\qquad

This booklet consists of 100 questions and 12 printed pages.

RGUPET/ \qquad

Series
NIL

Time: 3 Hours

Roll No. \square

Day and Date of Examination
:
Signature of Invigilator(s)
Signature of Candidate
:

General Instructions:

please read all the instructions carefully before making any entry.

1. DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE TOLD TO DO SO.
2. Candidate must write his/her Roll Number on the space provided.
3. This Test Booklet contains 100 Multiple Choice Questions (MCQs) from the concerned subject. Each question carries 1 mark.
4. Please check the Test Booklet to verify that the total pages and total number of questions contained in the test booklet are the same as those printed on the top of the first page. Also check whether the questions are in sequential order or not.
5. Candidates are not permitted to enter into the examination hall 15 minutes after the commencement of the entrance test or leave the examination hall before 30 minutes of end of examination.
6. Making any identification mark in the OMR Answer Sheet or writing Roll Number anywhere other than the specified places will lead to disqualification of the candidate.
7. Candidates shall maintain silence inside and outside the examination hall. If candidate(s) is/are found violating the instructions mentioned herein or announced in the examination hall, they will be summarily disqualified from the entrance test.
8. In case of any dispute, the decision of the Entrance Test Committee, RGU shall be final and binding.
9. The OMR Answer Sheet consists of two copies, the Original copy and the Student's copy.

1	Which of the following is not a Research method?				c	Observati on
	a)Historical	b)Survey	c)Observation	d)Philosophical		
2	Which of the following is not a plagiarism checking tool?				a	LaTex
	a)LaTex	b) Turnitin	c) iThenticate	d) Urkund		
3	Formulation of hypothesis may not be required in				b	Historical studies
	a) Survey method	b) Historical studies	c)Experimental studies	d) Normative studies		
4	Logic is the branch of philosophy that				a	refers to the study of reasoning
	a) refers to the study of reasoning.	b) refers to the theory of knowledge.	c) refers to the study of morality.	d) study of everything related to beauty, art, and good taste.		
5	First step of an investigation is ___				b	collection of data
	a) presentation of data	b) collection of data	c) analysis of data	d) explanation of data		
6	Correlation Analysis is mainly important to understand				b	associatio n among variables.
	a) difference among variables.	b) association among variables.	c) regression among variables	d) variations among variables.		
7	Abstract of a research report contains				d	A brief summary of findings of the report.
	a) a brief summary of research problem.	b) a brief analysis of data.	c) a brief interpretation of data	d) a brief summary of findings of the report.		
8	The group of individuals under study is known as				a	Sample
	a) Sample	b) Population	c) Data	d) Unit		
9	What is the main aim of interdisciplinary research?					To bring out the holistic approach
	a) To over simplify the problem of	b) To bring out the holistic approach to	c) To bring out the holistic approach to	d) To create a new trend in research	c	

	research.	research.	research.	methodology.		to research
10	Which of the following features are considered as critical in qualitative research?				d	Collectin g data with bottom- up empirical evidence.
	a) Collecting data b) Gathering with the help of data with top- standardized down research tools. schematic evidence.		c) Design sampling with probability sample techniques.	d) Collecting data with bottom-up empirical evidence.		
11	The quality of a research journal is indicated by its				a	impact factor
	a)impact factor	b)total number of publication in a year	c)total number of articles received by a journal	d)g-index		
12	Survey is a ___ study					Fact finding
	a) Descriptive	b) Analytical	c) Fact finding	d) Systematic		
13	Examining of the entire population instead of a subgroup of the population is called a \qquad					census
	a) Sampling	b) Population	c) Bias	d) census	d	
14	Which one is called non-probability sampling?					Quota sampling
	a) Cluster sampling	b) Quota sampling	c) Systematic sampling	d) Stratified random sampling	b	
15	Questionnaire is a _				c	Tool for data collection
	a) Research method	b) Measurement technique	c) Tool for data collection	d) Data analysis technique		
16	Data that have already been collected for some other purpose is termed as \qquad				b	
	a) Primary data.	b) Secondary data.	c) Tertiary data.	d) Ready-made data.		Secondar y data.

