| | | | | | | | | Test | Bookle | t No | | |--------------|----------|----------------|---------------|---------|---------------|-------|---------------|------|--------|--------|--------------| | This booklet | consis | ts of <u>1</u> | <u>00</u> que | estions | and <u>12</u> | print | ed pag | es. | | | | | RGUCET/_ | | _ |] | M.Sc | | | г 2023
НЕМ | | CS | Series | NIL | | Full Mark | s: 100 | | | | | | | | | Т | ime: 2 Hours | | Roll No. | | | | | | | | | | | | | Day and Date | e of Exa | aminat | ion | : | | | | | | | | | Signature of | Invigila | ator(s) | | : | | | | | | | | | Signature of | Candid | ate | | : | | | | | | | | General Instructions: ## PLEASE READ ALL THE INSTRUCTIONS CAREFULLY BEFORE MAKING ANY ENTRY. - 1. DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE TOLD TO DO SO. - 2. Candidate must write his/her Roll Number on the space provided. - 3. This Test Booklet contains 100 Multiple Choice Questions (MCQs). Each question carries 1 mark. There shall be negative marking of 0.25 against each wrong attempt. - 4. Please check the Test Booklet to verify that the total pages and total number of questions contained in the test booklet are the same as those printed on the top of the first page. Also check whether the questions are in sequential order or not. - 5. Candidates are not permitted to enter into the examination hall 15 minutes after the commencement of the entrance test or leave the examination hall before 30 minutes of end of examination. - 6. Making any identification mark in the OMR Answer Sheet or writing Roll Number anywhere other than the specified places will lead to disqualification of the candidate. - 7. Candidates shall maintain silence inside and outside the examination hall. If candidate(s) is/are found violating the instructions mentioned herein or announced in the examination hall, they will be summarily disqualified from the entrance test. - 8. In case of any dispute, the decision of the Entrance Test Committee, RGU shall be final and binding. - 9. The OMR Answer Sheet consists of two copies, the Original copy and the Student's copy. | 1 | Which among women the ri | the following coght to vote? | untries | s was the e | arli | est to give | c) | New
Zealand | |---|---|--|-------------------------------|---------------------------------------|-----------|-----------------------|---------------------------|-------------------------| | | a)Iceland | b)India | c) Ne
Zeala | | d) | U.S.A | | | | 2 | What is the apaccelerating of | pparent weight of
lownwards? | f the po | erson wher | n th | e elevator is | | | | | a)Equal to
actual
weight | b)Greater than actual weight | _ | ss than
al weigh | d) | 0 | С | Less than actual weight | | 3 | India's first w
state/UT? | rater metro was r | ecently | y inaugurat | ted | in which | | | | | a) Kerala | b) Goa | c) We
Beng | | d) | Maharashtra | а | Kerala | | 4 | | ion has been laur
