This booklet consists of $\underline{100}$ questions and $\underline{12}$ printed pages.
RGUCET/ \qquad
Series

RGUCET 2023
M.Sc. in MATHEMATICS

Full Marks: 100
Time: 2 Hours
Roll No. \square

Day and Date of Examination
Signature of Invigilator(s)
Signature of Candidate \qquad

General Instructions:

please read all the instructions carefully before making any entry.

1. DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE TOLD TO DO SO.
2. Candidate must write his/her Roll Number on the space provided.
3. This Test Booklet contains 100 Multiple Choice Questions (MCQs). Each question carries 1 mark. There shall be negative marking of 0.25 against each wrong attempt.
4. Please check the Test Booklet to verify that the total pages and total number of questions contained in the test booklet are the same as those printed on the top of the first page. Also check whether the questions are in sequential order or not.
5. Candidates are not permitted to enter into the examination hall 15 minutes after the commencement of the entrance test or leave the examination hall before 30 minutes of end of examination.
6. Making any identification mark in the OMR Answer Sheet or writing Roll Number anywhere other than the specified places will lead to disqualification of the candidate.
7. Candidates shall maintain silence inside and outside the examination hall. If candidate(s) is/are found violating the instructions mentioned herein or announced in the examination hall, they will be summarily disqualified from the entrance test.
8. In case of any dispute, the decision of the Entrance Test Committee, RGU shall be final and binding.
9. The OMR Answer Sheet consists of two copies, the Original copy and the Student's copy.

1	Which among the following countries was the earliest to give women the right to vote?				c)	New Zealand
	a)Iceland	b)India	c) New Zealand	d) U.S.A		
2	What is the apparent weight of the person when the elevator is accelerating downwards?				C	Less than actual weight
	a)Equal to actual weight	b)Greater than actual weight	c)Less than actual weigh	d) 0		
3	India's first water metro was recently inaugurated in which state/UT?				a	Kerala
	a) Kerala	b) Goa	c) West Bengal	d) Maharashtra		
4	Which operation has been launched by the government to evacuate Indians from trouble-torn Sudan?				c	Operatio n Kaveri
	a)Operation Polo	b)Operation Shakti	c)Operation Kaveri	d)Operation Durga		
5	Who launched the world's largest and most powerful rocket "Starship' which resulted in massive failure?				d	SpaceX
	a) ISRO	b) European Space Agency	c) NASA	d) SpaceX		
6	What is the name of the first cruise ship ever built in India?				b)	MV Ganga Vilas
	a)MV Jamuna Vilas	b) MV Ganga Vilas	c) MV Godavari Vilas	d)MV Brahmaputra Vilas		
7	Asia's largest helicopter manufacturing facility recently inaugurated in				d)	Karnatak a
	a)Tamil Nadu	b) Punjab	c) Maharashtra	d)Karnataka		
	Which of the following is not the function of skin?					
8	a)Calcium production	b)Protection	c) Excretion of waste	d)Temperature regulation	a	Calcium productio n
9	Which of the following is not an award for Mathematics?					
	a) Noble Prize	b) Field Med	al c) Abel Prize	d)SASTRA Ramanujan	a	Noble Prize

