								Test	Bookle	t No	
This booklet	consis	ts of <u>1</u>	<u>00</u> que	estions	and <u>12</u>	print	ed pag	es.			
RGUCET/_		_]	M.Sc			г 2023 НЕМ		CS	Series	NIL
Full Mark	s: 100									Т	ime: 2 Hours
Roll No.											
Day and Date	e of Exa	aminat	ion	:							
Signature of	Invigila	ator(s)		:							
Signature of	Candid	ate		:							

General Instructions:

PLEASE READ ALL THE INSTRUCTIONS CAREFULLY BEFORE MAKING ANY ENTRY.

- 1. DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE TOLD TO DO SO.
- 2. Candidate must write his/her Roll Number on the space provided.
- 3. This Test Booklet contains 100 Multiple Choice Questions (MCQs). Each question carries 1 mark. There shall be negative marking of 0.25 against each wrong attempt.
- 4. Please check the Test Booklet to verify that the total pages and total number of questions contained in the test booklet are the same as those printed on the top of the first page. Also check whether the questions are in sequential order or not.
- 5. Candidates are not permitted to enter into the examination hall 15 minutes after the commencement of the entrance test or leave the examination hall before 30 minutes of end of examination.
- 6. Making any identification mark in the OMR Answer Sheet or writing Roll Number anywhere other than the specified places will lead to disqualification of the candidate.
- 7. Candidates shall maintain silence inside and outside the examination hall. If candidate(s) is/are found violating the instructions mentioned herein or announced in the examination hall, they will be summarily disqualified from the entrance test.
- 8. In case of any dispute, the decision of the Entrance Test Committee, RGU shall be final and binding.
- 9. The OMR Answer Sheet consists of two copies, the Original copy and the Student's copy.

1	Which among women the ri	the following coght to vote?	untries	s was the e	arli	est to give	c)	New Zealand
	a)Iceland	b)India	c) Ne Zeala		d)	U.S.A		
2	What is the apaccelerating of	pparent weight of lownwards?	f the po	erson wher	n th	e elevator is		
	a)Equal to actual weight	b)Greater than actual weight	_	ss than al weigh	d)	0	С	Less than actual weight
3	India's first w state/UT?	rater metro was r	ecently	y inaugurat	ted	in which		
	a) Kerala	b) Goa	c) We Beng		d)	Maharashtra	а	Kerala
4		ion has been laur trouble-torn Suda		by the gove	rnı	nent to evacuate		
	a)Operation Polo	b)Operation Shakti	c)Ope Kave	eration ri	d)	Operation Durga	С	Operatio n Kaveri
5		d the world's larg ich resulted in ma			ver	ful rocket		
	a) ISRO	b) European Space Agency	c) NA	ASA	d)	SpaceX	d	SpaceX
6	What is the na	ame of the first cr	ruise sl	hip ever bu	ilti	in India?		MV Ganga Vilas
	a)MV Jamuna Vilas	b) MV Ganga Vilas	c) MV Goda	V vari Vilas		MV ahmaputra Vilas	b)	
7	Asia's largest inaugurated i	helicopter manu n	facturi	ng facility	rece	ently		
	a)Tamil Nadu	b) Punjab	c) d)Karnataka Maharashtra		Karnataka	d)	Karnatak a	
	Which of the following is not the function of skin?							
8	a)Calcium production	b)Protection	c)Exc waste	Excretion of d)Temperature regulation		а	Calcium productio n	
	Which of the following is not an award for Mathematics?							
9	a) Noble Prize	b) Field Meda	al c	c) Abel Priz	e	d)SASTRA Ramanujan	а	Noble Prize

					Prize	9		
	A computer stor	es its data in	mem	ory in	l			
10	a) Decimal form	b) Hexadeci form	mal	c) Binary form	d) 0	ctal form	С	Binary form
4.4	Select the relate	d words. If Er	ergy:	Joule, then				
11	a)Axe: Grind	b)Resistance Ohm	e:	c)Power: Ampere	d) Cı Amn	ırrent: neter	b	Resistanc e: Ohm
12	India's P V Sindh Championships		med	al/position in th	ie Asia	n	С	Bronze
	Gold	b) Silver		c) Bronze	d) Fo	ourth Place		
	Which king rule							
13	a) Haryanka dynasty	d	Shunga Dynasty					
	Identify the erro	r.			I			
14	He / has married	d / her / last i	montl	n.				
-	a) He	b) has married	c) he	er		d) last month	b	has married
15	Which of the foll	owing is a sta	ateme	ent?				
	a) Open the door.	b) Do your homewo rk.	c) St	witch on the fan		d) Two plus two is four.	d	Two plus two is four.
16	A person who pr	retends to be	what	he is not is calle	ed			
	a)Imposter	b) Fraud	c)Im	nitator		d) Imbiber	a	Imposter
17	Were you a bird,	, you	i	n the sky.				
-	a) would fly	b) shall fly	c) sł	nould fly		d) shall have flown	а	would fly
	Pick out the most effective word from the given words to fill in the blanks:							
18	I saw a of cows in the field							
 	a) group	b) herd c)) swarm d)flock					b	herd
19	Jawaharlal spent	t his childhoo	d	Anand Bhawa	an.	1		

