\qquad

This booklet consists of 100 questions and 12 printed pages.

RGUPET/ \qquad
RGUPET 2023
Ph.D. in STATISTICS

Full Marks: 100

Series
NIL

Time: 3 Hours

Roll No. \square

Day and Date of Examination
:

Signature of Invigilator(s)
Signature of Candidate
:

General Instructions:

please read all the instructions carefully before making any entry.

1. DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE TOLD TO DO SO.
2. Candidate must write his/her Roll Number on the space provided.
3. This Test Booklet contains 100 Multiple Choice Questions (MCQs) from the concerned subject. Each question carries 1 mark.
4. Please check the Test Booklet to verify that the total pages and total number of questions contained in the test booklet are the same as those printed on the top of the first page. Also check whether the questions are in sequential order or not.
5. Candidates are not permitted to enter into the examination hall 15 minutes after the commencement of the entrance test or leave the examination hall before 30 minutes of end of examination.
6. Making any identification mark in the OMR Answer Sheet or writing Roll Number anywhere other than the specified places will lead to disqualification of the candidate.
7. Candidates shall maintain silence inside and outside the examination hall. If candidate(s) is/are found violating the instructions mentioned herein or announced in the examination hall, they will be summarily disqualified from the entrance test.
8. In case of any dispute, the decision of the Entrance Test Committee, RGU shall be final and binding.
9. The OMR Answer Sheet consists of two copies, the Original copy and the Student's copy.

14	The correct relation between variance and standard deviation (S.D.) of a variable X is:								$\begin{gathered} \text { S.D. }= \\ {[\operatorname{Var}(X)]^{1 / 2}} \end{gathered}$
	a) S.D .= $\operatorname{Var}($	b)$\text { S.D. }=[\operatorname{Var}(X)]^{2}$		c)$\begin{aligned} & \text { S.D. }= \\ & {[\operatorname{Var}(X)]^{3}} \end{aligned}$		d) S.D. $=[\operatorname{Var}(X)]^{1 / 2}$			
15	In the case of positively skewed distribution, the extreme values lie in the							c	right tail
	a) left tail	b) middle		c) right tail		d) does not exist			
16	In the regression line of Y on X, the variable X is known as:							a	```independ ent variable```
	a) independent variable		b) dependent variable		c) response variable		d) all		
17	When $\beta_{Y X}$ is the slope for the regression line of Y on X and $\beta_{X Y}$ is the slope for the regression line of X on Y. What should be the value of $\beta_{X Y}$ if $\beta_{Y X}>1$							a	less than 1
	a) less than 1		b) greater than 1		c)		d) equal to 0		
18	The range of correlation coefficient is:							d	-1 to 1
							d) -1 to 1		
19	The individual probabilities of occurrence of two events A and B are known, the probability of occurrence of both events together will be							b	decrease d
	a) increased		b) decre		c) on		d) zero		
20	One of the two events must happen; given that the chance of one is one-fourth of the other. The odd in favour of the other is:							b	1: 4
	a) $1: 3$	3 b) $1: 4$			c) 4 :		d) $1: 5$		
21	Let $\underline{X} \sim N_{p}(\underline{\mu}, \Sigma)$ and $(\underline{X}-\underline{\mu})^{\prime} \Sigma^{-1}(\underline{X}-\underline{\mu})$ follow the Chi-square distribution with degrees of freedom								

	a)p-1	b) p	c) $p+1$		d) $p+2$	b	p
22	Suppose $\underline{X}_{1}, \underline{X}_{2}, \ldots, \underline{X}_{n}$ follow iid $N_{p}(\underline{0}, \Sigma)$ then the $p \times p$ matrix $W=\sum_{i=1}^{n} \underline{X}_{i} \underline{X}_{i}{ }^{\prime}=X^{\prime} X$ has the distribution					c	$W \sim W_{p}(\underline{0}, \Sigma$
	a) $W \sim N_{p}(\underline{0}, \Sigma)$	b) $W \sim N_{n}(\underline{0}, \Sigma)$	c) $W \sim W_{p}(\underline{0}, \Sigma)$		d) $W \sim W_{n}(\underline{0}, \Sigma)$		
23	The \qquad distribution is a multivariate generalization of the chi-square distribution.					b	Hotelling' $\mathrm{s} T^{2}$
	a) Multivariate Normal	b) Hotelling's T^{2}	c) Wishart distribution		d) all		
24	If the element $c\{1,2\}$ of the covariance matrix C is 114 , what is the value of $c\{2,1\}$ and what is the meaning?						114, covarianc e
	a)114, variance	b) 1/114, variance	c) 1/114, covariance		d) 114, covariance	d	
25	This process is performed after extraction to obtain a more interpretable factor solution.					b	factor rotation
	a) factor Normalization	b) factor rotation	c) factor optimization		d) factor interpretation		
26	It is a correlation coefficient, which tells us the extent to which a question is measuring that factor.					d	factor loading
	a) factor analysis	b) factor variable	c) factor rotation		d) factor loading		
27	Testing the overall significance of multiple regression could be done by:					a	F-test
	a) F-test b)	test	c) Chisquare test		Chow test		
28	The smaller the standard errors, the stronger is the evidence that the estimates are statistically					b	significan t
	a) b) insignific ant	ignificant	c) in conclusion		wrong		
29	Find the linear model from the following:						