trouble-torn Suda | | by the gove | rnı | nent to evacuate | | | | | a)Operation
Polo | b)Operation
Shakti | c)Ope
Kave | eration
ri | d) | Operation Durga | С | Operatio
n Kaveri | | 5 | | d the world's larg
ich resulted in ma | | | ver | ful rocket | | | | | a) ISRO | b) European
Space Agency | c) NA | ASA | d) | SpaceX | d | SpaceX | | 6 | What is the na | ame of the first cr | ruise sl | hip ever bu | ilti | in India? | | MV Ganga
Vilas | | | a)MV
Jamuna
Vilas | b) MV Ganga
Vilas | c) MV
Goda | V
vari Vilas | | MV
ahmaputra Vilas | b) | | | 7 | Asia's largest inaugurated i | helicopter manu
n | facturi | ng facility | rece | ently | | | | | a)Tamil
Nadu | b) Punjab | c) d)Karnataka
Maharashtra | | Karnataka | d) | Karnatak
a | | | | Which of the following is not the function of skin? | | | | | | | | | 8 | a)Calcium
production | b)Protection | c)Exc
waste | Excretion of d)Temperature regulation | | а | Calcium
productio
n | | | | Which of the following is not an award for Mathematics? | | | | | | | | | 9 | a) Noble Prize | b) Field Meda | al c | c) Abel Priz | e | d)SASTRA
Ramanujan | а | Noble
Prize | | | | | | | Prize | 9 | | | |------|--|--------------------------------|-------------------|--------------------|--------------|--------------------------------|---|-----------------------------| | | A computer stor | es its data in | mem | ory in | l | | | | | 10 | a) Decimal
form | b) Hexadeci
form | mal | c) Binary
form | d) 0 | ctal form | С | Binary
form | | 4.4 | Select the relate | d words. If Er | ergy: | Joule, then | | | | | | 11 | a)Axe: Grind | b)Resistance
Ohm | e: | c)Power:
Ampere | d) Cı
Amn | ırrent:
neter | b | Resistanc
e: Ohm | | 12 | India's P V Sindh
Championships | | med | al/position in th | ie Asia | n | С | Bronze | | | Gold | b) Silver | | c) Bronze | d) Fo | ourth Place | | | | | Which king rule | | | | | | | | | 13 | a) Haryanka
dynasty | d | Shunga
Dynasty | | | | | | | | Identify the erro | r. | | | I | | | | | 14 | He / has married | d / her / last i | montl | n. | | | | | | - | a) He | b) has
married | c) he | er | | d) last
month | b | has
married | | 15 | Which of the foll | owing is a sta | ateme | ent? | | | | | | | a) Open the door. | b) Do
your
homewo
rk. | c) St | witch on the fan | | d) Two
plus two
is four. | d | Two plus
two is
four. | | 16 | A person who pr | retends to be | what | he is not is calle | ed | | | | | | a)Imposter | b) Fraud | c)Im | nitator | | d)
Imbiber | a | Imposter | | 17 | Were you a bird, | , you | i | n the sky. | | | | | | - | a) would fly | b) shall
fly | c) sł | nould fly | | d) shall
have
flown | а | would fly | | | Pick out the most effective word from the given words to fill in the blanks: | | | | | | | | | 18 | I saw a of cows in the field | | | | | | | | |