17	The method of reasoning in which a conclusion is drawn from two statements is known as				d	Syllogism
	a) hypothesis	b) Inductive method	c) Empiricism	d) Syllogism		
18	Which type of research is also called as decisional research?				c)	Applied research
	a)Action research	b)Pure research	c)Applied research	d) Explanatory research		
19	The term 'ethno' refers to				c)	People or culture
	a)Geographi cal area	b)Social life	c)People or culture	d) Cultural group		
20	The primary goal of applied research is to?				a)	Solve or provide answers to practical problems
	a)Solve or provide answers to practical problems.	b)Testing theories and hypotheses.	c)Addressing research issues in partnership with local people.	d)Primary goal is gaining knowledge, with no aim of using it.		
21	Pure research is also known as				a)	Fundame ntal research
	a)Fundament al research	b) Exploratory research	c)Action research	d) Explanatory research		
22	What is meant by the term "grounded theory"?					
	a)Theories should be tested by rigorous scientific experimen ts	b)Theoretical ideas and concepts should emerge from the data	c)Theories should be grounded in political values and biases	d)As a social researcher, it is important to keep your feet on the ground.	b)	Theoretic al ideas and concepts should emerge from the data
23	LaTeX softwar	is used for....				

		true	significance level	significance level		less or equal to the significan ce level
29	Word Research is derived from the language				a	French
	a) French	b) Sanskrit	c) German	d) Latin		
30	The theory of knowledge is called				d	Epistemol ogy
	a) Aesthetics	b) Metaphysics	c) Logic	d) Epistemology		
31	Changing or omission of research results to support claims is				a	Falsificati on
	a) Falsification	b) Fabrication	c) Plagiarism	d) Publication		
32	A quality of good hypothesis is				b	Conceptu al clarity
	a) small in size	b) conceptual clarity	c) durability	d) applicability		
33	In research methodology, interpretation is a search for				a	Research finding
	a) Research findings	b) Research problem	c) Research Plan	d) statistical data		
34	The final stage of a research process is				c	Report writing
	a)Data collection	b) Analysis of data	c) Report writing	d) Review of literature		
35	A quantitative research is a				b	Number based research
	a)text based research	b) number based research	c) subjectiv e research	d) semi-structured question based research.		
36	A hypothesis that expresses no relationship between two variables is				d	Null hypothesi s
	a) Causal hypothesis	b) Relational hypothesis	c) Descriptiv	d) Null hypothesis		

			e hypothesis			
37	Research based on experiments and observations is called					Empirical Research
	a) Empirical Research	b) Clinical Research	c) Laboratory Research	d) Experimental Research		
38	Statements: All dogs are mammals. All mammals have lungs. Conclusions: I. All dogs have lungs. II. All dogs are animals.					Only conclusio n I follows
	a)Only conclusion I follows	b)Only conclusion II follows	c)Both I and II follow	d)Neither I nor II follows		
39	In the artificial language, "mogingor" means "table lamp" and "daximog" means "reading lamp." What would "daxigor" mean?				b	Desk lamp
	a)Bedside table	b)Desk lamp	c)Ceiling light	d)Bedside lamp		
40	The 3Rs considered for the care and use of animals for scientific purposes and teaching activities are Replacement, Reduction and				b	Refineme nt
	a) Retirement	b) Refinement	c) Rotation	d) Rational		
41	Unstructured or semi structured techniques and non-statistical analysis is a part of					Qualitativ e Research
	a) Qualitative research	b) Quantitative research	c) Action Research	d) Applied Research		
42	Which of the following is against the research ethics?					
	a)Protection of confidential communication s	b) Fabrication of data	c) Respect for intellectual property	d) Responsible Publication		Fabricatio n of data
43	Schedules are filled by					Enumerat

	promote research in education	standards in colleges of education	college of education	to colleges education		
50	The purpose of new education policy is					a
	a) To improve the whole education system	b) To provide equal opportunity of education to all	c) To delink the degree with education	d) To link theeducationemployment		
51	Newton's law of viscosity states that					
	a) shear stress \propto velocity gradient	b) resistance \propto strain	c) shear stress \propto acceleration due to gravity	d) viscosity \propto velocity gradient	a	shear stress \propto velocity gradient
52	The dimensional formula of a force is					
	a) $\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$	b) $\left[\mathrm{MLT}^{-2}\right]$	c) $\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}\right]$	d) $\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{2}\right]$	b	[MLT^{-2}]
53	A fluid flow is said to be possible if it satisfies the					
	a) conservati on of mass	b) NS equations	c) Euler's equation	d) D'Almebert's equation	a	conservation of mass
54	A flow is said to be potential kind if					
	$\begin{aligned} & \text { a) } \nabla \cdot \vec{q}= \\ & 0 \end{aligned}$	b) $\operatorname{curl} \vec{q} \neq 0$	c) $\nabla \cdot \vec{q} \neq 0$	d) $\operatorname{curl} \vec{q}=0$	d	$\operatorname{curl} \vec{q}=0$
55	The iteration formulation $\quad x_{n+1}=x_{n}-f\left(x_{n}\right) / f^{\prime}\left(x_{n}\right), n=$ $0,1,2 \ldots \ldots$ assigns with the numerical method of					
	a)	b) Bisection	c) Quadrature	d) Gauss Seidal	a	Newton-

