Test Booklet No.

This booklet consists of <u>100</u> questions and 12 printed pages.

RGUPET/___/_

100

-

Series

. ...

-

RGUPET 2023 Ph.D. in STATISTICS

Full Marks	s: 100								11	me: 3) H 0	urs
Roll No.												
Day and Date	e of Exa	imina	tion	:								
Signature of I	Invigila	tor(s)		:			 					
Signature of G	Candida	ate		:								

General Instructions:

PLEASE READ ALL THE INSTRUCTIONS CAREFULLY BEFORE MAKING ANY ENTRY.

- 1. DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE TOLD TO DO SO.
- 2. Candidate must write his/her Roll Number on the space provided.
- 3. This Test Booklet contains 100 Multiple Choice Questions (MCQs) from the concerned subject. Each question carries 1 mark.
- 4. Please check the Test Booklet to verify that the total pages and total number of questions contained in the test booklet are the same as those printed on the top of the first page. Also check whether the questions are in sequential order or not.
- 5. Candidates are not permitted to enter into the examination hall 15 minutes after the commencement of the entrance test or leave the examination hall before 30 minutes of end of examination.
- 6. Making any identification mark in the OMR Answer Sheet or writing Roll Number anywhere other than the specified places will lead to disqualification of the candidate.
- 7. Candidates shall maintain silence inside and outside the examination hall. If candidate(s) is/are found violating the instructions mentioned herein or announced in the examination hall, they will be summarily disqualified from the entrance test.
- 8. In case of any dispute, the decision of the Entrance Test Committee, RGU shall be final and binding.
- 9. The OMR Answer Sheet consists of two copies, the Original copy and the Student's copy.

1	$Y_t = \alpha +$	$-\beta_0 X_t + \beta_1 X_t$						
	a) Distrib uted lag model	b) Auto regressive model	c) Regressio model	n	d) All th	ne above	а	Distribute d lag model
2	In Almo in <i>i</i> is	n distributed	lag model; the s	econd-o	degree p	olynomial		
	a) $\beta_i =$ $a_0 +$ $a_1i +$ a_2i^2	b) $\beta_i = a_0 + a_1 i + a_2 i^2 + a_3 i^3$	c) $\beta_i = a_2 i^2$		d) $\beta_i = a_2 i + v$	$a_0 + a_1 i +$	а	$\beta_i = a_0 \\ + a_1 i \\ + a_2 i^2$
3	The variance-covariance matrix of residuals for the linear regression model is $\Sigma = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$. The given covariance matrix shows the problem of							
	a) Autoc orrelat ion	b) Non autocorrelat on	c) i Hetroscedas	ticity	d) Homos	cedasticity	с	Hetrosce dasticity
4	In the ca determin	ase of perfec nant is equal	t multicollinearity	/, the va	alue of th	le		
	a) 0	b) 1	c)>1		d)<1		а	0
5	Randon allocate	nization is a p d to the expe	process in which rimental units:	the trea	atments	are		
	a) At the investig	e will of the ator.	b) In a c) With equal d) With sequence probability. unequal probabilit y. y.		с	With equal probabilit y.		
6	In a completely randomized design with 't' treatments and 'n' experimental units, error degrees of freedom is equal to:					s and 'n' Il to:		
	a) n-t	t b) n-t-1 c) n-t+1 d) t-n			а	n-t		
7	The ran	he randomized block design is a						

	a) no	classification	b) c clas	one-way ssification	c) two-way classification	d) three- way classificat ion	с	two-way classificat ion
8	Error comp mate	sum of square pared to one-wa rial is	s in t ay cla	wo-way clas assification ((sification (RB CRD) using th	D) as ne same		
	a) mo	ore	b) l	ess	c) equal	d) not comparab le	b	less
9	The a or mo	additional effect ore factors is kn	gair Iown	ned due to th as:	e combined e	effect of two		
	a) ma	ain effect	b) i effe	nteraction ect	c) partial effect	d) all	b	Interactio n effect
10	The o	difference betwo	een 1	en the upper and lower limit of a class is				
	a) clas s inte rval	b) mid value		c) lower value	d) upper	value	а	class interval
11	Tabu	lation makes th	e da	ta easily				
	a) ana lysi s	b) understandabl	e	c) quantifie	d d) qualifi	ed	b	understa ndable
12	In a c	column chart, th	ie ba	irs are:				
	a) hori zon tal	b) vertical		c) slanting d) at an ang degree		angle of 45	b	vertical
13	The s	e sum of the deviations about the mean is:						
	a) zer o	b) minimum		c) maximur	n d) one		а	zero