 | a) group | b) herd c)) swarm d)flock | | | | | b | herd | | 19 | Jawaharlal spent | t his childhoo | d | Anand Bhawa | an. | 1 | | | | | a)at | | b)in | С |)on | d)across | a | at | |----|--|--|----------------------------|-------|-------------------------------|----------------------|---|---------------------------| | 20 | Word or | phrase v | which is mo | st r | nearly to the word Pre | carious is | | | | | a) Huge | | b)
uncertai
n | С |) Dangerous | d)
valuable | С | Dangerou
s | | | Opposite | of foren | ost is | 1 | | | | | | 21 | | | | | | | | | | | a) Prema | ture | b)
Disposed | |) Unimportant | d) Mature | С | Unimport
ant | | 22 | | | 'BLEAT' as
ling system? | | | | | | | | a) GPTXN | b)PT | GXN | | c) GPXNT | d)GPTNX | d | GPTNX | | 23 | If 8 th Febr
February | - | 005 was a 1 | Γue | sday, what was the day | y on 8 th | | | | | a) Sunday b) Monday c) Tuesday | | | | c)Tuesday | d)Wednes
day | a | Sunday | | 24 | If IMHO= | =JNIP; II | OK=JEL an | d S(| O=TP, then IDC= | | | | | | a) JDE | b)JCl |) | | c)JED | d)JDC | С | JED | | 25 | If DELHI : | | | and | CALCUTTA as 825896 | 662, then | | | | | a)
5279431 | b) 85 | 543691 | | c) 5978013 | d)
8251896 | d | 8251896 | | 26 | Let $G = \{$ operation | |), ±1, ±2, ·· | · } a | and ' * ' be the usual m | ultiplication | | | | | a) (G,*) is not a group. | a) $(G,*)$ b) $(G,*)$ is a c) $(G,*)$ is abelian but does not form a group an abelian an abelian | | | | | d | (G,*) is an abelian group | | 27 | Let $U = \{$ multiplication of U ? | | the
ot a subgroup | | | | | | | | a) $\overline{H} = \{1, 11\}$ | a) $H = \begin{cases} b) K = \\ \{1,11\} \end{cases}$ b) $K = \begin{cases} c) L = \{1,7,13,19\} \end{cases}$ d) $M = \begin{cases} 1,3,7,9 \end{cases}$ | | | | | | $L = \{1, 7, 13,$ | | 28 | Let $(\mathbb{Z}, +)$
$H_1 = \{2n$
true? | | tion, and
following a | | | | | | | | a) $H_1 \cap$
H_2 is a
subgro
up of
$(\mathbb{Z}, +)$. | b) $H_1 \cup H_2$ is a subgroup of $(\mathbb{Z}, +)$. | c) H_1 is a subgroup of $(\mathbb{Z}, +)$ but H_2 is not. | d) Neither H_1 nor H_2 are subgroups of $(\mathbb{Z}, +)$. | a | $H_1 \cap H_2$ is a subgroup of $(\mathbb{Z}, +)$. | |----|---|--|--|--|---|---| | 29 | The numl | | utations of in a permutation | s of N | | | | | a) $\frac{1}{2}N$ | b) $\frac{1}{2}(N-1)!$ | c) $\frac{1}{2}N!$ | $d)\frac{1}{2}(N+1)$ | С | $\frac{1}{2}N!$ | | 30 | operation
is | n of matrix multip | a real number be a group unlication. Then the identity e | lement in <i>M</i> | | | | | a) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ | $\begin{bmatrix} 1 & 0 \\ 1/2 & 1/2 \end{bmatrix}$ | $\begin{bmatrix} c \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ | d) [1/2 1/2] [1/2 1/2] | d | [1/2 1/2]
[1/2 1/2] | | 31 | | | order p and H is a non-empty des p . Then H is a subgroup | | | | | | a) <i>G</i> is an abelian. | b) G is a cyclic | c) Identity elements in <i>G</i> and <i>H</i> are different. | d) <i>H</i> is a cyclic but <i>G</i> is not. | b | G is a cyclic | | 32 | | finite cyclic grou