	Newton- Raphson					Raphson
56	A force field \vec{F} is said to be conservative if					
	a) $\operatorname{curl} \vec{F} \neq 0$	b) $\operatorname{grad} \vec{F}=0$	c) $\operatorname{div} \vec{F}=0$	d) $\begin{aligned} & \operatorname{curl}(\operatorname{grad} \vec{F})= \\ & 0 \end{aligned}$	d	$\begin{aligned} & \operatorname{curl}(\operatorname{grad} \vec{F}) \\ & =0 \end{aligned}$
57	The shortest curve between two points in a plane is					
	a) a straight line	b) a circle	c) an ellipse	d) a hyperbola	a	a straight line
58	By the transformations $u=x-c t, v=x+c t$, the equation $\frac{\partial^{2} z}{\partial t^{2}}=$ $c^{2} \frac{\partial^{2} z}{\partial x^{2}}$ reduces to					
	$\begin{aligned} & \text { a) } \frac{\partial^{2} y}{\partial t^{2}}= \\ & c \frac{\partial^{2} y}{\partial x^{2}} \end{aligned}$	b) $\frac{\partial^{2} y}{\partial t^{2}} \frac{\partial^{2} y}{\partial x^{2}}=0$	c) $\frac{\partial^{2} z}{\partial u \partial v}=0$	d) $\frac{\partial^{3} y}{\partial t^{3}}=c \frac{\partial^{3} y}{\partial x^{3}}$	c	$\frac{\partial^{2} Z}{\partial u \partial v}=0$
59	The velocity vector \vec{q} in a three-dimensional flow field for an incompressible fluid is given by $\vec{q}=2 x \hat{\imath}-y \hat{\jmath}-z \hat{k}$. The equations of the streamlines passing through the point (1,1,1) are					
	$\begin{aligned} & \text { a) } x y= \\ & 1, x y^{2}= \\ & 2 \end{aligned}$	b) $x y^{2}=1, x z^{2}=$ 1	$\begin{aligned} & \text { c) } y^{2} z= \\ & \text { 1, } x y z^{2}=1 \end{aligned}$	$\begin{aligned} & \text { d) } y z= \\ & 1, x z^{2}=1 \end{aligned}$		b
60	Which one of the following is derived from Newton's second law of motion					
	a) Euler's equation of motion	b) Navier-Stokes equations of motion	c) Hamilton's equations	d) Lagrange's equations	b	Navier-Stokes equations of motion
61	The number of generalized co-ordinates required to describe motion of a rigid body with one of its points fixed is					
	a) 9	b) 6	c) 3	d) 1	c	3

62	The two types of errors that are related to differentials are					
	a) Human, Absolute	b) Absolute, Relative	c) Relative, Controllable	d) Controllable, Natural	b	Absolute, Relative
63	In which numerical method is associated with forward or backward substitutions by row reduction to solve a system of linear equations					
	a) Power method	b) Gauss elimination	c) QR method	d) LU decomposition	b	Gauss elimination
64	The set of all linearly independent solutions of the differential equation $\frac{d^{4} y}{d x^{4}}-\frac{d^{2} y}{d x^{2}}=0$ is					
	a) $\left\{1, x, e^{x}, e^{-}\right.$	b) $\left\{1, x, e^{-x}, x e^{-x}\right\}$	c) $\left\{1, x, e^{x}, x e^{x}\right\}$	d) $\left\{1, x, e^{x}, x e^{-x}\right\}$	a	$\left\{1, x, e^{x}, e^{-x}\right\}$
65	In a parallel channel flow, one plate is at rest and other is set in motion without fluid pressure, the model is called					
	a) Poiseuille flow	b) Plane Couette flow	c) Generalised Couette flow	d) Hagen- Poiseuille flow	b	Plane Couette flow
66	The radius of convergence of the power series is $\sum_{n=0}^{\infty}(1+$ $1 / n)^{n^{2}} z^{n}$ is					1/e
	a) ∞	c) $1 / e$		d) e	c	
67	The bilinear transformation that maps the points $z_{1}=\infty, z_{2}=$ $i, z_{3}=0$ of z-plane into the points $w_{1}=0, w_{2}=i, w_{3}=\infty$ of w plane, respectively, is					$w=-1 / z$
	a) $w=$ $1 / z$	$w=$ c) $w=$ $1 / z$		$\begin{aligned} & \text { d) } w= \\ & -i / z \end{aligned}$	b	
68	If R_{1} and R_{2} are radii of convergence of the power series $\sum a_{n} z^{n}$ and $\sum n a_{n} z^{n-1}$, respectively, then					

