Test Booklet No.

This booklet consists of <u>100</u> questions and <u>12</u> printed pages.

RGUCET/2023/PG/20

										Serie	8	
												NIL
N	IAST CC	ER (DMM	OF 1 IUN	TEC ICA	I HNC TIO	rguc DLO N EN	ET 202 GY IN IGIN	3 N EL EER	ECTR(ING (M	DNIC I.TEC	S AND CH)	•
Full Marl	ks: 100)									Time:	2 Hours
Roll No.												
Day and Day	te of Ex	aminat	tion	:								
Signature of	Invigila	ator(s)		:								
Signature of	Candid	ate		:								

General Instructions:

PLEASE READ ALL THE INSTRUCTIONS CAREFULLY BEFORE MAKING ANY ENTRY.

- 1. DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE TOLD TO DO SO.
- 2. Candidate must write his/her Roll Number on the space provided.
- 3. This Test Booklet contains 100 Multiple Choice Questions (MCQs). Each question carries 1 mark. There shall be negative marking of 0.25 against each wrong attempt.
- 4. Please check the Test Booklet to verify that the total pages and total number of questions contained in the test booklet are the same as those printed on the top of the first page. Also check whether the questions are in sequential order or not.
- 5. Candidates are not permitted to enter into the examination hall 15 minutes after the commencement of the entrance test or leave the examination hall before 30 minutes of end of examination.
- 6. Making any identification mark in the OMR Answer Sheet or writing Roll Number anywhere other than the specified places will lead to disqualification of the candidate.
- 7. Candidates shall maintain silence inside and outside the examination hall. If candidate(s) is/are found violating the instructions mentioned herein or announced in the examination hall, they will be summarily disqualified from the entrance test.
- 8. In case of any dispute, the decision of the Entrance Test Committee, RGU shall be final and binding.
- 9. The OMR Answer Sheet consists of two copies, the Original copy and the Student's copy.

1	A sum of Rs 1750 is div	vided into two part	s such that the inte	erests on the first						
	part at 8% simple intere	st per annum and	that on the other p	art at 6% simple						
	interest per annum are e	roual The interest	on each part is(in	Rs)						
	interest per unnum ure e	qual. The interest	on each part is(in	Kb)						
	a)60	b)65	c)70	d)40	a	60				
	D 11 1 700/ C	1.17.1 1		1 1 1 .	 					
2	Radhe does 70% of some the remaining work in 4 d	work in 15 days. La	iter, with Shyam's h	elp, she completes						
	entire work?	ays. In now many d	ays can Shyam alon	e complete the						
					<u> </u>					
	a)33.3 days	b) 38.3 days	c)35.3 days	d) 45.3 days	c	35.				
						3 da				
						ua vs				
		alash asing five minutes over the What will be the engle travered by the								
3	A-clock gains five minute	A-clock gains five minutes every hour. What will be the angle traversed by the								
	second hand in one minut	e?								
	a) 360° b)360.5 c)390° d) 380°									
		,				0°				
4	There are 3 green, 4 orang	ge and 5 white color	bulbs in a bag. If a	bulb is picked at						
	random, what is the proba	bility of having eith	er a green or a whit	e bulb?						
	a)(1/3)	b) (2/3)	c) (4/3)	d) (5/3)	b	(2/				
					-	3)				
_					<u> </u>					
5	If $5^{a} = 3125$, then the val	lue of $5^{(a-3)} = ?$								
	a)25	b)125	c) 625	d)5	a	25				
6	In a camp, there is a meal	for 200 children or	120 men. If 150 chi	ldren have taken						
	the meal, how many men	will be served with	the remaining meal?	?						
	a)31	b)29	c)30	d) 35	c	30				
_			1 / 1		 					
/	Applied to a bill for Rs. 50	0000. Find the diffe	rence between a dise	count of 25 % to						
		Journs Of 20 70 and	10 /0:							
	a)2250	b)1500	c)1750	d)1800	b	15				