	a)at		b)in	С)on	d)across	a	at
20	Word or	phrase v	which is mo	st r	nearly to the word Pre	carious is		
	a) Huge		b) uncertai n	С) Dangerous	d) valuable	С	Dangerou s
	Opposite	of foren	ost is	1				
21								
	a) Prema	ture	b) Disposed) Unimportant	d) Mature	С	Unimport ant
22			'BLEAT' as ling system?					
	a) GPTXN	b)PT	GXN		c) GPXNT	d)GPTNX	d	GPTNX
23	If 8 th Febr February	-	005 was a 1	Γue	sday, what was the day	y on 8 th		
	a) Sunday b) Monday c) Tuesday				c)Tuesday	d)Wednes day	a	Sunday
24	If IMHO=	=JNIP; II	OK=JEL an	d S(O=TP, then IDC=			
	a) JDE	b)JCl)		c)JED	d)JDC	С	JED
25	If DELHI :			and	CALCUTTA as 825896	662, then		
	a) 5279431	b) 85	543691		c) 5978013	d) 8251896	d	8251896
26	Let $G = \{$ operation), ±1, ±2, ··	· } a	and ' * ' be the usual m	ultiplication		
	a) (G,*) is not a group.	a) $(G,*)$ b) $(G,*)$ is a c) $(G,*)$ is abelian but does not form a group an abelian an abelian					d	(G,*) is an abelian group
27	Let $U = \{$ multiplication of U ?		the ot a subgroup					
	a) $\overline{H} = \{1, 11\}$	a) $H = \begin{cases} b) K = \\ \{1,11\} \end{cases}$ b) $K = \begin{cases} c) L = \{1,7,13,19\} \end{cases}$ d) $M = \begin{cases} 1,3,7,9 \end{cases}$						$L = \{1, 7, 13,$
28	Let $(\mathbb{Z}, +)$ $H_1 = \{2n$ true?		tion, and following a					

	a) $H_1 \cap$ H_2 is a subgro up of $(\mathbb{Z}, +)$.	b) $H_1 \cup H_2$ is a subgroup of $(\mathbb{Z}, +)$.	c) H_1 is a subgroup of $(\mathbb{Z}, +)$ but H_2 is not.	d) Neither H_1 nor H_2 are subgroups of $(\mathbb{Z}, +)$.	a	$H_1 \cap H_2$ is a subgroup of $(\mathbb{Z}, +)$.
29	The numl		utations of in a permutation	s of N		
	a) $\frac{1}{2}N$	b) $\frac{1}{2}(N-1)!$	c) $\frac{1}{2}N!$	$d)\frac{1}{2}(N+1)$	С	$\frac{1}{2}N!$
30	operation is	n of matrix multip	a real number be a group unlication. Then the identity e	lement in <i>M</i>		
	a) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 1/2 & 1/2 \end{bmatrix}$	$\begin{bmatrix} c \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	d) [1/2 1/2] [1/2 1/2]	d	[1/2 1/2] [1/2 1/2]
31			order p and H is a non-empty des p . Then H is a subgroup			
	a) <i>G</i> is an abelian.	b) G is a cyclic	c) Identity elements in <i>G</i> and <i>H</i> are different.	d) <i>H</i> is a cyclic but <i>G</i> is not.	b	G is a cyclic
32		finite cyclic grou of generators of <i>G</i>	p of order p , where p is a pr is	ime. Then the		
	a) p/2	b) $(p-1)/2$	c) <i>p</i> – 1	d) (p + 1)/2	С	p-1
33	A group ((G,*) Is abelian if	for all $x, y \in G$,			
	a) x * y = y * x		c) x * y = (y + x)	$\begin{array}{c} \text{d) } x * y = \\ (y * x) + 1 \end{array}$	a	$ \begin{array}{l} x * y \\ = y * x \end{array} $
34	A subground $h \in F$		s a normal subgroup of G if f	for all $g \in G$		
	a) $h^{-1}gh \in H$	b) $g^{-1}hg \in H$	c) $h^{-1}gh \in G$	$\begin{array}{c} \text{d) } g^{-1}hg \in \\ G \end{array}$	b	$g^{-1}hg \in H$
35	A ring (R	$(+, \cdot)$ is commutation	ative if, for all $x, y \in R$,			
	a) x + y = y + x	b) $x \cdot y = y + x$	$c) x \cdot y = y \cdot x$		С	$x \cdot y \\ = y \cdot x$
36			ot an integral domain? (N, I rs, real numbers, complex nu			

