RGUCET 2023
MASTER OF TECHNOLOGY IN ELECTRONICS AND COMMUNICATION ENGINEERING (M.TECH)

Full Marks: 100
Time: 2 Hours
Roll No. \square

Day and Date of Examination
Signature of Invigilator(s)
Signature of Candidate

General Instructions:

please read all the instructions carefully before making any entry.

1. DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE TOLD TO DO SO.
2. Candidate must write his/her Roll Number on the space provided.
3. This Test Booklet contains 100 Multiple Choice Questions (MCQs). Each question carries 1 mark. There shall be negative marking of 0.25 against each wrong attempt.
4. Please check the Test Booklet to verify that the total pages and total number of questions contained in the test booklet are the same as those printed on the top of the first page. Also check whether the questions are in sequential order or not.
5. Candidates are not permitted to enter into the examination hall 15 minutes after the commencement of the entrance test or leave the examination hall before 30 minutes of end of examination.
6. Making any identification mark in the OMR Answer Sheet or writing Roll Number anywhere other than the specified places will lead to disqualification of the candidate.
7. Candidates shall maintain silence inside and outside the examination hall. If candidate(s) is/are found violating the instructions mentioned herein or announced in the examination hall, they will be summarily disqualified from the entrance test.
8. In case of any dispute, the decision of the Entrance Test Committee, RGU shall be final and binding.
9. The OMR Answer Sheet consists of two copies, the Original copy and the Student's copy.

1	A sum of Rs 1750 is divided into two parts such that the interests on the first part at 8% simple interest per annum and that on the other part at 6% simple interest per annum are equal. The interest on each part is(in Rs)					
	a)60	b)65	c) 70	d) 40	a	60
2	Radhe does 70\% of some work in 15 days. Later, with Shyam's help, she completes the remaining work in 4 days. In how many days can Shyam alone complete the entire work?					
	a)33.3 days	b) 38.3 day	c) 35.3 days	d) 45.3 days	c	$\begin{aligned} & \hline 35 . \\ & 3 \\ & \text { da } \\ & \text { ys } \end{aligned}$
3	A-clock gains five minutes every hour. What will be the angle traversed by the second hand in one minute?					
	a) 360°	b)360.5	c) $390{ }^{\circ}$	d) 380°	c	$\begin{aligned} & 39 \\ & 0^{\circ} \end{aligned}$
4	There are 3 green, 4 orange and 5 white color bulbs in a bag. If a bulb is picked at random, what is the probability of having either a green or a white bulb?					
	a)(1/3)	b) (2/3)	c) $(4 / 3)$	d) (5/3)	b	$\begin{aligned} & (2 / \\ & 3) \end{aligned}$
5	If $5^{\wedge} \mathrm{a}=3125$, then the value of $5^{\wedge}(\mathrm{a}-3)=$?					
	a)25	b)125	c) 625	d) 5	a	25
6	In a camp, there is a meal for 200 children or 120 men. If 150 children have taken the meal, how many men will be served with the remaining meal?					
	a)31	b)29	c)30	d) 35	c	30
7	Applied to a bill for Rs. 50000. Find the difference between a discount of 25% to that of two successive discounts of 20% and 10% ?					
	a)2250	b)1500	c) 1750	d) 1800	b	15

	a) 20	b) 30	c) 50	d) 60	d	60
16	In which state the Hornbill Festival is celebrated?					
	a) Assam	b) Nagaland	c) Tripura	d) Sikkim	b	Na gal and
17	The capital city of Ukraine					
	a) Kyiv	b)Kharkiv	c) Odessa	d) Dnipro	a	$\begin{aligned} & \begin{array}{l} \text { Ky } \\ \text { iv } \end{array} \end{aligned}$
18	Select the wrongly spelt word in the following words.					
	a) expire	b) explicit	c) explode	d)exploite	d	exp loit e
19	In each of the following questions, choose the correctly spelt word.					
	a)Bouquete	b) Bouquet	c)) Boquet	d)Bouquette	b	$\begin{aligned} & \hline \text { Bo } \\ & \text { uq } \\ & \text { uet } \\ & \hline \end{aligned}$
20	one who is not easily pleased by anything					
	a) gullible	b) fastidious	c) innocent	d) amenable	b	fast idi ous
21	Museum is related to Curator in the same way as Prison is related to ____?					
	a)Warden	b)Jailor	c)Monitor	d)Manager	b	Jail or
22	One who damages public property					
	a) Cynosure	b) Demagogue	c) Epicure	d) Vandal	d	$\begin{array}{\|l} \hline \mathrm{Va} \\ \text { nda } \\ 1 \\ \hline \end{array}$
23	Find the Error Section in the following sentence "Some of the richest (A) / business magnate (B) / live in Mumbai. (C) / No Error (D)"					
	a) A	b) B	c) C	d) D	b	bus ine ss ma gna te