	a)at		b)in	c) on	d)across	a	at
20	Word or phrase which is most nearly to the word Precarious is					C	Dangerou s
	a) Huge		b) uncertai n	c) Dangerous	d) valuable		
21	Opposite of foremost is					c	Unimport ant
	a) Premature		b) Disposed	c) Unimportant	d) Mature		
22	In a coding system, 'SHEEP' is written as 'GAXXR' and 'BLEAT' as 'HPXTN'. How can 'SLATE' be written in that same coding system?					d	GPTNX
	a) GPTXN	b)	GXN	c) GPXNT	d)GPTNX		
23	If $8^{\text {th }}$ February, 2005 was a Tuesday, what was the day on $8^{\text {th }}$ February 2004?					a	Sunday
	a) Sunday		b)Monday	c)Tuesday	d)Wednes day		
24	If IMHO=JNIP; IDK=JEL and SO=TP, then IDC=					c	JED
	a) JDE	b)		c)JED	d)JDC		
25	If DELHI is coded as 73541 and CALCUTTA as 82589662 , then CALICUT will be coded as					d	8251896
	a) 5279431		3691	c) 5978013	d) 8251896		
26	Let $G=\left\{2^{r}: r=0, \pm 1, \pm 2, \cdots\right\}$ and $^{\prime} *^{\prime}$ be the usual multiplication operation. Then					d	$(G, *)$ is an abelian group
	a) $(G, *)$ is not a group.	b) gro abe	is a ut not	$(G, *)$ is abelian but es not form a group	d) $(G, *)$ is an abelian group.		
27	Let $U=\{1,3,7,9,11,13,17,19\}$ be the group under the multiplication modulo 20 . Which of the following is not a subgroup of U ?					c	$\begin{aligned} & L \\ & =\{1,7,13, \end{aligned}$
	$\begin{aligned} & \text { a) } H= \\ & \{1,11\} \end{aligned}$	$\begin{aligned} & \text { b) } K \\ & \{1,9 \end{aligned}$		$L=\{1,7,13,19\}$	$\begin{aligned} & \text { d) } M= \\ & \{1,3,7,9\} \end{aligned}$		
28	Let $(\mathbb{Z},+)$ be a group of integers under addition operation, and $H_{1}=\{2 n: n \in \mathbb{Z}\}$ and $H_{2}=\{3 n: n \in \mathbb{Z}\}$. Which of the following a true?						

	a) $H_{1} \cap$ H_{2} is a subgro up of $(\mathbb{Z},+)$	b) $H_{1} \cup H_{2}$ is a subgroup of $(\mathbb{Z},+)$.	c) H_{1} is a subgroup of $(\mathbb{Z},+)$ but H_{2} is not.	d) Neither H_{1} nor H_{2} are subgroups of $(\mathbb{Z},+)$.	a	$H_{1} \cap H_{2}$ is a subgroup of $(\mathbb{Z},+)$.
29	The number of even permutations of in a permutations of N symbols is always				c	$\frac{1}{2} N$!
	a) $\frac{1}{2} \mathrm{~N}$	b) $\frac{1}{2}(N-1)$!	c) $\frac{1}{2} \mathrm{~N}$!	d) $\frac{1}{2}(N+1)$		
30	Let $M=\left\{\left[\begin{array}{ll}x & x \\ x & x\end{array}\right]: x \neq 0\right.$ is a real number $\}$ be a group under the operation of matrix multiplication. Then the identity element in M is				d	$\left[\begin{array}{ll}1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right]$
	$\begin{array}{ll} \text { a) } \\ {\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right]} \end{array}$	b) $\left[\begin{array}{cc} 1 & 0 \\ 1 / 2 & 1 / 2 \end{array}\right]$	c) $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$	d) $\left[\begin{array}{ll}1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right]$		
31	Let G be a finite group of order p and H is a non-empty subset of G of order q such that q divides p. Then H is a subgroup of G if				b	G is a cyclic
	a) G is an abelian.	b) G is a cyclic	c) Identity elements in G and H are different.	d) H is a cyclic but G is not.		
32	Let G is a finite cyclic group of order p, where p is a prime. Then the number of generators of G is				c	$p-1$
	a) $p / 2$	b) $(p-1) / 2$	c) $p-1$	d) $(p+$ 1)/ 2		
33	A group ($G, *$) Is abelian if for all $x, y \in G$,				a	$\begin{aligned} & x * y \\ & =y * x \end{aligned}$
	$\begin{aligned} & \text { a) } x * \\ & y=y * \\ & x \end{aligned}$	$\begin{aligned} & \text { b) } x * y=x+ \\ & y \end{aligned}$	c) $x * y=(y+x)$	$\begin{aligned} & \text { d) } x * y= \\ & (y * x)+1 \end{aligned}$		
34	A subgroup H of a group is a normal subgroup of G if for all $g \in G$ and $h \in H$,				b	$\begin{aligned} & g^{-1} h g \\ & \in H \end{aligned}$
	$\begin{aligned} & \text { a) } \\ & h^{-1} g h \in \\ & H \end{aligned}$	b) $g^{-1} h g \in H$	c) $h^{-1} g h \in G$	$\begin{aligned} & \text { d) } g^{-1} h g \in \\ & G \end{aligned}$		
35	A ring ($R,+, \cdot$) is commutative if, for all $x, y \in R$,				C	$\begin{aligned} & x \cdot y \\ & =y \cdot x \end{aligned}$
	$\begin{aligned} & \text { a) } x+ \\ & y=y+ \\ & x \end{aligned}$	$\text { b) } x \cdot y=y+$	c) $x \cdot y=y \cdot x$	$\begin{aligned} & \text { d) } x \cdot y+ \\ & x=y \cdot x+ \\ & y \end{aligned}$		
36	Which of the following is not an integral domain? $(\mathbb{N}, \mathbb{R}, \mathbb{C}, \mathbb{Q}$ denote the sets of natural numbers, real numbers, complex numbers and					