							00
8	If θ be acute angle and co	$s\theta = 15/17$, then the	value of c	ot (90° - 6	ə) is		
	a)2√8/15	b)8/15	c)√2/7		d)8√7/17	b	8/1 5
9	A man would gain 25% b selling a table for Rs. 57.5 which he must sell the tab	y selling a chair for 5. He sells the chair ble to avoid any loss	Rs. 47.5 a for Rs. 45 on the two	nd would ; what is t o together	gain 15% by he least price for ?		
	a) 41.2	b)42.2	C)43		d)45.2	c	43
10	In an arithmetic progressi the general term is an , fir	on the first term is 1 nd a19 - a11.	0 and its c	common d	ifference is 8. If		
	a) 65	b)64	c)66		d)61	b	64
11	The cost of Type 1 rice is Rs. 30 per kg and Type 2 rice is Rs. 40 per kg. if both Type 1 and Type 2 are mixed in the ratio of 1 : 4, then what will be the price per kg of the mixed variety of rice?						
	a)38 per kg	b)34 per kg	c)68 per	kg	d) 48 per kg	a	38 per kg
12	Find the least number w remainder?	which when divide	d by 12, 2	27 and 35	leaves 6 as a		
	a)3586	b)3756	c)3786		d) 4786	c	37 86
13	When was G20 establishe	ed?			I		
	a) 1995	b) 1999	c)	1985	d) 2000	b	19 99
14	What is the product of all	the numbers in the	dial of a te	elephone?			
	a) 158480 b)159480 c)15	9990	d)None o	of these	d	No ne of the se
15	There are deer and peacod of their legs is 200. How	cks in a zoo. By cou many peacocks are t	nting head	ls they are	80. The number		

	a) 20	b) 30	c) 50	d) 60	d	60			
16	In which state the Hor	nbill Festival is c	elebrated?						
	a) Assam	b) Nagaland	c) Tripura	d) Sikkim	b	Na gal and			
17	The capital city of Uk	raine							
	a) Kyiv	b)Kharkiv	c) Odessa	d) Dnipro	a	Ky iv			
18	Select the wrongly spe	elt word in the fo	llowing words.						
	a) expire	b) explicit	c) explode	d)exploite	d	exp loit e			
19	In each of the following	in each of the following questions, choose the correctly spelt word.							
	a)Bouquete	b) Bouquet	c)) Boquet	d)Bouquette	b	Bo uq uet			
20	one who is not easily p	pleased by anythi	ing						
	a) gullible	b) fastidious	c) innocent	d) amenable	b	fast idi ous			
21	Museum is related to 0	Curator in the sar	ne way as Priso	n is related to?					
	a)Warden	b)Jailor	c)Monitor	d)Manager	b	Jail or			
22	One who damages put	blic property							
	a) Cynosure	b) Demagogue	c) Epicure	d) Vandal	d	Va nda 1			
23	Find the Error Section "Some of the richest (A (D)"	in the following A) / business mag	sentence gnate (B) / live	in Mumbai. (C) / No Error					
	a) A	b) B	c) C	d) D	b	bus ine ss ma gna te			

24	Find the Error Section	in the following	sentence			
	"He has made a mistak	e (A)/ of which ((B) / I am certai	n (C) / No error (D)"		
	a) A	b) B	c) C	d) D	d	No
						err
						or
25	My sister's marriage pa	ussed peac	efully.			
	a) away	b) by	c) off	d) out	с	off

26	The trigonome the	etric Fourier series of	an even function o	of time does not have				
	a) DC term	b) Cosine Term	c) Sine Term	d) odd harmonic term	c	Sine term		
27	The Fourier Se	eries of an odd period	lic function, contai	ns only				
	a) Even harmonic	b) Cosine Term	c) Sine Term	d)Odd Harmonic	с	Sine Term		
28	To obtain very the mostly use	o obtain very high input and output impedances in a feedback Amplifi ne mostly used is						
	a) Voltage Series	b) Current Series	c) Voltage Shunt	d) Current Shunt	b	Curren t Series		
29	Crossover dist	ortion behavior is ch	aracteristic of					
	a) class A output stage	b) class B output stage	c) class AB output stage	d) common base output stage	b	class B output stage		
30	A class-A tran deliver a powe	sformer coupled, transis	nsistor power Amp stor should not be l	lifier is required to ess than.				
	a) 5W	b) 10W	c) 20 W	d) 40W	b	10 W		
31	The number of	f comparators require	ed in a 3-bit compar	rator type ADC is				
	a) 2	b)3	c)7	d)8	с	7		
32	The number of	f comparators in 4-bi	t flash ADC is					