14	The correct	relation	n betw	een var	riance	and stan	daro	d deviation		
	(3.D.) of a v a) b) S.D S.D.=[.= <i>Var</i> (Var(X	()] ²	c) S.D.= [<i>Var(X</i>	()] ³ distrib	d) S.D	0.=[1 e ex	Var(X)] ^{1/2} treme	d	S.D.= [Var(X)] ^{1/2}
15	values lie in a) b) mid left tail	the dle		c) righ	c) right tail d) does not		ot exist	с	right tail	
16	In the regression line of Y on X, the va a) independent b) dependent c) variable variable va			the va c) r var	riable X is esponse iable	s kn	nown as: d) all	а	independ ent variable	
17	When β_{YX} is the slope for the regression line of Y on X and β_{XY} is the slope for the regression line of X on Y. What should bethe value of β_{XY} if $\beta_{YX} > 1$ a) less than 1b) greater than 1c) equal to 1 0					а	less than 1			
18	The range o	f correl	lation	coefficie	ent is:					
	a)–∞ to 1		b) -1 to	0 ∞	c) -	∞ to ∞		d) -1 to 1	d	-1 to 1
19	The individu B are known together will	al prob , the p be	oabilitie orobab	es of oc ility of o	curren	ce of two nce of bo	o evo oth e	ents A and events		
	a) increased	b) de	crease	∋d	c) one)	d)) zero	b	decrease d
20	One of the two one is one-formed to the two one is one-formed to the two one of tw	One of the two events must happen; given that the chance of one is one-fourth of the other. The odd in favour of the other is:						chance of the other is:		
	a) 1: 3	b) 1:	4		c) 4: 1		d)	1:5	b	1: 4
21	Let $\underline{X} \sim N_p \left(\underline{\mu}\right)$ distribution v	(Σ) and ∇	$d(\underline{X} - grees)$	$(\underline{\mu})^{\prime}\Sigma^{-1}$ of freed	$\left(\underline{X} - \underline{\mu}\right)$	(\mathbf{r}) follow	the	Chi-square		

	a)p-1		b) p		c) p+1		d) p+2	b	р
22	Suppose \underline{X} $W = \sum_{i=1}^{n} \underline{X}_{i}$	$X_1, X_2, X_1, X_2, X_i X_i X_i'$	\dots, \underline{X}_n follow = X'X has the	iic ne	$\frac{1}{N_p(\underline{0},\Sigma)}$ the distribution	en th	e $p \times p$ matrix		
	a) $W \sim N_p(0)$	<u>)</u> ,Σ)	b) $W \sim N_n(\underline{0}, \Sigma)$)	c) $W \sim W_p(\underline{0})$,Σ)	d) $W \sim W_n(\underline{0}, \Sigma)$	с	$W \sim W_p(\underline{0}, \Sigma)$
23	The chi-square	_ dist e dist	ribution is a ribution.	m	ultivariate ge	nera	lization of the		
	a) Multivariat Normal	e	b) Hotelling's T^2		c) Wishart distribution		d) all	b	Hotelling' s T ²
24	If the elem the value of	If the element c{1,2} of the covariance matrix C is 114, what is the value of c{2,1} and what is the meaning?							
	a)114, variance	L	b)1/114, variance		c)1/114, covariance	0	d)114, covariance	d	114, covarianc e
25	This proce interpretat	This process is performed after extraction to obtain a more nterpretable factor solution.							
	a) factor Normaliza	tion	b) factor rotation		c) factor optimizatior	ı	d) factor interpretation	b	factor rotation
26	It is a correquestion is	elatio s me	on coefficient	i, v fac	which tells us ctor.	the	extent to which a		
	a) factor analysis		b) factor variable		c) factor rotation		d) factor loading	d	factor loading
27	Testing the done by:	e ove	erall significa	nc	e of multiple	reg	ression could be		
	a) F-test	b) t	-test	C S) Chi- quare test	d)	Chow test	а	F-test
28	The smalle that the es	The smaller the standard errors, the stronger is the evidence hat the estimates are statistically							
	a) insignific ant	b) s	significant	C C) in onclusion	d)	wrong	b	significan t
29	Find the lin	hear	model from t	the	e following:				