	rational numbers, respectively.)				a	$(\mathbb{N},+, \cdot)$
	a) $(\mathbb{N},+, \cdot)$	b) ($\mathbb{R},+, \cdot)$	c) $(\mathbb{C},+, \cdot)$	d) $(\mathbb{Q},+, \cdot)$		
37	Which of the following is not true about a field?				b	Every integral domain is a field.
	a) Every field is an integral domain.	b) Every integral domain is a field.	c) Every non-zero element in a field has a multiplicative inverse.	d) Every field is a commutativ e ring.		
38	If for integer a and $m, \operatorname{gcd}(a, m)=1$ and $a^{m-1} \equiv 1(\bmod m)$, then				d	m may or may not be a prime.
	a) m is always a prime	b) m is never prime	c) m is a multiple of a always	d) m may or may not be a prime.		
39	Which of the following set is a reduced residue system modulo 4?				b	$\{5,7\}$
	a) $\{0,4,8,1$	b)) $\{5,7\}$	c)) $\{4,5,7,10\}$	d) $\{1,2,6,9\}$		
40	The number of incongruent solutions of the linear congruence $18 x \equiv 30(\bmod 42)$ is				c	6
	a) 1	b) 7	c) 6	d) 12		
41	The value of x such that $2^{50} \equiv x(\bmod 7)$ is				b	4
	a) 2	b) 4	c) 6	d) 8		
42	If p is an odd prime, then					$\begin{aligned} & (p-1)! \\ & \equiv 1(\bmod p \end{aligned}$
	a) ($p-$ 1) \equiv $1(\bmod p)$	$\begin{aligned} & \text { b) }(p-1)!+ \\ & 1 \equiv 0(\bmod p) \end{aligned}$	c) $(p-1)!\equiv 1(\bmod p)$	d) $\begin{aligned} & (p+1)!\equiv \\ & 1(\bmod p) \end{aligned}$	C	
43	Necessary condition to apply the Chinese Remainder Theorem to solve the simultaneous congruences $a(\bmod M), x \equiv b(\bmod N)$ is					$\begin{aligned} & \operatorname{gcd}(M, N) \\ & =1 \end{aligned}$
	$\begin{aligned} & \text { a) } \\ & \operatorname{gcd}(M, N \\ & 1 \end{aligned}$	$\begin{aligned} & \text { b) } \operatorname{gcd}(M, N)> \\ & 1 \end{aligned}$	c) $\operatorname{gcd}(a, M)=\operatorname{gcd}(b, N)$	d) $\begin{aligned} & \operatorname{gcd}(a, b)= \\ & 1 \end{aligned}$	a	
44	The number of positive integer solution of the Diophantine equation $3 x+2 y=6$ is					0
	a) 1	b) 2	c) 3	d) 0	d	