	a) 4	b) 5	c)15	d) 16	c	15			
33	The resolution 6.6 Volts, the c	of a 4-bit counting A ligital output of the A	ADC is 0.5 Volts. Fe ADC will be	or an analog input of					
	a)1011	b)1101	c)1100	d)1110	d	1110			
34	In a half-subtra Difference (N	ector circuit with X a = X - Y) are given by	nd Y as inputs, the	Borrow (M) and					
	a) $M = X \oplus Y, N$	b) $M = XY, N = X \in$	c) $M = \overline{X}Y, N = X$	d) $M = X\overline{Y}, \ N = \overline{X \oplus Y}$	c	$M = \overline{X}Y,$			
35	The output Y of greater than the output is logic	The output Y of a 2-bit comparator is logic 1 whenever the 2-bit input A isgreater than the 2-bit input B. The number of combinations for which theputput is logic 1, isa) 4b)6c)8d) 10							
	a) 4	b)6	c)8	d) 10	c	6			
36	A region of neg voltage charact	gative differential rest teristics of a silicon F	sistance is observed N junction if	in the current					
	a) Both the P and N region are heavily doped	b) N region is heavily doped compared to the p region	c) P region is heavily doped compared to N region	d) An intrinsic silicon region is inserted between the P region and N region	a	Both the P and N region are heavily doped			
37	Which one of t (SiO2) of MOS	he following process SFETs?	ses is preferred to fr	om the gate dielectric					
	a) Sputtering	b) Molecular Beam Epitaxy	c) Wet Oxidation	d) Dry Oxidation	d	Dry Oxidati on			
38	In MOSFET fa	brication, the channe	el length is defined	during the process of					
	a) Isolation Oxide Growth	b) Channel Stop implantation	c) Polysilicon gate patterning	d) Lithography step leading to the contact pads	с	Polysili con gate patterni ng			

39	Consider an	angle modulated	signal x(t) = 6co	$cs[2\pi x 10^{6} t+2sin(8)]$		
	t)] V. The ave	erage power of x(t) is.			
	a) 10 W	b) 14 W	c) 18 W	d) 22 W	c	18 W
40	Consider the	e amplitude modu	lated (AM) sign	al $A_c \cos \omega_c t \;+\; 1$	2	
	For demodu	lating the signal u	using envelope o	letector, the minim	ι	
	be				I	
	a) 2	b) 1	c) 0.5	d) 0	a	2
41	An increase in	the base recombination	ion of a BJT will in	crease		
	a) the common emitter dc current gain β	b) the breakdown voltage BVceo	c)the unity gain cut off frequency fT	d)the trans- conductance gm	b	b) the breakd own voltage BVceo
42	A thin P-type s generates excer					
	a)the minority carrier mobility	b)the minority carrier recombination lifetime	c)the minority carrier concentration	d)the excess minority carrier concentration	d	the excess minorit y carrier concent ration
43	Drift current in	the semiconductors	depends upon			
	a) only the electric field	b)only the carrier concentration gradient	c)both the electric and carrier concentration	d) both the electric and carrier concentration gradient	c	both the electric and carrier concent ration
44	The concentrat equilibrium is:	ion of minority carri	ers in an extrinsic s	emiconductor under		

	a) direct proportional to the doping concentration	b)inversely proportional to the doping concentration	c) directly proportional to the intrinsic concentration	d) inversely proportional to the intrinsic concentration.	b	inverse ly proport ional to the doping
						concent ration
45	If 120C of cha current in the	arge passes throug conductor is	h an electric cond	uctor in 60 sec, the		
	a)0.5 A	b) 2 A	c) 3.33 mA	d) 0.3 mA	b	2 A
46	A silicon <i>pn</i> ju cm ⁻³ . The bui	nction at <i>T</i> = 300 K ilt-in voltage is	has <i>N_d</i> =10 ¹⁴ cm	⁻³ and <i>Na</i> =10 ¹⁷		
	a) 0.63 V	b) 0.93 V	c) 0.026 V	d) 0.038 V	b	0.93 V
47	A silicon <i>pn</i> ju $N_d = 5 * 10^1$ The space c	unction applied bi ⁶ cm ⁻³ and <i>Na</i> = harge width is	as has doping c 5 * 10 ¹⁵ cm ⁻³	oncentrations of		
	a)3.2* 10 ⁻⁵ cm	b)4.5* 10 ⁻⁵ cm	c)4.5 * 10 ⁻⁴ cm	d)3.2 * 10 ⁻⁴ cm	b	4.5* 10 ⁻⁵ cm
48	For the circu	it shown in fig. be	elow the input res	sistance is		
	a) 38 kW	b) 17 kW	c) 25 kW	d) 47 kW	b	17 kW
49	A Mealy syst for at least tw two or more	tem produces a 1 wo consecutive cl consecutive 1's.	output if the inp ocks followed im The minimum st	ut has been 0 Imediately by tate for this		