24	Find the Error Section in the following sentence "He has made a mistake (A)/ of which (B) / I am certain (C) / No error (D)"					
	a) A	b) B	c) C	d) D	d	No err or
25	My sister's marriage passed ___ peacefully.					
	a) away	b) by	c) off	d) out	c	off

26	The trigonometric Fourier series of an even function of time does not have the					
	a) DC term	b) Cosine Term	c) Sine Term	d) odd harmonic term	c	Sine term
27	The Fourier Series of an odd periodic function, contains only					
	a) Even harmonic	b) Cosine Term	c) Sine Term	d)Odd Harmonic	c	Sine Term
28	To obtain very high input and output impedances in a feedback Amplifier, the mostly used is					
	a) Voltage Series	b) Current Series	c) Voltage Shunt	d) Current Shunt	b	Curren t Series
29	Crossover distortion behavior is characteristic of					
	a) class A output stage	b) class B output stage	c) class AB output stage	d) common base output stage	b	class B output stage
30	A class-A transformer coupled, transistor power Amplifier is required to deliver a power rating of the transistor should not be less than.					
	a) 5 W	b) 10 W	c) 20 W	d) 40 W	b	10 W
31	The number of comparators required in a 3-bit comparator type ADC is					
	a) 2	b)3	c) 7	d) 8	c	7
32	The number of comparators in 4-bit flash ADC is					

	a) 4	b) 5	c) 15	d) 16	c	15
33	The resolution of a 4-bit counting ADC is 0.5 Volts. For an analog input of 6.6 Volts, the digital output of the ADC will be					
	a)1011	b)1101	c)1100	d)1110	d	1110
34	In a half-subtractor circuit with X and Y as inputs, the Borrow (M) and Difference $(\mathrm{N}=\mathrm{X}-\mathrm{Y})$ are given by					
	a) $M=X \oplus Y, N$	b) $M=X Y, N=X$	c) $M=\bar{X} Y, N=X$	d) $M=X \bar{Y}, \quad N=\overline{X \oplus Y}$	c	$M=\bar{X} Y$,
35	The output Y of a 2-bit comparator is logic 1 whenever the 2-bit input A is greater than the 2-bit input B . The number of combinations for which the output is logic 1 , is					
	a) 4	b)6	c) 8	d) 10	c	6
36	A region of negative differential resistance is observed in the current voltage characteristics of a silicon PN junction if					
	a) Both the P and N region are heavily doped	b) N region is heavily doped compared to the p region	c) P region is heavily doped compared to N region	d) An intrinsic silicon region is inserted between the P region and N region	a	Both the P and N region are heavily doped
37	Which one of the following processes is preferred to from the gate dielectric (SiO2) of MOSFETs?					
	a) Sputtering	b) Molecular Beam Epitaxy	c) Wet Oxidation	d) Dry Oxidation	d	Dry Oxidati on
38	In MOSFET fabrication, the channel length is defined during the process of					
	a) Isolation Oxide Growth	b) Channel Stop implantation	c) Polysilicon gate patterning	d) Lithography step leading to the contact pads	c	Polysili con gate patterni ng

39	Consider an angle modulated signal $\mathrm{x}(\mathrm{t})=6 \cos \left[2 \pi \times 10^{6} \mathrm{t}+2 \sin (8\right.$ $t)] V$. The average power of $x(t)$ is.					
	a) 10 W	b) 14 W	c) 18 W	d) 22 W	c	18 W
40	Consider the amplitude modulated (AM) signal $A_{c} \cos \omega_{c} t+$ d For demodulating the signal using envelope detector, the minimu be					
	a) 2	b) 1	c) 0.5	d) 0	a	2
41	An increase in the base recombination of a BJT will increase					
	a) the common emitter dc current gain β	b) the breakdown voltage BVceo	c)the unity gain cut off frequency fT	d)the transconductance gm	b	b) the breakd own voltage BVceo
42	A thin P-type silicon sample is uniformly illuminated with light which generates excess carriers. The recombination rate is directly proportional to					
	a)the minority carrier mobility	b)the minority carrier recombination lifetime	c)the minority carrier concentration	d)the excess minority carrier concentration	d	the excess minorit y carrier concent ration
43	Drift current in the semiconductors depends upon					
	a) only the electric field	b)only the carrier concentration gradient	c) both the electric and carrier concentration	d) both the electric and carrier concentration gradient	c	both the electric and carrier concent ration
44	The concentration of minority carriers in an extrinsic semiconductor under equilibrium is:					