45	Prime numbers of the form $2^{n}-1$, where n is a positive integer, are called					Merssene primes
46	a) Fermat primes	b) Merssene primes	c) Fibonacci primes	d)Harmonic primes	b	
	Which of the following is incorrect about complex numbers?					
	a) $\|z\|^{2}=$ $z \bar{z}$	$\begin{aligned} & \text { b) }\left\|z_{1}-z_{2}\right\| \geq \\ & \left\|z_{1}\right\|-\left\|z_{2}\right\| \end{aligned}$	c) $\overline{z_{1}+z_{2}} \leq \overline{z_{1}}+\overline{z_{2}}$	$\begin{aligned} & \text { d) } \overline{\left(\frac{z_{1}}{z_{2}}\right)}=\frac{\overline{z_{1}}}{\overline{z_{2}}} \\ & z_{2} \neq 0 . \end{aligned}$	C	$\begin{aligned} & \overline{z_{1}+z_{2}} \\ & \leq \overline{z_{1}}+\overline{z_{2}} \end{aligned}$
47	If $z_{1}=-1$ and $z_{2}=i$, then the argument of $\left(z_{1} z_{2}\right)$ is				d	$3 \pi / 2$
	a) $-3 \pi / 2$	b) $\pi / 4$	c) $-\pi / 2$	d) $3 \pi / 2$		
48	If $f(z)=(z / \bar{z})$, then $\lim _{z \rightarrow 0} f(z)$				d	does not exist
	a) 0	b) 1	c) -1	d) does not exist		
49	If the complex numbers z_{1}, z_{2} and z_{3} are in arithmetic progression, then they must lie on				c	a straight line
	a) a hyperb ola	b) a circle	c) a straight line	d) a parabola		
50	If a function $f(z)=u(x, y)+i v(x, y)$ is analytic, then				d	both $u(x, y)$ and $v(x, y)$ are harmonic.
	a) $u(x, y)$ is harmon ic but $v(x, y)$ is not.	b) $v(x, y)$ is harmonic but $u(x, y)$ is not.	c) neither $u(x, y)$ nor $v(x, y)$ is harmonic.	d) both $u(x, y)$ and $v(x, y)$ are harmonic.		
51	The value of $\sin \left(\log i^{i}\right)$ is				b	-1
	a) 1	b) -1	c) $1+i$	d) $1-i$		
52	If x is a real solution of the equation $(1-i x)=(1+i x)(a-i b)$, then				b	$\begin{aligned} & a^{2}+b^{2} \\ & =1 \end{aligned}$
	$\begin{aligned} & \text { a) } a^{2}- \\ & b^{2}=1 \end{aligned}$	b) $a^{2}+b^{2}=1$	c) $a^{2}+b^{2}=0$	$\begin{aligned} & \text { d) } a^{2}- \\ & b^{2}=0 \end{aligned}$		
53	If a polynomial $f(x)$ is divided by a binomial $(x-A)$, then the remainder is				a	$f(A)$
	a) $f(A)$	b) $A+f(A)$	c) $f(A)-A$	d) A		