	$\begin{aligned} & \text { a) } Y= \\ & \beta_{0}+ \\ & e^{\beta_{1} X}+\epsilon \end{aligned}$	b) $Y=\frac{\beta_{0}}{e^{\beta_{1} X}}+\epsilon$	$\begin{aligned} & \text { c) } Y=\beta_{0}+ \\ & \log \left(\beta_{1} X\right)+\epsilon \end{aligned}$	d) $Y=\beta_{0}+\beta_{1} X+\epsilon$	d	$\begin{aligned} & Y \\ & =\beta_{0} \\ & +\beta_{1} X+\epsilon \end{aligned}$
30	For a Normal equation $X^{\prime} X \hat{\beta}=X^{\prime} Y$, the matrix $X^{\prime} X$ has a full rank. The solution of $\hat{\beta}$ has				a	a unique
	a) a unique	b) an infinite	c) 0	d) 2 times the rank of $X^{\prime} X$		
31	$100(1-\alpha) \%$ confidence interval of the slope β_{1} in simple regression is given by				a	$\begin{aligned} & \hat{\beta}_{1} \\ & \pm t_{\frac{\alpha}{2}, n-2} S . E \end{aligned}$
	a) $\hat{\beta}_{1} \pm$ $t_{\frac{\alpha}{2}, n-2} S . E .$	$\begin{aligned} & \text { b) } \hat{\beta}_{1} \pm \\ & t_{1-\frac{\alpha}{2}, n-2} S . E .\left(\hat{\beta}_{1}\right) \end{aligned}$	$\begin{aligned} & \text { c) } \hat{\beta}_{1} \pm \\ & t_{\frac{\alpha}{2}, n-1} S . E .\left(\hat{\beta}_{1}\right) \end{aligned}$	d) $\hat{\beta}_{1} \pm t_{\frac{\alpha}{2}, n} S . E .\left(\hat{\beta}_{1}\right)$		
32	Logistic regression is used for:				a	$\begin{gathered} \text { regressio } \\ \mathrm{n} \end{gathered}$
	a) regressio n	b) classification	c) clustering	d) all		
33	The name of the link function for Poisson regression is:				C	log link
	a) logistic link	b) identity link	c) log link	d) reciprocal link		
34	The moving average (MA) process of order 1 is				a	$\begin{aligned} & Y_{t} \\ & =\emptyset Z_{t-1} \\ & +Z_{t} \end{aligned}$
	$\begin{aligned} & \text { a) } Y_{t}= \\ & \emptyset Z_{t-1}+ \\ & Z_{t} \end{aligned}$	$\begin{aligned} & \text { b) } Y_{t}= \\ & Z_{t-1}+\emptyset Z_{t} \end{aligned}$	$\begin{aligned} & \text { c) } Y_{t}= \\ & \emptyset Y_{t-1}+Z_{t} \end{aligned}$	d) $Y_{t}=Y_{t-1}+\emptyset Z_{t}$		
35	A time series consists of				d	all
	a) short term variations	b) long term variations	c) irregular variation	d) all		
36	The increase in the number of patients in the hospital due to heat stroke is:				a	seasonal variation
	a) seasonal variation	b) secular trend	c) irregular variation	d) cyclical variation		