	a) direct proportional to the doping concentration	b)inversely proportional to the doping concentration	c) directly proportional to the intrinsic concentration	d) inversely proportional to the intrinsic concentration.	b	inverse ly proport ional to the doping concent ration
45	If 120C of charge passes through an electric conductor in 60 sec , the current in the conductor is					
	a) 0.5 A	b) 2 A	c) $\begin{aligned} & 3.33 \\ & \mathrm{~mA}\end{aligned}$	d) 0.3 mA	b	2 A
46	A silicon pnjunction at $T=300 \mathrm{~K}$ has $N_{d}=10^{14} \mathrm{~cm}^{-3}$ and $N_{a}=10^{17}$ cm^{-3}. The built-in voltage is					
	a) 0.63 V	b) 0.93 V	c) 0.026 V	d) 0.038 V	b	0.93 V
47	A silicon pnjunction applied bias has doping concentrations of $N_{d}=5 * 10^{16} \mathrm{~cm}^{-3}$ and $N_{a}=5 * 10^{15} \mathrm{~cm}^{-3}$ The space charge width is					
	$\begin{aligned} & \text { a) } 3.2^{*} 10^{-5} \\ & \mathrm{~cm} \end{aligned}$	b) $4.5^{*} 10^{-5} \mathrm{~cm}$	$\begin{aligned} & \text { c) } 4.5 * 10^{-4} \\ & \mathrm{~cm} \end{aligned}$	d) 3.2 * $10^{-4} \mathrm{~cm}$	b	$\begin{aligned} & \hline 4.5^{*} \\ & 10^{-5} \\ & \mathrm{~cm} \end{aligned}$
48	For the circuit shown in fig. below the input resistance is					
	a) 38 kW	b) 17 kW	c) 25 kW	d) 47 kW	b	17 kW
49	A Mealy system produces a 1 output if the input has been 0 for at least two consecutive clocks followed immediately by two or more consecutive 1's. The minimum state for this					

	system is					4
	a) 4	b) 5	c) 8	d) 9	a	
50	What is the rule $\mathrm{h}^{*}\left(\mathrm{x}^{*} \mathrm{c}\right)=\left(\mathrm{x}^{*} \mathrm{~h}\right)^{*} \mathrm{C}$ called?					
	a) Commutativi ty rule	b)Associativity rule	c)Distributive rule	d) Associativity and Commutativity rule	d	Associ ativity and Comm utativit y rule
51	In which regions a MOSFET works as a 'Switch"					
	a)Saturation, Linear	b) Cut off, linear	c) Saturation, Cut off	d) Cutoff, Cutoff	c	Saturat ion, Cut off
52	Find the convolution of $x(t)=\exp (2 \mathrm{t}) \mathrm{u}(-\mathrm{t})$, and $\mathrm{h}(\mathrm{t})=\mathrm{u}(\mathrm{t}-3)$					
	a) $0.5 \exp (2 t-$ 6) $u(-t+3)+$ $0.5 u(t-3)$	$\begin{aligned} & \text { b) } 0.5 \exp (2 t-3) \\ & u(-t+3)+0.8 u(t- \\ & 3) \end{aligned}$	$\begin{aligned} & \text { c) } 0.5 \exp (2 t-6) \\ & u(-t+3)+ \\ & 0.5 u(t-6) \end{aligned}$	$\begin{aligned} & \text { d) } 0.5 \exp (2 t-6) \\ & u(-t+3)+0.8 u(t- \\ & 3) \end{aligned}$	a	$\begin{aligned} & 0.5 \exp \\ & (2 \mathrm{t}-6) \\ & \mathrm{u}(-\mathrm{t}+3) \\ & + \\ & 0.5 \mathrm{u}(\mathrm{t}- \\ & 3) \end{aligned}$
53	CMOS technology is used in developing					
	a)microproce ssors	b) microcontrolle rs	c)digital logic circuits	d)all of the mentioned	d	all of the mentio ned
54	P -well is created on					
	a)p subtrate	b)n substrate	c) p \& n substrate	d) none of the mentione d	b	substr ate
55	The region where the electrons and holes diffused across the junction is called					
	a)Depletion	b)Depletion	c)Depletion	d)Depletion	b	Depleti on