	a) $Y = \beta_0 + e^{\beta_1 X} + \epsilon$	b) $Y = \frac{\beta_0}{e^{\beta_1 X}} + \epsilon$	c) $Y = \beta_0 + \log(\beta_1 X) + \epsilon$	d) $Y = \beta_0 + \beta_1 X + \epsilon$	d	$Y = \beta_0 + \beta_1 X + \epsilon$
30	For a Norr rank. The	nal equation $X'X$ solution of $\hat{\beta}$ has	$\hat{\beta} = X'Y$, the matrix	atrix $X'X$ has a full		
	a) a unique	b) an infinite	c) 0	d) 2 times the rank of X'X	а	a unique
	$100(1-\alpha)^{\alpha}$	% confidence inte	erval of the slop	e β_1 in simple		
31	regression	is given by				
	a) $\hat{\beta}_1 \pm f_1$	b) $\hat{\beta}_1 \pm f_1 = \hat{\beta}_1 \hat{\beta}_1$	$\mathbf{C})\hat{\beta}_1 \pm \mathbf{C} \mathbf{C} \hat{\beta}_1 \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \hat{\beta}_1 \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \hat{\beta}_1 \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C}$	$d)\hat{\beta}_1 \pm t_{\frac{\alpha}{2},n}S.E.(\hat{\beta}_1)$	а	$\hat{\beta}_1$
	$l\frac{\alpha}{2}, n-2$ S.E.	$L_{1-\frac{\alpha}{2},n-2}$ 5. E. (β_1)	$l_{\frac{\alpha}{2},n-1}^{\alpha}$ 5. E. (β_1)			$\pm l\frac{\alpha}{2}, n-2$ S. E
32	Logistic r	egression is use	ed for:			
	a) regressio n	b) classification	c) clustering	d) all	а	regressio n
33	The name	of the link function	on for Poisson r	egression is:		
	a) logistic link	b) identity link	c) log link	d) reciprocal link	с	log link
34	The movin	g average (MA)	process of orde	r 1 is	<u> </u>	
	a) $Y_t = $ $\emptyset Z_{t-1} + $ Z_t	b) $Y_t =$ $Z_{t-1} + \emptyset Z_t$	c) $Y_t = $ $\phi Y_{t-1} + Z_t$	d) $Y_t = Y_{t-1} + \emptyset Z_t$	а	$Y_t = \emptyset Z_{t-1} + Z_t$
35	A time ser	ies consists of				
	a) short term variations	b) long term variations	c) irregular variation	d) all	d	all
36	The increat heat stroke	ise in the numbe e is:	r of patients in t	he hospital due to		
	a) seasonal variation	b) secular trend	c) irregular variation	d) cyclical variation	а	seasonal variation

37	For AR(1) n follows:	nodel $Y_t = \emptyset Y_{t-1}$	$_1 + Z_t$, the rando	om variable Z_t		
	a) iid $N(0,\sigma^2)$	b) $WN(0, \sigma^2)$	c) $N(0, \sigma^2)$	d) independent $N(0, \sigma^2)$	b	$WN(0,\sigma^2)$
38	If the slope	of the trend line	$\hat{Y}_t = \hat{\beta}_0 + \hat{\beta}_1 t$ is	s positive, it shows		
	a) rising trend	b) declining trend	c) stagnation	d) any of them	а	rising trend
39	Previous pr the newly a	obabilities in Ba vailable informa	ayes Theorem th ation are called	hat are changed with		
	a)independ ent probabilitie s	b)dependent probabilities	c)interior probabilities	d)posterior probabilities	d	posterior probabiliti es
40	The formula					
	$a)P(A B) = \frac{P(B A)P(A)}{P(B)}$	$b)P(A B) = \frac{P(A)}{P(B)}$	$c)P(A B) = \frac{P(B A)}{P(B)}$	$d)P(A B) = \frac{1}{P(B)}$	а	$P(A B) = \frac{P(B A)P}{P(B)}$
41	The method revised with	d in which the p n values of new	reviously calcula probability is ca	ated probabilities are lled		
	a) Revision theorem	b) Bayes theorem	c) Dependent theorem	d) Updation theorem	b	Bayes theorem
42	Let $X_1, X_2,$ distribution	ugate prior				
	a) Student's t	b) Normal	c) Beta	d) Poisson	c	Beta
43	Which one given distrik	is not the distrib oution	oution of expone	ntial family from the		
	a) Poisson	b) Normal	c) Binomial	d) Student-t	d	Student-t