	system is					
	a) 4	b) 5	c) 8	d) 9	а	4
50	What is the ru	le h*(x*c) = (x*h)*c	called?			<u> </u>
	a) Commutativi ty rule	b)Associativity rule	c)Distributive rule	d) Associativity and Commutativity rule	d	Associ ativity and Comm utativit y rule
51	In which region	s a MOSFET works as	s a 'Switch"			
	a)Saturation, Linear	b) Cut off, linear	c) Saturation, Cut off	d) Cutoff, Cutoff	с	Saturat ion, Cut off
52	Find the conve	olution of x(t) = exp	(2t)u(-t), and h(t) =	= u(t-3)		
	a)0.5exp(2t- 6) u(-t+3) + 0.5u(t-3)	b)0.5exp(2t-3) u(-t+3) + 0.8u(t- 3)	c)0.5exp(2t-6) u(-t+3) + 0.5u(t-6)	d)0.5exp(2t-6) u(-t+3) + 0.8u(t- 3)	a	0.5exp (2t-6) u(-t+3) + 0.5u(t- 3)
53	CMOS techno	logy is used in dev	eloping	I		
	a)microproce ssors	b)microcontrolle rs	c)digital logic circuits	d)all of the mentioned	d	all of the mentio ned
54	P-well is creat	ed on				
	a)p subtrate	b)n substrate	c)p & n substrate	d) none of the mentione d	b	n substr ate
55	The region wh junction is call	ere the electrons a	ind holes diffused	across the		
	a)Depletion	b)Depletion	c)Depletion	d)Depletion	b	Depleti on

	Junction	region	space	boundary		region		
56	i	s a direct band gan	material					
50	1	s a ullect ballu gap	material					
	a)Copper Indium Gallium Selenide	b)Copper Selenide	c)Copper Gallium Telluride	d)Copper Indium Gallium Diselenide	a	Coppe r Indium Galliu m Seleni de		
57	Choose the co i) The gate circ BJT ii) The gate cir iii) The MOSF iv) The MOSF	hoose the correct statement(s) The gate circuit impedance of MOSFET is higher than that of a JT The gate circuit impedance of MOSFET is lower than that of a BJT The MOSFET has higher switching losses than that of a BJT The MOSFET has lower switching losses than that of a BJT The MOSFET has lower switching losses than that of a BJT Both i& ii b)Both ii & iv c)Both i& iv d)Only ii						
	a)Both i& ii	b)Both ii & iv	c)Both i& iv	d)Only ii	с	Both i& iv		
58	What is the du	ration of the unit sa	ample response of	f a digital filter?				
	a)Finite	b)Infinite	c)Impulse	d)Zero	b	Infinite		
59	s y[n] = n*cos((n*pi/4)u[n] a stable	system?					
	a)Yes	b) No	C)Marginally stable	d)None of the mentioned	b	No		
60	A signed integ format. We wis copy the origir the more signi	er has been stored sh to store the sam nal byte to the less ficant byte with	in a byte using 2' e integer in 16-bit significant byte of	s complement word. We should the word and fill				
	a) O	b) 1	c)equal to the MSB of the original byte	d)complement of the MSB of the original byte.	C	equal to the MSB of the origina I byte		
61	An <i>pn</i> junction reverse voltag	diode is operating e, at which the idea	in reverse bias reç al reverse current	gion. The applied reaches 90% of				