	rational n	numbers, respect	ively.)			
	a) (ℕ, +,·)	b) (R, +,·)	c) (C, +,·)	$d) (\mathbb{Q}, +, \cdot)$	a	(ℕ,+,⋅)
37	Which of	the following is n	ot true about a field?			
	a) Every field is an integral domain.	b) Every integral domain is a field.	c) Every non-zero element in a field has a multiplicative inverse.	d) Every field is a commutativ e ring.	b	Every integral domain is a field.
38	If for inte	ger a and m , gcc	$d(a,m) = 1 \text{ and } a^{m-1} \equiv 1(n)$	nod m), then		
	a) <i>m</i> is always a prime	b) <i>m</i> is never prime	c) <i>m</i> is a multiple of <i>a</i> always	d) <i>m</i> may or may not be a prime.	d	m may or may not be a prime.
39	Which of	the following set	is a reduced residue system	n modulo 4?		
	a) {0,4,8,1		c)) {4, 5, 7, 10}	d)) {1, 2, 6, 9}	b	{5,7}
40		per of incongruer (mod 42) is	nt solutions of the linear con	gruence		
	a) 1	b) 7	c) 6	d) 12	С	6
41	The value	of x such that 2^5	$x^{50} \equiv x \pmod{7}$ is	_		
	a) 2	b) 4	c) 6	d) 8	b	4
42	If p is an	odd prime, then		1		
	a) $(p - 1) \equiv 1 \pmod{p}$	$1 \equiv 0 (mod \ p)$	c) $(p-1)! \equiv 1 \pmod{p}$	$(p+1)! \equiv 1 \pmod{p}$	С	$(p-1)!$ $\equiv 1 \pmod{p}$
43	solve the	y condition to approximation simultaneous configuration $x \equiv b \pmod{N}$	Theorem to $x \equiv$			
	a) gcd(<i>M</i> , <i>N</i>) 1		c) $gcd(a, M) = gcd(b, N)$	$ \begin{array}{l} d) \\ gcd(a,b) = \\ 1 \end{array} $	a	$\gcd(M,N) = 1$
44		per of positive int $3x + 2y = 6$ is	teger solution of the Diopha	ntine		
	a) 1	b) 2	c) 3	d) 0	d	0

45	Prime nu called	mbers of the forn	$n2^n - 1$, where n is a positive	ve integer, are		
	a) Fermat primes	b) Merssene primes	c) Fibonacci primes	d)Harmonic primes	b	Merssene primes
46			ncorrect about complex nu	mbers?		
	$ z ^2 = z \overline{z}$	b) $ z_1 - z_2 \ge z_1 - z_2 $	c) $\overline{z_1 + z_2} \le \overline{z_1} + \overline{z_2}$	d) $\overline{\left(\frac{z_1}{z_2}\right)} = \overline{\frac{z_1}{z_2}},$ $z_2 \neq 0.$	С	$ \frac{\overline{z_1 + z_2}}{\leq \overline{z_1} + \overline{z_2}} $
47	$If z_1 = -1$	1 and $z_2 = i$, then	the argument of (z_1z_2) is			
	a) $-3\pi/2$	b) π/4	c) – π/2	d) 3π/2	d	$3\pi/2$
48	If $f(z) =$	(z/\overline{z}) , then $\lim_{z\to 0}$				
	a) 0	b) 1	c)-1	d) does not exist	d	does not exist
49		nplex numbers z_1 must lie on	, z_2 and z_3 are in arithmetic	progression,		
	a) a hyperb ola	b) a circle	c) a straight line	d) a parabola	С	a straight line
50	If a functi	on f(z) = u(x, y))+iv(x,y) is analytic, then			
	a) u(x,y) is harmon ic but v(x,y) is not.	-	c) neither $u(x, y)$ nor $v(x, y)$ is harmonic.	d) both $u(x, y)$ and $v(x, y)$ are harmonic.	d	both $u(x, y)$ and $v(x, y)$ are harmonic.
51	The value	e of $sin(log i^i)$ is			b	
	a) 1	b) -1	c) 1 + i	d) 1 – i	ט	-1
52	then	eal solution of the	(a-ib),			
	a) $a^2 - b^2 = 1$	b) $a^2 + b^2 = 1$	$c) a^2 + b^2 = 0$	$d) a^2 - b^2 = 0$	b	$\begin{vmatrix} a^2 + b^2 \\ = 1 \end{vmatrix}$
53	If a polyn remainde	omial $f(x)$ is diver is	then the			
	a) <i>f</i> (<i>A</i>)	b) $A + f(A)$	c) $f(A) - A$	d) A	a	f(A)