44	A family of parametric distribution in which mean is equal to	

	variance is					
	a) Binomial	b) Gamma	c) Normal	d) Poisson		poisson
	distribution	distribution	distribution	distribution	d)	distribution
45	The distribution	possessing the me	emoryless property	/ is		
	a)gamma	b)geometric	c)	d) all the		goomotric
	distribution	distribution	hypergeometric	above	b)	geometric
			distribution			aistribution
46	The distribution i	n which the proba	ability at success d	raw varies is		
	a)	b) geometric	c) binomial	d) discrete		hunorgoomotric
	hypergeometric	distribution	distribution	uniform	a)	distribution
	distribution			distribution		distribution
47	The distribution f	for which the moc	le does not exist is			
	a) normal	b) t-	c)continuous	d) F-		continuous
	distribution	distribution	rectangular	distribution	c)	rectangular
			distribution			distribution
	If $X \sim N(\mu, \sigma^2)$, the maximum pr	obability at the po	pint of		
48	inflexion of norm	al distribution is				
	a) $\pm \mu$	b) $\mu\pm\sigma$	c) $\sigma \pm \mu$	d) $\pm\sigma$	b)	$\mu \pm \sigma$
	An approximate	relation between	Q.D. and S.D. of no	ormal		
49	distribution is					
	a) 5 Q.D.=4 S.D.	b) 4 Q.D.=5	c) 2 Q.D.= 3	d) 3 Q.D. = 2	d)	300-250
		S.D.	S.D.	S.D.	u)	5 Q.D 2 3.D.
	The area under t	he standard norm	al curve beyond th	ne lines		
50	$z = \pm 1.96$ is					
	a) 95 per cent	b) 90 per cent	c) 5 per cent	d) 10 per	c)	5 per cent

				cent		
51	If the sample size	e n=2, the student	's t-distribution re	duces to		
	a) normal	b) F-	c) Cauchy	d) none of		Cauchy
	distribution	distribution	distribution	the above	0)	distribution
52	The relation betw	veen the mean an	d variance of χ^2 v	vith n d.f. is		
	a) mean=2	b) 2	c) mean =	d) none of		2
	variance	mean=varianc	variance	the above	b)	Z
		е				mean=variance
	The distribution	for which the mor	nent generating fu	inction does		
53	not exist but mo	ments exists is				
	a) Pareto	b) t-	c) F-distribution	d) all the	d)	all the above
	distribution	distribution		above	ч,	
	In a multivariate	study, the correla	tion between any	two variable		
54	eliminating the e	ffect of all other v	ariables is called			
	a) simple	b)multiple	c) partial	d)partial	C	partial
	correlation	correlation	correlation	regression	0)	correlation
55	Parameters are t	hose constants wl	hich occur in			
	a) Samples	b)probability	c)a formula	d) none of		probability
		density		the above	b)	density
		function				function
56	Estimation of par	rameters in all scie	entific investigation	ns is of		
	a)prime	b)secondary	c)no use	d)deceptive	2)	prime
	importance	importance		nature	a)	importance
57	Factorisation the	orem for sufficien	cy is known as	1		
	a) Rao-	b) Crammer-	c) Chapman-	d)Fisher-	d)	Fisher-Neyman