of generators of <i>G</i> | p of order p , where p is a pr is | ime. Then the | | | | | a) p/2 | b) $(p-1)/2$ | c) <i>p</i> – 1 | d) (p + 1)/2 | С | p-1 | | 33 | A group (| (G,*) Is abelian if | for all $x, y \in G$, | | | | | | a) x *
y = y *
x | | c) x * y = (y + x) | $\begin{array}{c} \text{d) } x * y = \\ (y * x) + 1 \end{array}$ | a | $ \begin{array}{l} x * y \\ = y * x \end{array} $ | | 34 | A subground $h \in F$ | | s a normal subgroup of G if f | for all $g \in G$ | | | | | a) $h^{-1}gh \in H$ | b) $g^{-1}hg \in H$ | c) $h^{-1}gh \in G$ | $\begin{array}{c} \text{d) } g^{-1}hg \in \\ G \end{array}$ | b | $g^{-1}hg \in H$ | | 35 | A ring (R | $(+, \cdot)$ is commutation | ative if, for all $x, y \in R$, | | | | | | a) x + y = y + x | b) $x \cdot y = y + x$ | $c) x \cdot y = y \cdot x$ | | С | $x \cdot y \\ = y \cdot x$ | | 36 | | | ot an integral domain? (N, I
rs, real numbers, complex nu | | | | | | rational n | numbers, respect | ively.) | | | | |----|---------------------------------------|---|--|--|---|-----------------------------------| | | a)
(ℕ, +,·) | b) (R, +,·) | c) (C, +,·) | $d) (\mathbb{Q}, +, \cdot)$ | a | (ℕ,+,⋅) | | 37 | Which of | the following is n | ot true about a field? | | | | | | a) Every field is an integral domain. | b) Every
integral
domain is a
field. | c) Every non-zero element in a field has a multiplicative inverse. | d) Every
field is a
commutativ
e ring. | b | Every integral domain is a field. | | 38 | If for inte | ger a and m , gcc | $d(a,m) = 1 \text{ and } a^{m-1} \equiv 1(n)$ | nod m), then | | | | | a) <i>m</i> is always a prime | b) <i>m</i> is never prime | c) <i>m</i> is a multiple of <i>a</i> always | d) <i>m</i> may or may not be a prime. | d | m may or may not be a prime. | | 39 | Which of | the following set | is a reduced residue system | n modulo 4? | | | | | a)
{0,4,8,1 | | c)) {4, 5, 7, 10} | d)
) {1, 2, 6, 9} | b | {5,7} | | 40 | | per of incongruer (mod 42) is | nt solutions of the linear con | gruence | | | | | a) 1 | b) 7 | c) 6 | d) 12 | С | 6 | | 41 | The value | of x such that 2^5 | $x^{50} \equiv x \pmod{7}$ is | _ | | | | | a) 2 | b) 4 | c) 6 | d) 8 | b | 4 | | 42 | If p is an | odd prime, then | | 1 | | | | | a) $(p - 1) \equiv 1 \pmod{p}$ | $1 \equiv 0 (mod \ p)$ | c) $(p-1)! \equiv 1 \pmod{p}$ | $(p+1)! \equiv 1 \pmod{p}$ | С | $(p-1)!$ $\equiv 1 \pmod{p}$ | | 43 | solve the | y condition to approximation simultaneous configuration $x \equiv b \pmod{N}$ | Theorem to $x \equiv$ | | | | | | a)
gcd(<i>M</i> , <i>N</i>)
1 | | c) $gcd(a, M) = gcd(b, N)$ | $ \begin{array}{l} d) \\ gcd(a,b) = \\ 1 \end{array} $ | a | $\gcd(M,N) = 1$ | | 44 | | per of positive int $3x + 2y = 6$ is | teger solution of the Diopha | ntine | | | | | a) 1 | b) 2 | c) 3 | d) 0 | d | 0 | | 45 | Prime nu
called | mbers of the forn | $n2^n - 1$, where n is a positive | ve integer, are | | | |----|---|---|---|---|---|---| | | a)
Fermat
primes | b) Merssene
primes | c) Fibonacci primes | d)Harmonic
primes | b | Merssene