	Junction	region	space	boundary		region
56	is a direct band gap material					
	a)Copper Indium Gallium Selenide	b)Copper Selenide	c) Copper Gallium Telluride	d)Copper Indium Gallium Diselenide	a	Coppe r Indium Galliu m Seleni de
57	Choose the correct statement(s) i) The gate circuit impedance of MOSFET is higher than that of a BJT ii) The gate circuit impedance of MOSFET is lower than that of a BJT iii) The MOSFET has higher switching losses than that of a BJT iv) The MOSFET has lower switching losses than that of a BJT					
	a)Both i\& ii	b)Both ii \& iv	c)Both i\& iv	d)Only ii	c	Both i\& iv
58	What is the duration of the unit sample response of a digital filter?					
	a)Finite	b)Infinite	c)Impulse	d)Zero	b	Infinite
59	$\mathrm{s} \mathrm{y}[\mathrm{n}]=\mathrm{n} * \cos \left(\mathrm{n}^{*} \mathrm{pi} / 4\right) \mathrm{u}[\mathrm{n}]$ a stable system?					
	a)Yes	b) No	C)Marginally stable	d) None of the mentioned	b	No
60	A signed integer has been stored in a byte using 2's complement format. We wish to store the same integer in 16-bit word. We should copy the original byte to the less significant byte of the word and fill the more significant byte with					
	a) 0	b) 1	c)equal to the MSB of the original byte	d)complement of the MSB of the original byte.	c	equal to the MSB of the origina I byte
61	An pnjunction diode is operating in reverse bias region. The applied reverse voltage, at which the ideal reverse current reaches 90% of					

	its reverse saturation current, is				a	$\begin{aligned} & 59.6 \\ & \mathrm{mV} \end{aligned}$
	a) 59.6 mV	b) 4.8 mV	c) 2.7 mV	d) 42.3 mV		
62	The network function $(s+1)(s+4) / s(s+2)(s+5)$ is a					
	a) $R L$ impedance function	b) $R C$ impedance function	c) $L C$ impedance function	d) Above all	b	$R C$ imped ance functio n
63	A branch has 6 node and 9 branch. The independent loops are					
	a)3	b) 4	c) 5	d)6	b	4
64	In the circuit of the fig below the value of the voltage source E is					
	e) -16V	f) -6 V	g) 4 V	h) 16 V	a	-16V
65	Which of the following is an open loop control system?				d)	Field control led D.C. motor
	a) Ward Leonard control) Metadyne	c) Stroboscope	d) Field controlled D.C. motor		
66	The output of the feedback control system must be a function of				b)	Input
	a) Output) Input and	c) Reference	d) Reference output		

| and
 feedback
 signal | feedback signal | input | | and
 feedba
 ck |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| signal | | | | |$|$

72	The computational procedure for Decimation in frequency algorithm takes				a)	$\log _{2} \mathrm{~N}$ stages
	a) $\log _{2} \mathrm{~N}$ stages	b) $2 \log _{2} \mathrm{~N}$ stages	c) $\log _{2} \mathrm{~N} 2$ stages	d) $\log _{2} \mathrm{~N} / 2$ stages		
73	For a system function $\mathrm{H}(\mathrm{s})$ to be stable				c)	The poles lie in left half of the s plane
	a) The zeros lie in left half of the s plane	b) The zeros lie in right half of the s plane	c) The poles lie in left half of the s plane	d) The poles lie in right half of the splane		
74	Which among the following represent/s the characteristic/s of an ideal filter?				d)	All of the above
	a) Constant gain in passband	b) Zero gain in stop band	c) Linear Phase Response	d) All of the above		
75	The process of converting the analog sample into discrete form is called				c)	Quanti zation
	a) Modulation	b) Multiplexing	c) Quantization	d) Sampling		
76	The modulation techniques used to convert analog signal into digital signal are				d)	All of the above
	a) Pulse code modulation	b) Delta modulation	c) Adaptive delta modulation	d) All of the above		
77	The sequence of operations in which PCM is done is				a)	Sampli ng, quantiz ing, encodi ng
	a) Sampling, quantizing, encoding	b) Quantizing, encoding, sampling	c) Quantizing, sampling, encoding	d) None of the above		
78	In PCM, the parameter varied in accordance with the amplitude of the modulating signal is					