63	($P(\cdot)$ denotes probability of an event.)					a	4/13
	a) $4 / 13$	b) $3 / 4$		c) $12 / 13$	d) $13 / 12$		
	If A and B are independent events, then					c	$\begin{aligned} & P(A \cap B) \\ & =P(A) P(B \end{aligned}$
	$\begin{aligned} & \text { a) } \\ & P(A \cap \\ & B)=0 \end{aligned}$	$\begin{aligned} & \text { b) } P(A \cap B)=P(A)+ \\ & P(B) \end{aligned}$		$\begin{aligned} & \text { c) } \\ & P(A \cap \\ & B)= \\ & P(A) P(B) \end{aligned}$	$\begin{aligned} & \text { d) } P(A \cap B)= \\ & 1 / 2 \end{aligned}$		
64	The differential equation $\left(\frac{d^{2} y}{d x^{2}}\right)^{2}-\frac{d y}{d x}-y^{3}=0$ has degree:					b)	2
	a)0.5		b)2	c)3	d)4		
65	The differential equation of the family of curves $y(x)=$ $A \cos \mu x+B \sin \mu x$, where A and B are arbitrary constants, is given by					c)	$\begin{aligned} & \frac{d^{2} y}{d x^{2}} \\ & +\mu^{2} y \\ & =0 \end{aligned}$
	a) $\frac{d^{2} y}{d x^{2}}+\mu y=$ 0		b) $\frac{d^{2} y}{d x^{2}}-\mu y=0$	$\begin{aligned} & \text { c) } \frac{d^{2} y}{d x^{2}}+ \\ & \mu^{2} y=0 \end{aligned}$	d) $\frac{d^{2} y}{d x^{2}}-\mu^{2} y=$ 0		
66	Which of the following differential equation is linear?					b)	$\begin{aligned} & \frac{d y}{d x}- \\ & x^{2} y= \\ & \sin x \end{aligned}$
	$\begin{aligned} & \text { a) } \frac{d y}{d x}+ \\ & x^{2} y^{2}=\sin y \end{aligned}$		b) $\frac{d y}{d x}-x^{2} y=\sin x$	c) $(1+$ y) $\frac{d y}{d x}+$ $\sin x=0$	$\begin{aligned} & \mathrm{d}) \frac{d y}{d x}+ \\ & y(x+y)=x^{2} \end{aligned}$		
67	The differential equation $\frac{d y}{d x}+P(x) y=Q(x) y^{n}$ is called:					d)	```Bernoulli' S equation```
	a)Auxiliary equation		b)Euler's equation	c)Linear equation	d) Bernoulli's equation		
68	The differential equation $y=x \frac{d y}{d x}+f\left(\frac{d y}{d x}\right)$ is known as:					b)	Clairut's equation
	a)Bernoulli's equation		b) Clairut's equation	c) Linear equation	d) Exact equation		
69	The solution of the differential equation $\left(\frac{d y}{d x}\right)^{2}-5 \frac{d y}{d x}+6=0$ is					c)	$\begin{aligned} & (y-2 x \\ & -c)(y \\ & -3 x-c) \\ & =0 \end{aligned}$
	$\begin{aligned} & \text { a)(a) } y=x+ \\ & c \end{aligned}$		b) $y^{2}=x+c$	c) $(y-2 x-$ c) $(y-3 x-$ c) $=0$	d) none of these		
70	If $f(D) y=0$, where $D \equiv \frac{d}{d x}$, be a linear differential equation with						

	constant coefficients, then its auxiliary equation is				b)	$f(m)=0$
	$\begin{aligned} & \text { a) } f(D- \\ & m)=0 \end{aligned}$	b) $f(m)=0$	c) $f\left(e^{m}\right)=0$	d) none of these		
71	The number system with base 2 is known as:				b)	Binary system
	a)Decimal system	b) Binary system	c) Octal system	d) Hexadecimal system		
72	What is the result of the binary addition performed on the numbers 0010 and 0111 ?				a)	1001
	a)1001	b)0101	c) 0110	d) 1111		
73	The C language consists of -------- number of keywords.				b)	32
	a)40	b) 32	c)33	d) 56		
74	C programming language was developed by				b)	Dennis Ritchie
	a) Ken Thompson	b) Dennis Ritchie	c) Bill Gates	d) Peter Norto		
75	Which is the correct way to declare a pointer?				b)	int *ptr;
	a)int_ptr;	b) int *ptr;	c) *int ptr;	d) ptr_int;		
76	Which is more appropriate for reading in a multi-word string?				b)	gets()
	a)printf()	b) gets()	c) $\operatorname{scanf}()$	d) puts()		
77	The processor of translating a source program into machine language is a function of:				c)	Compiler
	a)Translator	b)Assembler	c)Compiler	d) none of these		
78	The operator + in $x+=5$ means				a)	$x=x+5$
	a) $x=x+5$	b) $x+5=x$	c) $x=5+1$	d) $x=5+5$		
79	Which of the following is uniformly continuous on [0,1]?					