primes | | 46 | | | ncorrect about complex nu | mbers? | | | | | $ z ^2 = z \overline{z}$ | b) $ z_1 - z_2 \ge z_1 - z_2 $ | c) $\overline{z_1 + z_2} \le \overline{z_1} + \overline{z_2}$ | d) $\overline{\left(\frac{z_1}{z_2}\right)} = \overline{\frac{z_1}{z_2}},$
$z_2 \neq 0.$ | С | $ \frac{\overline{z_1 + z_2}}{\leq \overline{z_1} + \overline{z_2}} $ | | 47 | $If z_1 = -1$ | 1 and $z_2 = i$, then | the argument of (z_1z_2) is | | | | | | a) $-3\pi/2$ | b) π/4 | c) – π/2 | d) 3π/2 | d | $3\pi/2$ | | 48 | If $f(z) =$ | (z/\overline{z}) , then $\lim_{z\to 0}$ | | | | | | | a) 0 | b) 1 | c)-1 | d) does not exist | d | does not
exist | | 49 | | nplex numbers z_1 must lie on | , z_2 and z_3 are in arithmetic | progression, | | | | | a) a
hyperb
ola | b) a circle | c) a straight line | d) a
parabola | С | a straight
line | | 50 | If a functi | on f(z) = u(x, y) |)+iv(x,y) is analytic, then | | | | | | a)
u(x,y)
is
harmon
ic but
v(x,y)
is not. | - | c) neither $u(x, y)$ nor $v(x, y)$ is harmonic. | d) both $u(x, y)$ and $v(x, y)$ are harmonic. | d | both $u(x, y)$ and $v(x, y)$ are harmonic. | | 51 | The value | e of $sin(log i^i)$ is | | | b | | | | a) 1 | b) -1 | c) 1 + i | d) 1 – i | ט | -1 | | 52 | then | eal solution of the | (a-ib), | | | | | | a) $a^2 - b^2 = 1$ | b) $a^2 + b^2 = 1$ | $c) a^2 + b^2 = 0$ | $d) a^2 - b^2 = 0$ | b | $\begin{vmatrix} a^2 + b^2 \\ = 1 \end{vmatrix}$ | | 53 | If a polyn
remainde | omial $f(x)$ is diver is | then the | | | | | | a) <i>f</i> (<i>A</i>) | b) $A + f(A)$ | c) $f(A) - A$ | d) A | a | f(A) | | 54 | | and δ are roots
hen $\alpha + \beta + \gamma$ | | | - x ³ - | - 16x | $^{2} - 4x +$ | | | |----|------------------------------------|--|--|---------------------------------------|---|--------------|--|-------------------------|--| | | a) 1 | b) -4 | c) 48 | | | | d) -1 | d | -1 | | 55 | | ws or two colum
he determinan | | minan | t are | same | e then the | | | | | a) 0 | b) 1 | c) 2 | | | | d) -1 | a | 0 | | 56 | If $1, \omega$ and equal to | d ω^2 are cube r | oots of the un | ity, the | $\operatorname{en} \begin{vmatrix} 1 \\ \omega \end{vmatrix}$ |) α | $\begin{bmatrix} \omega & \omega^2 \\ \sigma^2 & 1 \\ 1 & \omega \end{bmatrix}$ is | | | | | a)3 | b) -1 | c) 0 | | | | d) 1 | С | 0 | | 57 | The equa | equation $x^5 - x^4 + x^3 - 2x^2 - 3 = 0$ has | | | | | | | | | | a) no
negativ
e roots | b) all negative roots c) three negative roots d) at least one negative roots | | | | | a | no
negative
roots | | | 58 | A square | matrix <i>M</i> is sa | id to be symm | etric i | fand | only | if | | | | | $a) \\ det(M) = \\ M = 0$ | $\det(M) =$ | $det(M) = (transpose \ of \ M) (transpose \ of \ M)$ | | | | С | M
= (transpo | | | 59 | $x \in X$ is a | be a metrics solution be a metrics solution be a metrics of $r > 0$, | - | | | | - | | | | | a) $S_r(x) \cap A \neq \emptyset$ | b)) $(S_r(x) - \frac{1}{2}$ | $\{x\}) \cup A \neq \emptyset$ | $(S_r(x))$ $\{x\}$ $A \neq \emptyset$ | () —