	a) Amplitude	b) Frequency	c) Phase	d) None of the above	d)	None of the above
79	In digital transmission, the modulation technique that requires minimum bandwidth is				a)	Delta modula tion
	a) Delta modulation	b) PCM	c) DPCM	d)PAM		
80	In Delta Modulation, the bit rate is				a)	N times the sampli ng freque ncy
	a) N times the sampling frequency	b) N times the modulating frequency	c) N times the nyquist criteria	d) None of the above		
81	The channel capacity according to Shannon's equation is				d)	All of the above
	a) Maximum error free communica tion	b) Defined for optimum system	c)Information transmitted	d)All of the above		
82	The steady-state error of a feedback control system with an acceleration input becomes finite in a				c)	type 2 system
	a) type 0 system.	b) type 1 system	c) type 2 system	d) type 3 system		
83	What is the value of steady state error in closed loop control systems					Zero
	a) Zero	b) Unity	c) Infinity	d) Unpredictable	a)	

84	Which of the following is a asynchoronous counter?				c)	Ripple Counte r
	a) Ring b) John Counter counte		ipple d) nter			
85	In colour TV receiver, varactor diode is used for				c	tuning
	a)detection	b) rectification	c)tuning	d) both (a) and (b)		
86	A 400 W carrier is amplitude modulated with $\mathrm{m}=0.75$. The total power in AM is				b	512 W
	a) 400 W	b) 512 W	c) 588 W	d) 650 W		
87	Non-coherently detection is not possible for				a	PSK
	PSK	b)ASK	c)FSK	d)both (a) and (c)		
88	In radar systems PRF stands for				c	Pulse Repetit ion Freque ncy
	a)Power Return Factor	b)Pulse Return Factor	c) Pulse Repetition Frequency	d)Pulse Response Factor		
89	As the frequency increases, the absorption of ground wave by earth's surface				b	increas es
	a) decreases	b) increases	c) remains the same	d) either (a) or (c)		
90	The rate at which information can be carried through a communication channel depends on				b	bandwi dth
	a)carrier frequency	b)bandwidth	c)transmission loss	d)transmitted power		
91	If the bandwidth is increased by 2 , the $\gamma \mathrm{FM} \gamma \mathrm{AM}$ (where γ is the ratio of SNR of output to SNR at input, FM is frequency modulation and AM is amplitude modulation) is increased by a factor of				c	
					4	

	a) 2	b) 3	c) 4	d) 6		
92	Frequency shift keying is used mostly in				a	telegra phy
	a) telegraphy	b) telephony	c) satellite communication	d)radio transmission		
93	The frequency range of 300 kHz to 3000 kHz is known as					
	a) low frequency	b)medium frequency	c)high frequency	d) very high frequency	b	mediu m frequen cy
94	The output Y in the circuit below is always ' 1 ' when				b	two or more of the inputs P,Q,R are ' 1 '
95	When the outp Data Clock П几に a)changed from 0 to 1	Y in the circu b)changed from 1 to 0	below is ' 1 ', it im c)changed in either direction	ies that data has d)not changed	a	change d from 0 to 1
96	In the circuit shown below, the value of RL such that the power transferred to RL is maximum				c	15Ω

	a) 5Ω	b) 10Ω	c) 15Ω	d) 20Ω		
97	To increase Q factor of a coil, the wire should be				c	thick
	a)long	b)thin	c)thick	d)long and thin		
98	An ammeter of 0-25 A range has a guaranteed accuracy of 1% of full scale reading. The current measured is 5 A . The limiting error is				d	5\%
	a)2\%	b) 2.5%	c) 4%	d) 5%		
99	In 3 phase power measurement by two wattmeter method, the reading of one wattmeter is zero. The power factor of load is				b	0.5
	a) 1	b) 0.5	c) 0	d) 0.8		
100	In a CRO which of the following is not a part of electron gun				d	$\begin{aligned} & \mathrm{X}-\mathrm{Y} \\ & \text { plates } \end{aligned}$
	a)cathode	b)grid	c)accelerating anode	d) X - Y plates		

SPACE FOR ROUGH WORK