37	For $\operatorname{AR}(1)$ model $Y_{t}=\varnothing Y_{t-1}+Z_{t}$, the random variable Z_{t} follows:				b	$W N\left(0, \sigma^{2}\right)$
	a) iid $N\left(0, \sigma^{2}\right)$	b) $W N\left(0, \sigma^{2}\right)$	c) $N\left(0, \sigma^{2}\right)$	d) independent $N\left(0, \sigma^{2}\right)$		
38	If the slope of the trend line $\hat{Y}_{t}=\hat{\beta}_{0}+\hat{\beta}_{1} t$ is positive, it shows				a	rising trend
	a) rising trend	b) declining trend	c) stagnation	d) any of them		
39	Previous probabilities in Bayes Theorem that are changed with the newly available information are called				d	posterior probabiliti es
	a)independ ent probabilitie s	b)dependent probabilities	c) interior probabilities	d)posterior probabilities		
40	The formula for Bayes theorem is				a	$\begin{aligned} & P(A \mid B) \\ & =\frac{P(B \mid A) P}{P(B)} \end{aligned}$
	$\begin{aligned} & \text { a) } P(A \mid B)= \\ & \frac{P(B \mid A) P(A)}{P(B)} \end{aligned}$	$\begin{aligned} & \text { b) } P(A \mid B)= \\ & \frac{P(A)}{P(B)} \end{aligned}$	$\begin{aligned} & \text { c) } P(A \mid B)= \\ & \frac{P(B \mid A)}{P(B)} \end{aligned}$	d) $P(A \mid B)=\frac{1}{P(B)}$		
41	The method in which the previously calculated probabilities are revised with values of new probability is called				b	Bayes theorem
	a) Revision theorem	b) Bayes theorem	C) Dependent theorem	d) Updation theorem		
42	Let $X_{1}, X_{2}, \ldots, X_{n}$ be the iid $B(\theta)$. Then conjugate prior distribution of θ is				C	Beta
	a) Student's t	b) Normal	c) Beta	d) Poisson		
43	Which one is not the distribution of exponential family from the given distribution				d	Student-t
	a) Poisson	b) Normal	c) Binomial	d) Student-t		

44 A family of parametric distribution in which mean is equal to

	variance is				d)	poisson distribution
	a) Binomial distribution	b) Gamma distribution	c) Normal distribution	d) Poisson distribution		
45	The distribution possessing the memoryless property is					
	a)gamma distribution	b)geometric distribution	c) hypergeometric distribution	d) all the above	b)	geometric distribution
46	The distribution in which the probability at success draw varies is					
	a) hypergeometric distribution	b) geometric distribution	c) binomial distribution	d) discrete uniform distribution	a)	hypergeometric distribution
47	The distribution for which the mode does not exist is					
	a) normal distribution	b) t- distribution	c) continuous rectangular distribution	d) F - distribution	c)	continuous rectangular distribution
48	If $X \sim N\left(\mu, \sigma^{2}\right)$, the maximum probability at the point of inflexion of normal distribution is					$\mu \pm \sigma$
	a) $\pm \mu$	b) $\mu \pm \sigma$	c) $\sigma \pm \mu$	d) $\pm \sigma$	b)	
49	An approximate relation between Q.D. and S.D. of normal distribution is					3 Q.D. = 2 S.D.
	a) 5 Q.D. $=4$ S.D.	$\begin{aligned} & \text { b) } 4 \text { Q.D. }=5 \\ & \text { S.D. } \end{aligned}$	$\begin{aligned} & \text { c) } 2 \text { Q.D. }=3 \\ & \text { S.D. } \end{aligned}$	$\begin{aligned} & \text { d) } 3 \text { Q.D. }=2 \\ & \text { S.D. } \end{aligned}$	d)	
50	The area under the standard normal curve beyond the lines $z= \pm 1.96$ is					
	a) 95 per cent	b) 90 per cent	c) 5 per cent	d) 10 per	c)	5 per cent

				cent		
51	If the sample size $\mathrm{n}=2$, the student's t -distribution reduces to					Cauchy distribution
	a) normal distribution	b) F- distribution	c) Cauchy distribution	d) none of the above	c)	
52	The relation between the mean and variance of χ^{2} with n d.f. is					$\begin{gathered} 2 \\ \text { mean=variance } \end{gathered}$
	a) mean=2 b) 2 variance mean=varianc e		c) mean $=$ variance	d) none of the above	b)	
53	The distribution for which the moment generating function does not exist but moments exists is					all the above
	a) Pareto distribution	b) t distribution	c) F-distribution	d) all the above	d)	
54	In a multivariate study, the correlation between any two variable eliminating the effect of all other variables is called				c)	partial correlation
	a) simple correlation	b)multiple correlation	c) partial correlation	d) partial regression		
55	Parameters are those constants which occur in					probability density function
	a) Samples	b) probability density function	c) a formula	d) none of the above	b)	
56	Estimation of parameters in all scientific investigations is of					prime importance
	a)prime importance	b) secondary importance	c) no use	d)deceptive nature	a)	
57	Factorisation theorem for sufficiency is known as					Fisher-Neyman
	a) Rao-	b) Crammer-	c) Chapman-	d)Fisher-	d)	