∩ | d) (
{x}) | $S_r(x) - \\ 0 \cap A = \emptyset$ | С | $(S_r(x) - \{x\})$ $\cap A \neq \emptyset$ | | 60 | | be a discrete $[x_0]$ centred at | - | Then f | or 0 < | < r < | (1, closed | | | | | a) <i>X</i> | b) $X - \{x_0\}$ | | c) { <i>x</i> | 0} | d) Ø |) | С | $\{x_0\}$ | | 61 | In a metr | ic space, ever C | auchy sequen | ce | | | | | | | | a) has a converg ent sub sequenc e | b) is bounded | c space, ever Cauchy sequence b) is bounded c) is unboun ded d) convergent. | | | | b | bounded | | | 62 | | If A, B and C are mutually exclusive events such that $P(A) = (3/2)P(B)$ and $P(C) = (1/2)P(B)$. Then $P(A)$ is _ | | | | | | | | | | $(P(\cdot)den$ | otes p | robability of an eve | ent.) | | | | |----|---------------------------------|--------------|--|--|------------------------------------|----|---------------------------------------| | | a) 4/13 | b) 3, | /4 | c) 12/13 | d) 13/12 | a | 4/13 | | 63 | If A and E | are i | ndependent events, t | hen | | | | | | $P(A \cap B) = 0$ | P(B) | | c) $P(A \cap B) = P(A)P(B)$ | | С | $P(A \cap B) = P(A)P(B)$ | | 64 | The differ | rentia | l equation $\left(\frac{d^2y}{dx^2}\right)^2 - \frac{d}{dx^2}$ | $\frac{y}{x} - y^3 = 0 \text{ ha}$ | as degree: | | | | | a)0.5 | | b)2 | c)3 | d)4 | b) | 2 | | 65 | A cos
given | μx + 1
by | ntial equation of t $B \sin \mu x$, where A an | d <i>B</i> are arbi | trary constants, is | | | | | $a)\frac{d^2y}{dx^2} + \mu$ | <i>y</i> = | $b)\frac{d^2y}{dx^2} - \mu y = 0$ | $c)\frac{d^2y}{dx^2} + \mu^2 y = 0$ | $d)\frac{d^2y}{dx^2} - \mu^2y = 0$ | c) | $\frac{d^2y}{dx^2} + \mu^2y = 0$ | | 66 | Which o | f the f | ollowing differential | equation is li | near? | | | | | $a)\frac{dy}{dx} + x^2y^2 = sx$ | in y | $b)\frac{dy}{dx} - x^2y = \sin x$ | $c)(1 + y)\frac{dy}{dx} + \sin x = 0$ | $d)\frac{dy}{dx} + y(x+y) = x^2$ | b) | $\frac{\frac{dy}{dx}}{x^2y} = \sin x$ | | 67 | The diffe | rentia | l equation $\frac{dy}{dx} + P(x)y$ | $y = Q(x)y^n$ is | s called: | d) | Bernoulli'
s
equation | | | a)Auxilia
equation | ry | b)Euler's equation | c)Linear
equation | d) Bernoulli's equation | | | | 68 | The differ | rentia | l equation $y = x \frac{dy}{dx} +$ | $f\left(\frac{dy}{dx}\right)$ is known | own as: | | | | | a)Bernou
equation | | b) Clairut's
equation | c) Linear
equation | d)Exact
equation | b) | Clairut's
equation | | 69 | The solut | ion of | $5\frac{dy}{dx} + 6 = 0 \text{ is}$ | | | | | | | a)(a) y = c | = x + | $b)y^2 = x + c$ | c)(y - 2x - c)(y - 3x - c) = 0 | d) none of
these | c) | (y-2x - c)(y - 3x - c) $= 0$ | | 70 | If $f(D)y$ | = 0 , v | where $D \equiv \frac{d}{dx}$, be a li | inear differer | ntial equation with | | | | | constant co | efficients, then its au | xiliary equation | ı is | | | |-----|--------------------------------|---|--------------------|-----------------------------|----|-------------------| | | a)f(D-m)=0 | b)f(m) = 0 | $c)f(e^m)=0$ | d) none of these | b) | f(m)=0 | | 71 | The number s | system with base 2 is | known as: | 1 | | | | | a)Decimal