	its reverse s	aturation current	, is				
	a)59.6 mV	b)4.8 mV	c)2.7 mV		d)42.3 mV	a	59.6 mV
62	The networ	k function $(s +$	1)(s + 4) / s(s + 4)	+ 2)(s	+ 5) is a		
	a) <i>RL</i> impedance function	b) <i>RC</i> impedance function	c) <i>LC</i> impedanc function	e	d) Above all	b	<i>RC</i> imped ance functio n
63	A branch has	A branch has 6 node and 9 branch. The independent loops are					
	a)3	b)4	c)5		d)6	b	4
64	In the circuit of the fig below the value of the voltage source E is V_2 V_2 V_2 V_1 V_1 V_2 V_2 V_1 V_1 V_2 V_1 V_2 V_1 V_2 V_1 V_2 V_2 V_1 V_2 V_2 V_1 V_2 V_2 V_2 V_1 V_2 V_2 V_1 V_2 V_2 V_1 V_2 V_2 V_1 V_2 V_2 V_1 V_2 V_2 V_1 V_2 V_2 V_1 V_2 V_2 V_1 V_2 V_2 V_1 V_2 V_2 V_1 V_2 V_2 V_1 V_2 V_2 V_1 V_2 V_2 V_1 V_2 V_1 V_2 V_1 V_2 V_1 V_2 V_1 V_2 V_1 V_2 V_1 V_2 V_1 V_2 V_1 V_2 V_1 V_2 V_1 V_2 V_1 V_2 V_1 V_2 V_1 V_2 V_1 V_2 V_1 V_2 V_1 V_2 V_1 V_2 V_2 V_1 V_2 V_2 V_1 V_2 V_2 V_1 V_2 V_2 V_1 V_2						
	e) -16V	f) -6 V	g) 4 v	/	h) 16 V	а	-16V
65	Which of the a) Ward Leonard control	following is an op	en loop control s	ystem? d) Fi mot	ield controlled D.C. or	d)	Field control led D.C. motor
66	The output of	the feedback con _	itrol system mus	t be a fu	inction of		
	a) Output	b) Input and	c) Reference	d) R	eference output	b)	Input

	and feedback signal	feedback signal	input			and feedba ck signal
67	In closed loo overall syster	p control system, v m, M to the variati	vhat is the sensitiv on in G?	ity of the gain of the		
	a) G/1+GH	b)1/1+GH	c) G/1+G	d) 1/1+G	b)	1/1+G H
68	The input sig characteristic are:					
	a) Constant velocity and acceleratio n	b) Sudden shock	c) Sudden change	d)All of the mentioned	d)	All of the mentio ned
69	The open loo plant is opera compensator					
	a) 10(s+4)/(s+ 2)	b) 10(s+2)/(s+10)	c) 10(s+2)/(s+10)	d)10(s-1)/(s+2)	d)	10(s- 1)/(s+2)
70	The Cooley-7	Tukey algorithm of	FFT is a			
	a) Divide and conquer algorithm	b) Divide and rule algorithm	c) Split and rule algorithm	d) Split and combine algorithm	a)	Divide and conque r algorit hm
71	DIT algorithm	n divides the seque	ence into			
	a) Positive and negative values	b) Upper higher and lower spectrum	c) Even and odd samples	d) Small and large sample	c)	Even and odd sample s

72	The computa					
	a) Log ₂ N	b) 2Log ₂ N	c) Log ₂ N2	d) Log ₂ N/2 stages		Log₂ N
	stages	stages	stages		a)	stages
	_					_
73	For a system					
	a) The	b) The zeros lie	c) The poles lie	d) The poles lie in right		The
	zeros lie in	in right half of	in left half of	half of the s plane		poles
	left half of	the s plane	the s plane			lie in
	the s plane	•			c)	left
						half of
						the s
						plane
74	Which amon	l g the following rep	l present/s the chara	cteristic/s of an ideal		
	filter?					
	a) Constant	h) Zero gain in	c) Linear Phase	d) All of the above		All of
	gain in	stop band	Response	a) An of the above	d)	the
	nassband		nesponse		α,	above
	passana					abore
75	The process					
	a)	b) Multiplexing	c) Quantization	d) Sampling	c)	Quanti
	Modulation				C)	zation
76	The modulat	l ion techniques use	d to convert analo	g signal into digital signal		
	are					
	a) Pulse	b) Delta	c) Adaptive	d) All of the above		All of
	code	modulation	delta		d)	the
	modulation		modulation			above
77	The sequence					
	a)	b) Quantizing,	c) Quantizing,	d) None of the above		Sampli
	Sampling,	encoding,	sampling,			ng,
	quantizing,	sampling	encoding		2)	quantiz
	encoding				d)	ing,
						encodi
						ng
78	In PCM, the r	l parameter varied i	I accordance with	the amplitude of the		
	modulating s	ignal is				