54		and δ are roots hen $\alpha + \beta + \gamma$			- x ³ -	- 16x	$^{2} - 4x +$		
	a) 1	b) -4	c) 48				d) -1	d	-1
55		ws or two colum he determinan		minan	t are	same	e then the		
	a) 0	b) 1	c) 2				d) -1	a	0
56	If $1, \omega$ and equal to	d ω^2 are cube r	oots of the un	ity, the	$\operatorname{en} \begin{vmatrix} 1 \\ \omega \end{vmatrix}$) α	$\begin{bmatrix} \omega & \omega^2 \\ \sigma^2 & 1 \\ 1 & \omega \end{bmatrix}$ is		
	a)3	b) -1	c) 0				d) 1	С	0
57	The equa	equation $x^5 - x^4 + x^3 - 2x^2 - 3 = 0$ has							
	a) no negativ e roots	b) all negative roots c) three negative roots d) at least one negative roots					a	no negative roots	
58	A square	matrix <i>M</i> is sa	id to be symm	etric i	fand	only	if		
	$a) \\ det(M) = \\ M = 0$	$\det(M) =$	$det(M) = (transpose \ of \ M) (transpose \ of \ M)$				С	M = (transpo	
59	$x \in X$ is a	be a metrics solution be a metrics solution be a metrics of $r > 0$,	-				-		
	a) $S_r(x) \cap A \neq \emptyset$	b)) $(S_r(x) - \frac{1}{2}$	$\{x\}) \cup A \neq \emptyset$	$(S_r(x))$ $\{x\}$ $A \neq \emptyset$	() — ∩	d) ({x})	$S_r(x) - \\ 0 \cap A = \emptyset$	С	$(S_r(x) - \{x\})$ $\cap A \neq \emptyset$
60		be a discrete $[x_0]$ centred at	-	Then f	or 0 <	< r <	(1, closed		
	a) <i>X</i>	b) $X - \{x_0\}$		c) { <i>x</i>	0}	d) Ø)	С	$\{x_0\}$
61	In a metr	ic space, ever C	auchy sequen	ce					
	a) has a converg ent sub sequenc e	b) is bounded	c space, ever Cauchy sequence b) is bounded c) is unboun ded d) convergent.				b	bounded	
62		If A, B and C are mutually exclusive events such that $P(A) = (3/2)P(B)$ and $P(C) = (1/2)P(B)$. Then $P(A)$ is _							