system | b) Binary system | c) Octal
system | d)
Hexadecimal
system | b) | Binary
system | | 72 | | esult of the binary ad
010 and 0111? | ldition perform | ed on the | | | | | a)1001 | b)0101 | c) 0110 | d) 1111 | a) | 1001 | | 73 | The C language | e consists of nu | umber of keywo | rds. | | | | | a)40 | b)32 | c)33 | d)56 | b) | 32 | | 74 | C programmin | g language was devel | loped by | | | | | | a) Ken
Thompson | b) Dennis Ritchie | c)Bill Gates | d) Peter Norto | b) | Dennis
Ritchie | | 75 | Which is the co | orrect way to declare | a pointer? | | | | | | a)int_ptr; | b) int *ptr; | c) *int ptr; | d) ptr_int; | b) | int *ptr; | | 76 | Which is more | appropriate for read | ling in a multi-w | vord string? | | | | | a)printf() | b) gets() | c) scanf() | d) puts() | b) | gets() | | 77 | The processor language is a fo | of translating a sourd
unction of: | ce program into | machine | c) | Compiler | | | a)Translator | b)Assembler | c)Compiler | d) none of
these | | | | 78 | The operator | 1 | a) | x = x + 5 | | | | | a)x = x + 5 | b)x + 5 = x | c)x = 5 + 1 | d)x = 5 + 5 | - | | | 79 | Which of the fo | lowing is uniformly | continuous on | <u> </u>
[0.1]? | | | | • • | | | 10 | [~/ ~]' | | | | | $a)f(x) = x^2$ | $b)f(x) = \sin x^2$ | c)f(x) = 1/x | $d)f(x) = \frac{x}{1+x}$ | d | $f(x) = \frac{x}{1+x}$ | | | | |----|---|---|---|---------------------------------|---|--|--|--|--| | 80 | The value of | $\lim_{x \to 0} \left(\frac{1 - \cos x}{3x^2} \right)$ | | • | | | | | | | | a) 0 | b) 1/3 | c) 1/6 | d) 1/9 | С | 1/6 | | | | | 81 | Which is an | example of infinitely | oscillatory sequen | 1 | | , | | | | | | $\begin{array}{c} a)\langle (-1)^n/\\ n\rangle \end{array}$ | $b)\langle (-1)^n n \rangle$ | $c)\langle (-1)^{n^2}\rangle$ | $d)\langle (-1)^n/n^2\rangle$ | b | $\langle (-1)^n n \rangle$ | | | | | 82 | If $f(x+1) + \mathbb{N}$, is | | | | | | | | | | | a)nf(1) | b)0 | c)n | $d)(f(1))^n$ | a | <i>nf</i> (1) | | | | | 83 | The function | $f(x) = \sin 1/x \text{ at } x$ | =0 has a | | | | | | | | | a)Disconti
nuity of
first kind | b)Discontinuity
of second kind | c)Mixed
continuity | d)Removable
discontinuity | b | Discontin
uity of
second
kind | | | | | 84 | The number | of asymptotes of a c | curve of nth degree | is | | | | | | | | a)At least
one | b)At least n | c)At most n | d)At most 1 | С | At most n | | | | | 85 | The radius of origin, is given | of curvature of the or