	Blackwell	Rao theorem	Robin theorem	Neyman		theorem
	theorem			theorem		
58	Crammer-Rao in	equality is based o	n			
	a) stringent	b) mild	c)no conditions	d)none of	2)	stringent
	conditions	conditions		the above	a)	conditions
	The inequality fo	r the lower bound	of the variance of	f an estimator		
59	which is not base	ed on stringent cor	nditions was given	by		
	a) Aitken and	b)Neyman-	c)Chapman-	d)none of	c)	Chapman-
	Silverstone	Pearson	Robins	the above	0)	Robins
60	Minimum Chi-sq	uare estimators ar	e			
	a) consistent	b)	c) efficient	d) all the		
		asymptotically		above	d)	all the above
		normal				
61	The maximum lik	elihood estimator	s are necessarily	I		
	a) unbiased	b) sufficient	c)most	d)unique	ه ۱	aufficient
			efficient		5)	suncient
62	A wrong decisior	about H_0 leads to	0			
	a) one kind of	b) two kinds of	c)three kinds of	d) four		
	error	error	error	kinds of	b)	two kinds of
				error		error
63	Neyman-Pearsor	lemma provides	1	1		
	a) an unbiased	b) a most	c)an admissible	d) minimax	ه ۱	a most
	test	powerful test	test	test	0)	powerful test
	The ratio of the l	ikelihood function	under H_0 and ur	der the		
64	entire parametri	c space is called				
I						

	a) probability	b)sequential	c)likelihood	d)none of		
	ratio	probability	ratio	the above	c)	likelihood ratio
		ratio				
	The degrees of fr	reedom for statisti	c-t for paired t-tes	st based on n		
65	pairs of observat	ion is				
	a) 2(n-1)	b)n-1	c)2n-1	d) n-2	b)	n-1
66	Equality of sever	al normal populati	ion means can be	tested by		
	a) Bartlett's	b) F-test	c) $\chi^2 - test$	d) t-test	b)	F-test
	test					
67	In sequential pro	bability test (SPRT) the sample size	is		
	a) treatments	b)treatments	c)no conclusion	d) none of		treatments
	are equally	differ		the above	b)	differ
	effective	significantly				significantly
68	Least square esti	mators of the para	ameters of linear r	nodel are		
	a) unbiased	b) BLUE	c) UMVU	d) all the	ط)	all the above
				above	u)	all the above
	A uniformly mos	t powerful test am	iong the class of u	nbiased test		
69	is termed as					
	a) minimax test	b) minimax	c) uniformly	d) all the		uniformly most
		unbiased test	most powerful	above	c)	noworful tost
			test			powerfultest
70	SPRT was initiate	ed by	1	1		
	a) R. A. Fisher	b)A. Wald	c)G. W.	d)Thomas	b)	
			Snedecor	Bayes	0)	A. Walu
71	A contingency ta	ble having a zero o	count is called	1		
					1	

72	a)a complete contingency table Probability of sel a) sampling without replacement	 b) an incomplete contingency table ection varies at ea b)sampling with replacement 	c)abnormal contingency table ch subsequent dr c)both a) and b)	d)none of the above aw in d)neither a) nor b)	b) a)	an incomplete contingency table sampling without replacement
73	A population con trails is known as	sisting of results o	f the conceptual	y repeated		hupothotical
	population	population	population	population	a)	population
74	Under equal allo each stratum is	cation in stratified	sampling the san	nple from		
	a) proportional	b) of same size	c) in	d)all the		
	to stratum size	from each	proportion to	above		of same size
		stratum	the per unit		b)	from each
			cost of survey			stratum
			of the stratum			
75	Systematic samp	ling means				
	a)selection of n	b) selection of	c)selection of	d) selection		selection of n
	contiguous	n units situated	n large units	of n middle		units situated
	units	at equal		units in a	(d	at equal
		distance		sequence		distance
76	Double sampling	has its utility in	1	1		
	a)stratified	b)ratio method	c)regression	d)all the	d)	all the above

	sampling	of estimation	method of	above		
			estimation			
	In which of the fo	l ollowing situation(s) cluster samplin	g is		
77	appropriate					
	a)when the	b) when	c)when all the	d) all the		
	units are	sampling frame	elementary	above	.0	- 11 - 14
	situated for	is not available	units are easily		a)	all the above
	apart		identifiable			
	In what situation	two stage sampli	ng is better than s	single		
78	sampling					
	a)when the	b)when the	c)when the	None of the		when the
	elements in the	elements in the	elements in	above		elements in the
	same stage are	same stage are	the same		b)	same stage are
	positively	negatively	stage are			negatively
	correlated	correlated	uncorrelated			correlated
79	Non-response in survey mean					
	a) non-	b) non-return	c) refusal to	d)all the		
	availability of	of	give	above		
	respondents	questionnaire	information by		d)	all the above
		by the	the			
		respondents	respondents			
	Two-stage sampl	ing design is more	efficient than sin	gle stage		
80	sampling if the co	orrelation betwee	n units in the first	stage is		
	a)negative	b)positive	c)zero	d)none of	b)	positive
				the above	-,	
81	Circular systemat	tic sampling was fi	rst used by			