	$\begin{aligned} & \text { a) } f(x)= \\ & x^{2} \end{aligned}$	b) $f(x)=\sin x^{2}$	c) $f(x)=1 / x$	d) $f(x)=\frac{x}{1+x}$		$\begin{aligned} & f(x)^{\prime} \\ & =\frac{x}{1+x} \end{aligned}$
80	The value of $\lim _{x \rightarrow 0}\left(\frac{1-\cos x}{3 x^{2}}\right)$				c	1/6
	a) 0	b) $1 / 3$	c) $1 / 6$	d) $1 / 9$		
81	Which is an example of infinitely oscillatory sequence?				b	$\left\langle(-1)^{n} n\right\rangle$
	a) $\left\langle(-1)^{n} /\right.$ $n\rangle$	b) $\left\langle(-1)^{n} n\right\rangle$	c) $\left\langle(-1)^{n^{2}}\right\rangle$	d) $\left\langle(-1)^{n} / n^{2}\right\rangle$		
82	If $f(x+1)+f(x-1)=2 f(x)$ and $f(0)=0$, then $f(n)$, where $n \in$ \mathbb{N}, is				a	$n f(1)$
	a) $n f(1)$	b) 0	c) n	d) $(f(1))^{n}$		
83	The function $f(x)=\sin 1 / x$ at $\mathrm{x}=0$ has a				b	Discontin uity of second kind
	a)Disconti nuity of first kind	b)Discontinuity of second kind	c) Mixed continuity	d)Removable discontinuity		
84	The number of asymptotes of a curve of nth degree is				c	At most n
	a)At least one	b)At least n	c) At most n	d)At most 1		
85	The radius of curvature of the origin, if y axis is the tangent at the origin, is given by				d	$\lim _{x \rightarrow 0} \frac{y^{2}}{2 x}$
	a) $\lim _{x \rightarrow 0} \frac{x^{2}}{2 y}$	b) $\lim _{x \rightarrow 0} \frac{x^{2}}{y}$	c) $\lim _{x \rightarrow 0} \frac{y^{2}}{x}$	d) $\lim _{x \rightarrow 0} \frac{y^{2}}{2 x}$		
86	The radius of convergence of the series $\sum_{n=0}^{\infty} k^{n} x^{n}$ is				C	1/k
	a) 1	b) k	c) $1 / \mathrm{k}$	d) $(1 / k)^{n}$		
87	The nth derivative of $(a x+b)^{-1}$ is				a	$\frac{(-1)^{n} n!a^{n}}{(a x+b)^{n+}}$
	a) $\frac{(-1)^{n} n!a^{n}}{(a x+b)^{n+1}}$	b) $\frac{n!a^{n}}{(a x+b)^{n}}$	c) $\frac{(-1)^{n} n!a^{n}}{(a x+b)^{n}}$	d) 0		
88	If $y=a \log x+b x^{2}+x$ has its extremum at $x=-1$ and $x=2$, then				a	$\begin{aligned} & a=2, b \\ & =-1 / 2 \end{aligned}$
	$\begin{aligned} & \text { a) } a= \\ & 2, b= \\ & -1 / 2 \end{aligned}$	b) $a=2, b=-1$	$\begin{aligned} & \text { c) } a=-2, b= \\ & -1 / 2 \end{aligned}$	$\begin{aligned} & \text { d) } a= \\ & -2, b=1 / 2 \end{aligned}$		
89	A double point on the curve is a cusp if tangents are				a	Real and coinciden
	a)Real and coincident	b)Imaginary and distinct	c) Real and distinct	d)Imaginary and		