	a) $\begin{gathered} R_{1}= \\ n R_{2} \end{gathered}$	$\begin{aligned} & \text { b) } R_{1}= \\ & R_{2} \end{aligned}$	c) $R_{1}=1 / R_{2}$	$\begin{aligned} & \text { d) } R_{1}= \\ & n / R_{2} \end{aligned}$	b	$R_{1}=R_{2}$
69	The change in the argument of $f(z)=2 z /\left(z^{2}+1\right)$ as z moves once around the circle centered at origin and unit radius is				a	-2π
	a) -2π	b) 2π	c) 4π	d) $\pi / 2$		
70	A function which is analytic in the entire complex plane except at finite number of poles is called				c	a meromorphic function
	a) an analyti c functio n	b) an entire function	c) a meromorphic function	d) an isogonal function		
71	In the usual metric space (\mathbb{R}, U), which of the following statement is incorrect?				c	the set of all rational numbers is an open set.
	a) b) $[0,1[$ $\left\{1, \frac{1}{2}, \frac{1}{3}, \cdots\right\}$ is not is not an an open set. open set.		c) the set of all rational numbers is an open set.	d) the set of all irrational numbers is not an open set.		
72	Let $X=\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots, \frac{1}{n}, \cdots\right\}$ and d be the usual metric defined on X. If $A=\left\{1, \frac{1}{3}, \frac{1}{5}, \cdots, \frac{1}{2 n-1}, \cdots\right\}$ and$B=$ $\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \cdots, \frac{1}{2 n}, \cdots\right\}$, then				d	$d(A, B)=0$
	a) $\begin{aligned} & d(A, B) \\ & 1 \end{aligned}$	b) $\begin{aligned} & d(A, B)= \\ & 1 / 2 \end{aligned}$	c) $d(A, B)=1 / 2 n$	d) $d(A, B)=0$		
73	Let X be a topological space and Y be a subset of X. A point $y \in Y$ is such that there exists a neighbourhood of y which contains no other point of Y. Then y is called				a	an isolated point
	a) an isolate d	b) a limit point	c) a singular point	d) an exterior point		

	point											
74	The smallest positive value of x satisfying $3^{56} \equiv x(\bmod 7)$ is				b	2						
	a) 1		(c) 3	(d) 4								
75	For any odd integer λ, the congruence $x^{2} \equiv \lambda(\bmod 4)$ has a solution if and only if				c	$\begin{aligned} & \lambda \\ & \equiv 1(\bmod 4) \end{aligned}$						
	a) $\lambda \equiv$ b) λ $1(\bmod$	$=2(\bmod 4)$	$\begin{aligned} & \text { c) } \lambda \equiv \\ & 1(\bmod 4) \end{aligned}$	d) $\lambda \equiv 3(\bmod 8)$								
76	The system of congruences $x \equiv a(\bmod P)$ and $x \equiv b(\bmod Q)$ has a solution if and only if				c	$\equiv b(\bmod \operatorname{gcd}$						
	a) $a \equiv$ b) $a \equiv$ c) $a \equiv$ d) $a \equiv$ $b(\bmod$ $-b(\bmod P Q)$ $b(\bmod \operatorname{gcd}(P, Q$ $-b(\bmod \operatorname{gcd}(P, Q)$											
77	Let a and b are two integers such that $a x+b y=\operatorname{gcd}(a, b)$, then				b	$\begin{aligned} & \operatorname{gcd}(x, y) \\ & =1 \end{aligned}$						
	a) $\begin{aligned} & \operatorname{gcd}(x, y)> \\ & \operatorname{gcd}(a, b)> \\ & 1 \end{aligned}$	b) $\begin{aligned} & \operatorname{gcd}(x, y)= \\ & 1 \end{aligned}$	$\begin{aligned} & \text { c) } \operatorname{gcd}(x, y)> \\ & 1 \end{aligned}$	d) $\operatorname{gcd}(x, y) \neq 1$								
78	If u and v are orthonormal vectors in an inner product space, then distance between u and v is				d	$\sqrt{2}$						
	a) $1 / \sqrt{2}$	b) 1	c) 2	d) $\sqrt{2}$								
79	Let $H \neq\{0\}$ be a Hilbert space and $U: H \rightarrow H$ be a unitary operator. Which of the following statement is incorrect?				b	$\\|U\\| \neq 1$						
	a) $\\|U x\\|=$ $\\|x\\|$ for all $x \in H$	b) $\\|U\\| \neq 1$	c) U is normal	d) $U^{-1}=U^{*}$, (U^{*} is adjoint of U)								
80	Let T be an idempotent operator on a Hilbert space. Then eigen values of T are given by				a	$\{0,1\}$						
	a) $\{0,1\}$	b) $\{0,-1\}$	c) $\{-1,1\}$	d) $\{1\}$								
81	The solution of the integral equation $y(x)=\frac{1}{1+x^{2}}-$ $\int_{0}^{x} \frac{t}{1+x^{2}} y(t) d t$ is:				b)	$\begin{aligned} & y(x) \\ & =(1 \\ & \left.+x^{2}\right)^{-3 / 2} \end{aligned}$						
	a) $y(x)=$	b) $y(x)=$	c) $y(x)=$	d) $y(x)=$								