	Blackwell theorem	Rao theorem	Robin theorem	Neyman theorem		theorem
58	Crammer-Rao inequality is based on					stringent conditions
	a) stringent conditions					
59	The inequality for the lower bound of the variance of an estimator which is not based on stringent conditions was given by					Chapman- Robins
	a) Aitken and Silverstone	b)Neyman- Pearson	c)Chapman- Robins	d) none of the above	c)	
60	Minimum Chi-square estimators are					
	a) consistent	b) asymptotically normal	c) efficient	d) all the above	d)	all the above
61	The maximum likelihood estimators are necessarily					sufficient
	a) unbiased	b) sufficient	c) most efficient	d)unique	b)	
62	A wrong decision about H_{0} leads to					two kinds of error
	a) one kind of error	b) two kinds of error	c)three kinds of error	d) four kinds of error	b)	
63	Neyman-Pearson lemma provides					
	a) an unbiased test	b) a most powerful test	c)an admissible test	d) minimax test	b)	a most powerful test
64	The ratio of the likelihood function under H_{0} and under the entire parametric space is called					

	a) probability ratio	b)sequential probability ratio	c) likelihood ratio	d) none of the above	c)	likelihood ratio
65	The degrees of freedom for statistic-t for paired t-test based on n pairs of observation is					n-1
	a) $2(n-1)$	b) $\mathrm{n}-1$	c) $2 \mathrm{n}-1$	d) $\mathrm{n}-2$	b)	
66	Equality of several normal population means can be tested by					F-test
	a) Bartlett's test	b) F-test	c) $\chi^{2}-t e s t$	d) t-test	b)	
67	In sequential probability test (SPRT) the sample size is					treatments differ significantly
	a) treatments are equally effective	b)treatments differ significantly	c)no conclusion	d) none of the above	b)	
68	Least square estimators of the parameters of linear model are					all the above
	a) unbiased	b) BLUE	c) UMVU	d) all the above	d)	
69	A uniformly most powerful test among the class of unbiased test is termed as					uniformly most powerful test
	a) minimax test	b) minimax unbiased test	c) uniformly most powerful test	d) all the above	c)	
70	SPRT was initiated by					A. Wald
	a) R. A. Fisher	b)A. Wald	c)G. W. Snedecor	d)Thomas Bayes	b)	
71	A contingency table having a zero count is called					

	a)W.G. Cochran	b) M.H. Hansen	c) D.B. Lahiri	d) P.C. Mahalonobis	c)	D.B. Lahiri
82	Which of the following sampling designs will be categorised as non-probability sampling					all the above
	a) haphazard sampling	b) convenience sampling	c) judgement sampling	d)all the above	d)	
83	There are more chance of non-sampling errors than sampling errors in case of				d)	all the above
	a) studies of large sample	b) complete enumeration	c) insufficient investigation	d) all the above		
84	Which one of the following is an example of random process in communication?				c)	Both a) and b)
	a) Channel noise	b) Interference	c) Both a) and b)	d) None of the above		
85	The random walk is an example of				a)	Nondeterministic process
	a) Non- deterministic process	b) Deterministic process	c) Both a and b	d) None of the above		
86	Stochastic process are				c)	Random in nature and are a function of time
	a) Random in nature	b) Are function of time	c) Random in nature and are a function of time	d) None of the above		
87	In post-independence India, the registration of Births and Deaths Act was passed in					

	a) 1948	b)1959	c)1969	d)1979	c)	1969
88	The fertility of a women in India is maximum in the age group					25-29
	a)15-20	b) 20-24	c) 25-29	d)15-29	c)	
89	The age-specific death rate for the babies of age less than one year is specifically called				b)	infant mortality rate
	a)neonatal b)infant death rate mortality rate		c) maternal mortality rate	d)foetal death rate		
90	A life table based on the experience of actual cohort is called					both a) and b)
	a) generation life table	b) fluent life table	c) both a) and b)	d) neither a) nor b)	C)	
91	Chance variation is respect of quality control of a product is				d)	all the above
	a) tolerable	b) not effecting the quality of a product	c) uncontrollable	d)all the above		
92	The cause leading to vast variation in the specification of a product are usually due to					assignable causes
	a) random process	b) assignable causes	c) non-traceable causes	d) all the above	b)	
93	R-charts are preferable over σ-charts because					
	a) R and S.D. fluctuate together in case of small samples	b) R can be easily calculated	c) R-charts are economical	d) all the above	d)	all the above
94	The graph of the proportion of defectives in the lot against					

| | Pearson | Galton | Bacon | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 100 | The branch of biostatistics that deals with methods of collection,
 organization and presentation of data is called as | | | |
| a) inferential
 biostatistics b) descriptive
 biostatistics c) both a) and
 b) d) comparative
 biostatistics b) | descriptive
 biostatistics | | | |

SPACE FOR ROUGH WORK