				coincident		t
90	Which of the following statement is false?				C	The union of two sublattice sof a lattice is a sublattice
	a)All partially ordered sets are not lattice.	b)The product of two lattices is a lattice.	c) The union of two sublattices of a lattice is a sublattice.	d)Every finite lattice is complete.		
91	The dual of the Boolean expression $x\left(y^{\prime} z^{\prime}+y z\right)$ is				b	$\begin{aligned} & x+\left(y^{\prime}\right. \\ & \left.+z^{\prime}\right)(y \\ & +z) \end{aligned}$
	$\begin{aligned} & \text { a) } x+y+ \\ & z \end{aligned}$	b) $x+\left(y^{\prime}+\right.$ $\left.z^{\prime}\right)(y+z)$	c) $x+(y+$ $z)(y+z)$	$\begin{aligned} & \text { d) } x+ \\ & \left(y^{\prime}+z^{\prime}\right)+ \\ & (y+z) \end{aligned}$		
92	Which of the following is not a chain? (//' is division)				a	$\left(\mathbb{Z}^{+}, /\right)$
	a) $\left(\mathbb{Z}^{+}, /\right)$	$\begin{aligned} & \text { b) }(A, /) \text {, where } \\ & A=\{2,6,12,36\} \end{aligned}$	c) (\mathbb{Z}, \leq)	d) $\left(\mathbb{Z}^{+}, \leq\right)$		
93	The contrapositive of $p \Rightarrow q$ is				a	$\sim q \Longrightarrow \sim p$
	$\begin{aligned} & \text { a) } \sim q \Rightarrow \\ & \sim p \end{aligned}$	b) $\sim p \Rightarrow \sim q$	c) $q \Rightarrow \sim p$	d) $q \Rightarrow p$		
94	The number of solutions of equation $x+y+z=17$, where x, y, z are non negative integers, is				a	171
	a) 171	b) 680	c) 136	d) 450		
95	Which of the following is a contradiction?				b	$\begin{aligned} & p \wedge(q \wedge \\ & \sim p) \end{aligned}$
	a) $p \Rightarrow q$	b) $p \wedge(q \wedge \sim p)$	c) $p \vee q$	d) $p \vee \sim p$		
96	The number of different Boolean functions of degree 3 is				c	2^{8}
	a) 2^{3}	b) 2^{6}	c) 2^{8}	d)3!		
97	The minimum number of students in a class which will ensure that four out of them are born in the same month is				b	37
	a) 49	b) 37	c) 61	d) 48		
98	If λ is an eigen value of a non-singular matrix A, then eigen value of A^{-1} is				d	$1 / \lambda$
	a) λ	b) $-\lambda$	c) $-1 / \lambda$	d) $1 / \lambda$		
99	Which of the following is not a subspace of $\mathbb{R}^{3}(\mathbb{R})$?					
	$\begin{aligned} & \text { a) } \\ & \{(x, y, z): x= \\ & 0\} \end{aligned}$	b) $\{(x, 2 x, 3 x)\}$	c) $\{(x, y, z): \sqrt{2} x=$	d) $\begin{aligned} & \{(x, y, z): x- \\ & 2 y=z- \end{aligned}$	a	$\begin{aligned} & \{(x, y, z): x \\ & \geq 0\} \end{aligned}$

			$\sqrt{3} y\}$	$3 y / 2\}$		
$\begin{aligned} & 10 \\ & 0 \end{aligned}$	For Riemann integrability, continuity is				b	
	a)Necessar y	b)Sufficient	c) Necessary and sufficient	d)Neither necessary nor sufficient.		Sufficient

SPACE FOR ROUGH WORK