	$\begin{aligned} & (1+ \\ & \left.x^{2}\right)^{3 / 2} \end{aligned}$	$\begin{aligned} & (1+ \\ & \left.x^{2}\right)^{-3 / 2} \end{aligned}$	$\begin{aligned} & (1+ \\ & \left.x^{2}\right)^{1 / 2} \end{aligned}$	$\begin{aligned} & (1+ \\ & \left.x^{2}\right)^{-1 / 2} \end{aligned}$		
82	$\begin{gathered} \text { Let } y(x)=\sum \\ \text { differential } \\ \text { then the ind } \\ \text { a) }(k+n)(k+ \\ n+ \\ 1)= \\ 0 \end{gathered}$	${ }_{m=0}^{\infty} c_{m} x^{k-m}, c_{0}$ equation (1- icial equation is: $\begin{gathered} \text { b) }(k-n)(k+ \\ n+ \\ 1)=0 \end{gathered}$	$\neq 0$ be the series $\left.x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+$ c) $k(k+n+$ 1) $=0$	solution of the $n(n+1) y=0$, d) $(k-$ $n)(k-$ $n-$ $1)=0$	b)	$\begin{aligned} & (k-n)(k \\ & +n+1)=0 \end{aligned}$
83	Let $P_{n}(x)$ is a of $\int_{-1}^{1} P_{n}(x) P_{n}$ a) 0	Legendre's polyn $(x) d x$ is: b) $\frac{2}{n+2}$	omial of degree n c) $\frac{2}{2 n+1}$	then the value d) $\frac{2}{2 n+3}$	c)	$\frac{2}{2 n+1}$
84	The value of \int_{0}^{1} a) $\frac{1+e}{2}$	$x d\left(e^{2 x}\right)$ is b) $\frac{e}{2}$	c) $\frac{1+e^{2}}{2}$	$\text { d) } \frac{e^{2}}{2}$	c	$\frac{1+e^{2}}{2}$
85	The function f_{n} a) Not pointwise convergent in $[0, \infty]$.	$(x)=e^{-n x} \text { is }$ b) pointwise convergent but not uniformly convergent in $[0, \infty]$.	c) uniformly convergent in $[0, \infty]$.	d) pointwise convergent but not uniformly convergent in $(0, \infty]$.	b	pointwise convergent but not uniformly convergent in $[0, \infty]$.
86	The integral $\int_{0}^{\pi / 2}$ a) $n<m+1$	$\frac{\sin ^{m} x}{x^{n}} d x$ exists b) $n>m+1$	if and only if c) $n \leq m+1$	d) $n \geq m+1$	a	$n<m+1$
87	Cantor set is	b) Dense in $[0,1] .$	c) neighbourhood of1/2.	d) equivalent to $[0,1]$.		equivalent to $[0,1] .$