	$(P(\cdot)den$	otes p	robability of an eve	ent.)			
	a) 4/13	b) 3,	/4	c) 12/13	d) 13/12	a	4/13
63	If A and E	are i	ndependent events, t	hen			
	$P(A \cap B) = 0$	P(B)		c) $P(A \cap B) = P(A)P(B)$		С	$P(A \cap B) = P(A)P(B)$
64	The differ	rentia	l equation $\left(\frac{d^2y}{dx^2}\right)^2 - \frac{d}{dx^2}$	$\frac{y}{x} - y^3 = 0 \text{ ha}$	as degree:		
	a)0.5		b)2	c)3	d)4	b)	2
65	A cos given	μx + 1 by	ntial equation of t $B \sin \mu x$, where A an	d <i>B</i> are arbi	trary constants, is		
	$a)\frac{d^2y}{dx^2} + \mu$	<i>y</i> =	$b)\frac{d^2y}{dx^2} - \mu y = 0$	$c)\frac{d^2y}{dx^2} + \mu^2 y = 0$	$d)\frac{d^2y}{dx^2} - \mu^2y = 0$	c)	$\frac{d^2y}{dx^2} + \mu^2y = 0$
66	Which o	f the f	ollowing differential	equation is li	near?		
	$a)\frac{dy}{dx} + x^2y^2 = sx$	in y	$b)\frac{dy}{dx} - x^2y = \sin x$	$c)(1 + y)\frac{dy}{dx} + \sin x = 0$	$d)\frac{dy}{dx} + y(x+y) = x^2$	b)	$\frac{\frac{dy}{dx}}{x^2y} = \sin x$
67	The diffe	rentia	l equation $\frac{dy}{dx} + P(x)y$	$y = Q(x)y^n$ is	s called:	d)	Bernoulli' s equation
	a)Auxilia equation	ry	b)Euler's equation	c)Linear equation	d) Bernoulli's equation		
68	The differ	rentia	l equation $y = x \frac{dy}{dx} +$	$f\left(\frac{dy}{dx}\right)$ is known	own as:		
	a)Bernou equation		b) Clairut's equation	c) Linear equation	d)Exact equation	b)	Clairut's equation
69	The solut	ion of	$5\frac{dy}{dx} + 6 = 0 \text{ is}$				
	a)(a) y = c	= x +	$b)y^2 = x + c$	c)(y - 2x - c)(y - 3x - c) = 0	d) none of these	c)	(y-2x - c)(y - 3x - c) $= 0$
70	If $f(D)y$	= 0 , v	where $D \equiv \frac{d}{dx}$, be a li	inear differer	ntial equation with		

	constant co	efficients, then its au	xiliary equation	ı is		
	a)f(D-m)=0	b)f(m) = 0	$c)f(e^m)=0$	d) none of these	b)	f(m)=0
71	The number s	system with base 2 is	known as:	1		
	a)Decimal system	b) Binary system	c) Octal system	d) Hexadecimal system	b)	Binary system
72		esult of the binary ad 010 and 0111?	ldition perform	ed on the		
	a)1001	b)0101	c) 0110	d) 1111	a)	1001
73	The C language	e consists of nu	umber of keywo	rds.		
	a)40	b)32	c)33	d)56	b)	32
74	C programmin	g language was devel	loped by			
	a) Ken Thompson	b) Dennis Ritchie	c)Bill Gates	d) Peter Norto	b)	Dennis Ritchie
75	Which is the co	orrect way to declare	a pointer?			
	a)int_ptr;	b) int *ptr;	c) *int ptr;	d) ptr_int;	b)	int *ptr;
76	Which is more	appropriate for read	ling in a multi-w	vord string?		
	a)printf()	b) gets()	c) scanf()	d) puts()	b)	gets()
77	The processor language is a fo	of translating a sourd unction of:	ce program into	machine	c)	Compiler
	a)Translator	b)Assembler	c)Compiler	d) none of these		
78	The operator	1	a)	x = x + 5		
	a)x = x + 5	b)x + 5 = x	c)x = 5 + 1	d)x = 5 + 5	-	
79	Which of the fo	lowing is uniformly	continuous on	<u> </u> [0.1]?		
• •			10	[~/ ~]'		