	a)W .G. Cochran	b) M.H. Hansen	c)) D.B. Lahiri	d) P.C. Mahalonobis	c)	D.B. Lahiri
82	Which of the following sampling designs will be categorised as non-probability sampling						
	a) haphazard sampling	b) convenience sampling	c) sa) judgement ampling	d)all the above	d)	all the above
83	There are more cl errors in case of	nance of non-sam	pli	ng errors than	sampling		
	a) studies of large sample	b) complete enumeration	c) in) insufficient nvestigation	d) all the above	d)	all the above
84	Which one of the following is an example of random process in 4 communication?						
	a) Channel noise	b) Interference	c) b) Both a) and)	d) None of the above	c)	Both a) and b)
85	The random walk						
	a) Non- deterministic process	b) Deterministic	с	c) Both a and b	d) None of the above	a)	Non- deterministic process
86	5 Stochastic process are						
	a) Random in nature	b) Are function of time		c) Random in nature and are a function of time	d) None of the above	c)	Random in nature and are a function of time
87	In post-independence India, the registration of Births and DeathsAct was passed in						

	a) 1948	b)1959	c)1969	d)1979	c)	1969
88	The fertility of a women in India is maximum in the age group					
	a)15-20	b)20-24	c)25-29	d)15-29	c)	25-29
	The age-specific d	eath rate for the	babies of age less t	han one		
89	year is specifically	called				
	a)neonatal	b)infant	c)maternal	d)foetal	b)	infant mortality
	death rate	mortality rate	mortality rate	death rate	5)	rate
90	A life table based	on the experienc	e of actual cohort is	called		
	a) generation	b) fluent life	c) both a) and b)	d) neither	\sim	hath a) and h)
	life table	table		a) nor b)	C)	both a) and b)
91	Chance variation is respect of quality control of a product is					
	a) tolerable	b) not	c) uncontrollable	d)all the		
		effecting the		above	4)	all the above
		quality of a			u)	
		product				
	The cause leading	to vast variation	in the specification	of a		
92	product are usual	ly due to				
	a) random	b) assignable	c) non-traceable	d) all the	b)	assignable
	process	causes	causes	above	5)	causes
93	R-charts are prefe					
	a) R and S.D.	b) R can be	c) R-charts are	d) all the		
	fluctuate	easily	economical	above	۹)	all the above
	together in case	calculated			u)	all the above
	of small samples					
94	The graph of the proportion of defectives in the lot against					

	average sample number is					
	a) OC curve	b) A.S.N. curve	c) power curv	e d) all the above	b)	A.S.N. curve
	OC curve reveals	the ability of the	sampling plan t	o distinguish		
95	between					
	a) good and bad	b) good and	c) good and b	ad d) all the		good and had
	lots	bad sampling	product	above	a)	
		plans				1013
96	A sampling plan i	s good for use pr	ovided			
	a) it ensures	b) it requires	c) it is not	d) all the		
	correct decision	an adequate	complicated	above		
	about the	number of			d)	all the above
	acceptance or	inspection				
	rejection of a lot					
	In sequential pro	bability ratio test	t, the lies dividin	g the total space		
97	into regions are					
	a) perpendicular	b) passing	c) parallel to	d) all the		narallal to oach
	to each other	through the	each other	above	c)	other
		origin				other
98	In a sequential sa	impling plan, the	sample size is	I		
	a) a discrete	b) a	c) both a) and	b) d)neither		- dicercto
	random variable	continuous		a) nor b)	2	a discrete
		random			a)	variablo
		variable				Variable
99	Who is regarded	as the father of I	piostatistics	I		
	a) Fisher	b) Karl	c) Francis	d) Francis	c)	Francis Galton

		Pearson	Galton	Bacon		
	The branch of bi					
100	organization and					
	a) inferential	b)	descriptive			
	biostatistics	biostatistics	b)	biostatistics	5)	biostatistics

SPACE FOR ROUGH WORK