en by | rigin, if y axis is the t | tangent at the | | | | | | | | $a)\lim_{x\to 0}\frac{x^2}{2y}$ | $b)\lim_{x\to 0}\frac{x^2}{y}$ | $c)\lim_{x\to 0}\frac{y^2}{x}$ | $d)\lim_{x\to 0}\frac{y^2}{2x}$ | d | $\lim_{x\to 0}\frac{y^2}{2x}$ | | | | | 86 | The radius of | of convergence of the | e series $\sum_{n=0}^{\infty} k^n x^n$ is | 5 | | | | | | | | a) 1 | b) k | c) 1/k | $d)(1/k)^n$ | С | 1/k | | | | | 87 | The nth deri | vative of $(ax + b)^{-1}$ | ¹ is | | | | | | | | | $a)\frac{(-1)^n n! a^n}{(ax+b)^{n+1}}$ | $b)\frac{n!a^n}{(ax+b)^n}$ | $c)\frac{(-1)^n n! a^n}{(ax+b)^n}$ | d) 0 | a | $\frac{(-1)^n n! a^n}{(ax+b)^{n+1}}$ | | | | | 88 | If $y = a \log$ then | | | | | | | | | | | a)a = 2, b = -1/2 | b) $a = 2, b = -1$ | c)a = -2, b = -1/2 | d) $a = -2, b = 1/2$ | a | a = 2, b $= -1/2$ | | | | | 89 | A double po | int on the curve is a | cusp if tangents are | | | | | | | | | a)Real and
coincident | b)Imaginary and
distinct | c)Real and
distinct | d)Imaginary
and | a | Real and coinciden | | | | | | | | | coincident | | t | |----|---|---|---|---|---|--| | 90 | Which of the | e following statemen | t is false? | l | | | | | a)All
partially
ordered
sets are
not lattice. | b)The product of
two lattices is a
lattice. | c)The union of
two sublattices of
a lattice is a
sublattice. | d)Every finite
lattice is
complete. | С | The union of two sublattice s of a lattice is a sublattice | | 91 | The dual of | the Boolean express | ion $x(y'z' + yz)$ is | | | | | | a)x + y + z | b)x + (y' + z')(y + z) | c)x + (y + z)(y + z) | d)x + (y' + z') + (y + z) | b | x + (y' + z')(y + z) | | 92 | Which of the | following is not a c | hain? ('/' is division) |) | | | | | a)(Z ⁺ ,/) | b)(A ,/), where $A = \{2,6,12,36\}$ | c)(ℤ,≤) | $d)(\mathbb{Z}^+,\leq)$ | a | (ℤ+,/) | | 93 | The contrap | ositive of $p \Rightarrow q$ is | | | | | | | $a)\sim q \Rightarrow p$ | $b) \sim p \Longrightarrow \sim q$ | $c)q \Rightarrow \sim p$ | $d)q \Rightarrow p$ | a | $\sim q \Longrightarrow \sim p$ | | 94 | | of solutions of equa
ative integers, is | tion x + y + z = 17 | , where x , y , z | | | | | a) 171 | b) 680 | c) 136 | d) 450 | a | 171 | | 95 | Which of the | e following is a contr | radiction? | , | | | | | $a)p \Rightarrow q$ | $b)p \wedge (q \wedge \sim p)$ | c) <i>p</i> ∨ <i>q</i> | d) <i>p</i> ∨~ <i>p</i> | b | $p \land (q \land \\ \sim p)$ | | 96 | The number | of different Boolear | n functions of degree | 2 3 is | | | | | a)2 ³ | b)2 ⁶ | c)2 ⁸ | d)3! | С | 28 | | 97 | | m number of studen
hem are born in the | | vill ensure that | | | | | a) 49 | b) 37 | c) 61 | d) 48 | b | 37 | | 98 | If λ is an eight A^{-1} is | en value of a non-sin | ngular matrix A, then | eigen value of | | | | | a)λ | b)-λ | c)-1/λ | d)1/λ | d | 1/λ | | 99 | Which of the | e following is not a s | ubspace of $\mathbb{R}^3(\mathbb{R})$? | | | | | | a)
{(x, y, z): x ≥
0} | b) $\{(x, 2x, 3x)\}$ | $ c) \{(x, y, z): \sqrt{2}x = $ | $d)$ $\{(x, y, z): x - 2y = z -$ | а | $\{(x, y, z) : x \ge 0\}$ | | | | | | | | | | | | | $\sqrt{3}y$ } | 3 <i>y</i> /2} | | | |---------|--|--------------|-------------------------------|---|---|------------| | 10
0 | For Riemann integrability, continuity is | | | | | | | | a)Necessar
y | b)Sufficient | c)Necessary and
sufficient | d)Neither
necessary nor
sufficient. | b | Sufficient | ## SPACE FOR ROUGH WORK