	$a)f(x) = x^2$	$b)f(x) = \sin x^2$	c)f(x) = 1/x	$d)f(x) = \frac{x}{1+x}$	d	$f(x) = \frac{x}{1+x}$			
80	The value of	$\lim_{x \to 0} \left(\frac{1 - \cos x}{3x^2} \right)$		•					
	a) 0	b) 1/3	c) 1/6	d) 1/9	С	1/6			
81	Which is an	example of infinitely	oscillatory sequen	1		,			
	$\begin{array}{c} a)\langle (-1)^n/\\ n\rangle \end{array}$	$b)\langle (-1)^n n \rangle$	$c)\langle (-1)^{n^2}\rangle$	$d)\langle (-1)^n/n^2\rangle$	b	$\langle (-1)^n n \rangle$			
82	If $f(x+1) + \mathbb{N}$, is								
	a)nf(1)	b)0	c)n	$d)(f(1))^n$	a	<i>nf</i> (1)			
83	The function	$f(x) = \sin 1/x \text{ at } x$	=0 has a						
	a)Disconti nuity of first kind	b)Discontinuity of second kind	c)Mixed continuity	d)Removable discontinuity	b	Discontin uity of second kind			
84	The number	of asymptotes of a c	curve of nth degree	is					
	a)At least one	b)At least n	c)At most n	d)At most 1	С	At most n			
85	The radius of origin, is given	of curvature of the or en by	rigin, if y axis is the t	tangent at the					
	$a)\lim_{x\to 0}\frac{x^2}{2y}$	$b)\lim_{x\to 0}\frac{x^2}{y}$	$c)\lim_{x\to 0}\frac{y^2}{x}$	$d)\lim_{x\to 0}\frac{y^2}{2x}$	d	$\lim_{x\to 0}\frac{y^2}{2x}$			
86	The radius of	of convergence of the	e series $\sum_{n=0}^{\infty} k^n x^n$ is	5					
	a) 1	b) k	c) 1/k	$d)(1/k)^n$	С	1/k			
87	The nth deri	vative of $(ax + b)^{-1}$	¹ is						
	$a)\frac{(-1)^n n! a^n}{(ax+b)^{n+1}}$	$b)\frac{n!a^n}{(ax+b)^n}$	$c)\frac{(-1)^n n! a^n}{(ax+b)^n}$	d) 0	a	$\frac{(-1)^n n! a^n}{(ax+b)^{n+1}}$			
88	If $y = a \log$ then								
	a)a = 2, b = -1/2	b) $a = 2, b = -1$	c)a = -2, b = -1/2	d) $a = -2, b = 1/2$	a	a = 2, b $= -1/2$			
89	A double po	int on the curve is a	cusp if tangents are						
	a)Real and coincident	b)Imaginary and distinct	c)Real and distinct	d)Imaginary and	a	Real and coinciden			

				coincident		t
90	Which of the	e following statemen	t is false?	l		
	a)All partially ordered sets are not lattice.	b)The product of two lattices is a lattice.	c)The union of two sublattices of a lattice is a sublattice.	d)Every finite lattice is complete.	С	The union of two sublattice s of a lattice is a sublattice
91	The dual of	the Boolean express	ion $x(y'z' + yz)$ is			
	a)x + y + z	b)x + (y' + z')(y + z)	c)x + (y + z)(y + z)	d)x + (y' + z') + (y + z)	b	x + (y' + z')(y + z)
92	Which of the	following is not a c	hain? ('/' is division))		
	a)(Z ⁺ ,/)	b)(A ,/), where $A = \{2,6,12,36\}$	c)(ℤ,≤)	$d)(\mathbb{Z}^+,\leq)$	a	(ℤ+,/)
93	The contrap	ositive of $p \Rightarrow q$ is				
	$a)\sim q \Rightarrow p$	$b) \sim p \Longrightarrow \sim q$	$c)q \Rightarrow \sim p$	$d)q \Rightarrow p$	a	$\sim q \Longrightarrow \sim p$
94		of solutions of equa ative integers, is	tion x + y + z = 17	, where x , y , z		
	a) 171	b) 680	c) 136	d) 450	a	171
95	Which of the	e following is a contr	radiction?	,		
	$a)p \Rightarrow q$	$b)p \wedge (q \wedge \sim p)$	c) <i>p</i> ∨ <i>q</i>	d) <i>p</i> ∨~ <i>p</i>	b	$p \land (q \land \\ \sim p)$
96	The number	of different Boolear	n functions of degree	2 3 is		
	a)2 ³	b)2 ⁶	c)2 ⁸	d)3!	С	28
97		m number of studen hem are born in the		vill ensure that		
	a) 49	b) 37	c) 61	d) 48	b	37
98	If λ is an eight A^{-1} is	en value of a non-sin	ngular matrix A, then	eigen value of		
	a)λ	b)-λ	c)-1/λ	d)1/λ	d	1/λ
99	Which of the	e following is not a s	ubspace of $\mathbb{R}^3(\mathbb{R})$?			
	a) {(x, y, z): x ≥ 0}	b) $\{(x, 2x, 3x)\}$	$ c) \{(x, y, z): \sqrt{2}x = $	$d)$ $\{(x, y, z): x - 2y = z -$	а	$\{(x, y, z) : x \ge 0\}$

			$\sqrt{3}y$ }	3 <i>y</i> /2}		
10 0	For Riemann integrability, continuity is					
	a)Necessar y	b)Sufficient	c)Necessary and sufficient	d)Neither necessary nor sufficient.	b	Sufficient

SPACE FOR ROUGH WORK