88	The function f defined by $f(x)=\left\{\begin{array}{l}x, \text { if } x \text { is rational } \\ 0, \text { if } x \text { is irrational }\end{array}\right.$ is				a	Continuous only at $x=0$.
	a) Continuous only at $x=0$.	b) Discontinuous only at $x=0$.	c) Continuous everywhere.	d) Discontinuous everywhere.		
89	The radius of convergence of the series $\sum_{n=0}^{\infty} \frac{(n!)^{2}}{(2 n)!} x^{2 n}$ is				b	2
	a) 1	b) 2	c) 3	d) 4		
90	The function $f(x, y)=x^{3}+y^{3}-3 x-12 y+20$ has				c	a maximum at$(-1,-2)$
	a) a minimum at $(-1,-2)$.	b)Neither minimum nor maximum at $(-1,-2)$.	c) a maximum at $(-1,-2)$.	d) a minimum at $(1,2)$.		
91	$\int_{0}^{\infty} \frac{\sin m x}{a^{2}+x^{2}} d x$ is				b	Absolutely convergent.
	a) Converges but not absolutely.	b) Absolutely convergent.	c) Divergent.	d) Oscillatory.		
92	The sequence $\left\langle S_{n}\right\rangle$, where $S_{n}=(1+2 / n)^{n+3}$ converges to				b	e^{2}
	a) e	b) e^{2}	c) $e+3$	d) $e^{2}+3$		
93	Characteristic of an integral domain with unity is					
	a) either zero or a positive integer.	b) always zero.	c) either zero or 1 .	d) either zero or a prime number.	d	either zero or a prime number.
94	For $n \in \mathbb{N}$ and $n \geq 3$, let $D_{2 n}$ be the Dihedral group. If c denotes the center of $D_{2 n}$, then					

	$\begin{aligned} & \text { a) }\|c\|= \\ & 1, \forall n \geq 3 \end{aligned}$	$\begin{aligned} & \text { b) }\|c\| \leq \\ & 2, \forall n \geq 3 \end{aligned}$	$\begin{aligned} & \text { c) }\|c\|> \\ & 2, \forall n \geq 3 \end{aligned}$	$\begin{aligned} & \text { d) }\|c\|= \\ & 2, \forall n \geq 3 \end{aligned}$	b	$\begin{aligned} & \|c\| \leq 2, \forall n \\ & \geq 3 \end{aligned}$
95	In the group of all invertible 4×4 matrices with entries in the field of 3 elements, any 3 - Sylow subgroup has cardinality				d	729
	a) 3	b) 81	c) 243	d) 729		
96	The number of group homomorphism from \mathbb{Z}_{10} to \mathbb{Z}_{20} is				c	ten
	a) Zero	b) five	c) ten	d) one		
97	Let S denotes the set of all the prime numbers p with the property that the matrix $\left[\begin{array}{ccc}91 & 31 & 0 \\ 29 & 31 & 0 \\ 79 & 23 & 59\end{array}\right]$ has the inverse in the field \mathbb{Z}_{p}.				a	S is infinite
	a) S is infinite	b) $S=\{31\}$	$\begin{aligned} & \text { c) } S= \\ & \{7,13,59\} \end{aligned}$	d) $S=\{31,59\}$		
98	Let $f(x) \in \mathbb{Z}[x]$ be a monic polynomial. Then the roots of f				b	Always belongs to$(\mathbb{C} \backslash \mathbb{Q}) \cup \mathbb{Z}$
	a) Always belongs to \mathbb{Z}	b) Always belongs to $(\mathbb{C} \backslash \mathbb{Q}) \cup \mathbb{Z}$	c) Always belongs to $(\mathbb{R} \backslash \mathbb{Q}) \cup \mathbb{Z}$	d) can belong to $(\mathbb{Q} \backslash \mathbb{Z})$		
99	A group of prime order has				a	No proper subgroup.
	a) No proper subgroup.	b) At least one proper subgroup.	c) No improper subgroup.	d) At least two proper subgroup		
$\begin{array}{\|l\|} \hline 10 \\ 0 \end{array}$	The matrix of the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, defined by $T(x, y)=(2 x+3 y, 4 x-5 y)$, relative to the basis $\{(1,-2),(2,-5)\}$ is				b	
	a) $\left[\begin{array}{cc}8 & -6 \\ 11 & -11\end{array}\right]$	b) $\left[\begin{array}{cc}8 & 11 \\ -6 & -11\end{array}\right]$	c) $\left[\begin{array}{cc}-4 & 14 \\ -11 & 33\end{array}\right]$	d) $\left[\begin{array}{cc}-4 & -11 \\ 14 & 33\end{array}\right]$		$\left[\begin{array}{cc}8 & 11 \\ -6 & -11\end{array}\right]$

SPACE FOR ROUGH WORK

