomial distribution	b) geometric distribution	c) normal distribution	d) Bernoulli distribution		
71	Laplace distribution curve with regard to peakedness is				a)	more peaked than normal
	a) more peaked than normal	b) less peaked than normal	c) adequately peaked	d) depends on all the variables of its parameters		
72	In estimating the parameters of a linear function, most commonly used method of estimation is:				b)	least square method
	a) maximum likelihood estimation	b) least square method	c) method of minimum Chisquare	d) method of moments		
73	The minimum variance approach was put forth by whom and in which year				b)	Markov in 1900
	a) Gauss in 1809	b) Markov in 1900	c) Fisher in 1920	d) all the above		
74	When an investigator wants a sample containing m units which possess a rare attributes, the appropriate sampling procedure is				c)	inverse sampling
	a) srswor	b) stratified sampling	c) inverse sampling	d) all the above		
75	If larger units have greater probability of their inclusion in the sample, it is known as				b)	selection with probability proportional to
	a) selection with replacement	b) selection with probability proportional to	c) selection with constant probability	d) probability selection		

	nts are zero					zero
83	If $X \sim N(0,1)$ and $Y \sim \chi_{n}^{2}$ the distribution of the variate $X / \sqrt{Y / n}$ follows				b)	Fisher's tdistribution
	a) Cauch y's distrib ution	b) Fisher's tdistribution	c) Student's tdistribution	d) none of the above		
84	Chi-square distribution curve in respect of symmetry is				c)	positively skew
	a) negati vely skew	b) symmetrical	c) positively skew	d) any of the above		
85	F-distribution curve in respect of tails is				b)	positive skew
	a) negati ve skew	b) positive skew	c) symmetrical	d) any of the above		
86	Area of the critical region depends on				a)	size of type I error
	a) size of type I error	b) size of type II error	c) value of statistic	d) number of observations		
87	Degrees of freedom is related to				c)	no. of independent observations in a set
	a) no. of observati on	b) hypothesis under test	c) no. of independent observations in a set	d) none of the above		
88	Paired t -test is applicable when the observations in the two sample are				d)	all the above
	a) paired	b) correlated	c) equal in number	d) all the above		
89	The hypothesis that the population variance has a specified value can be tested by					

	a) F-test ${ }^{\text {b }}$	b) Z-test	c) χ^{2}-test				d) none of the above		c)	χ^{2}-test
90	Analysis of variance utilises								a)	F-test
	a) F-test b)	b) χ^{2}-test		c) Z-test			d) t-test			
91	A time series consists of								c)	four components
	a) two component s	b) three components		c) four components			d) five components			
92	Moving average method suffers from								d)	all the above
	a) the loss of informatio n	b) the element of subjectivity		c) the decision about the number of years in groups			d) all the above			
93	Ratio to trend method for seasonal indices provides good results if								c)	the periods are of short duration
	a) the periods are of long duration	b) the periods are given six monthly		c) the periods are of short duration			d) all the above situations			
94	Each contrast among k treatments has								b)	one d.f.
	a) (k-1) d.f.	b) one d.f.				c) kd		d)non e of the above		
95	Completely randomised designs are mostly used in								c)	pot experiments
	a) field experiments	b) experim	ents	n ani	mals	c) pot experiments		d) all the above		
96	Unweighted price index formula is								b)	seldom used
	a) most frequ	quently used	b) seld use		c) th	best		d) all the above		

97	Laspeyre's index number possess				c)	upward bias
	a) downward bias	b) no bias	c) upward bias	d) none of the above		
98	Paasche's index number was invented in the year				c)	1874
	a) 1871	b) 1901	c) 1874	d) 1918		
99	Drobish-Bowley gave the formula for price index in				b)	1901
	a) 1910	b) 1901	c) 1801	d) 1871		
100	Deflation of index number is meant for calculating				d)	all the above
	a) real wages	b) money income index number	c) real income index number	d) all the above		

SPACE FOR ROUGH WORK