	a) Amplitude	b) Frequency	c) Phase	d) None of the above	d)	None of the above
79	In digital trar bandwidth is					
	a) Delta modulation	b) PCM	c) DPCM	d)PAM	a)	Delta modula tion
80	In Delta Mod					
	a) N times the sampling frequency	b) N times the modulating frequency	c) N times the nyquist criteria	d) None of the above	a)	N times the sampli ng freque ncy
81	The channel	capacity according	to Shannon's equ	ation is		
	a) Maximum error free communica tion	b) Defined for optimum system	c)Information transmitted	d)All of the above	d)	All of the above
82	The steady-s input becom	tate error of a feed es finite in a	back control syste	em with an acceleration		
	a) type 0 system.	b) type 1 system	c) type 2 system	d) type 3 system	c)	type 2 system
83	What is the v	value of steady stat	te error in closed lo	oop control systems		
	a) Zero	b) Unity	c) Infinity	d) Unpredictable	a)	Zero

84	Which of the following is a asynchoronous counter?								
	a) Ring	b) Joh	nson	on c) Ripple d) None		_	Ripple		
	Counter	count	er	Cοι	unter			c)	Counte
									r
85	In colour TV receiver, varactor diode is used for						tuning		
	a)detecti	on	b) rectificati	on	c)tuning		d) both (a) and (b)	с	
86	A 400 W carrier is amplitude modulated with m = 0.75. The total power in AM is					512 W			
	a) 400 W	/	b) 512 W		c)588 W		d)650 W	b	
87	Non-coh	erently	detection is	not	possible for				PSK
]	PSK	b)ASK		c)FSK		d)both (a) and (c)	а	
88							1		
	In radar systems PRF stands for								
	a)Power Return b)Pulse c)Pulse d)Pulse Response						-	Pulse	
	Factor		Return		Repetition		Factor		Repetit
			Factor		Frequency			с	ion Freque ncy
89	As the frequency increases, the absorption of ground wave by earth's surface								
	a) decrea	ases	b) increase	ses	c) remains t same	he	d) either (a) or (c)	b	increas es
90									
	The rate at which information can be carried through a communication channel depends on								dth
	a)carrier frequenc	У	b)bandwi	dth	c)transmissi loss	on	d)transmitted power	b	
91	If the bandwidth is increased by 2, the γFMγAM (where γ is the ratio of SNR of output to SNR at input, FM is frequency modulation and AM is amplitude modulation) is increased by a factor of							с	4

	a) 2	b) 3	c) 4	d) 6		
92	Frequency shift	keying is used m	nostly in	1	a	telegra phy
	a) telegraphy	b) telephony	c)satellite communication	d)radio transmission		
93	The frequency ra	ange of 300 kHz	to 3000 kHz is kno	wn as		
	a) low frequency	b)medium frequency	c)high frequency	d)very high frequency	b	mediu m frequen cy
94	The output Y in	the circuit below	v is always '1' wher	r T T T T T T T T T T	b	two or more of the inputs P,Q,R are '1'
	a)two or more of the inputs P,Q,R are '0'	b)two or more of the inputs P,Q,R are '1'	c)any odd number of the inputs P,Q,R is '0'	d)any odd number of the inputs P,Q,R is '1'	-	
95	When the output Data Clock	P Q Q	below is '1', it implies Q	lies that data has	a	change d from 0 to 1
	a)changed from 0 to 1	b)changed from 1 to 0	c)changed in either direction	d)not changed		
96	In the circuit sho transferred to RI	by below, the v is maximum 10Ω 10Ω 10Ω 10Ω 10Ω 10Ω 10Ω 10Ω	value of RL such that $ \begin{array}{c} \Omega \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	t the power	с	15Ω

	a)5Ω	b)10Ω	c) 15Ω	d)20Ω		
97	To increase Q	с	thick			
	a)long	b)thin	c)thick	d)long and thin		
98	An ammeter of scale reading.	d				
	a)2%	b)2.5%	c)4%	d)5%		5%
99	In 3 phase pow of one wattme	b	0.5			
	a) 1	b)0.5	c) 0	d)0.8		
100	In a CRO whi					
	a)cathode	b)grid	c)accelerating anode	d)X - Y plates	d	X - Y plates

SPACE FOR ROUGH WORK