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Abstract: The Microelectromechanical (MEMS) diaphragm based comb drive capacitive pressure sensor has two stages, Mechanical (Diaphragm) and 

Capacitive (Comb Drive). The diaphragm displaces in response to apply pressure and the displacement moves the movable comb structure. The two most 

common architectures of comb drive are single side comb structure and double fold comb structure. In this paper, an impressive technique for designing 

and modelling of single side comb structure capacitive pressure sensor is being presented. A mathematical model of the sensor is derived and the model 

simulates the designed structure with the COMSOL Multiphysics Simulator. The Mechanical Sensitivity, Electrostatic sensitivity and Overall Sensitivity 

are studied for the designed structure. A comparative study of the mathematic analytical values and simulated output values are examined and are found 

very much closed to each other. The various parameter like Young’s Modulus, Poisson’s Ratio, Dimensions and Structure of the pressure sensor, number 

of comb fingers and dimension of the comb finger affecting the sensitivity is widely discussed. 

Keywords: coupler, fringing effect, electrostatic sensitivity, mechanical sensitivity. 

1. Introduction  

 

There are various pressure sensors viz. Piezo-resistive Strain Gauge, 

Capacitive, Electromagnetic, Piezo-electric, Strain Gauge, Optical, 

Potentiometric, Resonant, Thermal (Pirani Gauge) and Ionization but few 

of them are applicable for MEMS design. The advantages of MEMS 

technology are: small in size, volume and mass, low power consumption, 

low cost, compatible with silicon technology, low heating effect, 

parallelism etc. The capacitive pressure sensor is an active sensor as it 

requires an external power source to operate. It is one of the common in 

MEMS design. MEMS-based comb drive capacitive pressure sensors are 

miniaturized, consume less power and more efficient. Such sensors have 

wide application in the field of pressure monitoring, safety purpose, 

controlling etc. The capacitive has a wide application in various fields in 

monitoring, LC tank circuit, high pressure sensing, harsh environment, 

biomedical, measuring plantar pressure, measuring bowel state, 

microphone, and ultralow pressure detection [1–10]. Capacitive pressure 

sensor can be developed with silicon micromachining fabrication 

technique [11]. Many researchers use ANSYS and COMSOL finite 

element method multiphysics simulator for simulation [6,12,13]. Some 

researchers have proposed a diaphragm based comb drive pressure sensor 

but their study is the effect of different material properties on the 

sensitivity [14]. In this study, the systematic design approach for comb 

drive is being studied.  

The working principle of comb drive capacitive pressure: the measuring 

pressure is applied at the mechanical sensing structure, common structures 

are diaphragm, bridges or cantilever, and deflect. The deflection is 

coupled with the coupler to translate into linear displacement and 

displaced the comb position resulting in the changes in capacitance. 

 

2. Sensor Design Structure 

In this paper, diaphragm-based comb drives capacitive pressure sensor has 

four main structures i.e. diaphragm structure, mechanical coupler, 

movable comb structure and fixed comb structure as is shown in fig1. The 

diaphragm is the structure where the pressure (stimulus) is applied and 

converts pressure into deflection or displacement.  A square diaphragm 

with dimension is 200µmX200µmX5µm is considered for the design. 

Mechanical coupler is to translate the diaphragm deflection into linear 

displacement and couples to movable comb drive. Since the maximum 

deflection of the square diaphragm is at the centre, mechanical coupler is 

connected at the centre of the diaphragm and at the other end movable 

comb drive. The dimension of the coupler is 6µmX6µmX10µm. A comb 

structure having ten fingers on both side with a gap of 15µm in between 

the two fingers. The dimension of a finger is 200µmX40µmX5µm. The 

length of the finger G1 is 40µm, the gap between the two plates G2 is 

80µm and the gap between the two adjacent fingers of movable and fixed 

comb G3 is 5µm. 
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Fig. 1 Schematic Diagram of Comb Drive. 

3. Mathematical Modelling 

The diaphragm based comb drive capacitive pressure sensor has a 

combination of mechanical and electrostatic. In mechanical modelling, the 

pressure or force is applied at the diaphragm and deflects the diaphragm. 

The generalized equation of square diaphragm deflection W is eqn. 

1[15,16]. Where, D is the flexure rigidity given by eqn.2.  

W(x,y)=(0.0213pa4/D)(1-x2/a2)2(1-y2/a2)2. (1) 

D=Eh3/(12(1-v2)).    (2)

    

Where, 

E: is the Young’s Modulus, 

h: is the thickness of the diaphragm, 

v: is the Poisson’s Ratio, 

a: is the half length of the square diaphragm,  

x,y: is the coordinate of the diaphragm from the centre as an origin.  

The maximum deflection occurs at the centre of the diaphragm i.e. x=a, 

y=a. The maximum deflection is given by eqn.3.  

 

W(x,y)max = W(0,0) = pa4/47D.   (3)

      

Mechanical sensitivity, SM, is given by the ratio of change in deflection to 

change in the applied pressure. It is given by the eqn.4.  

SM = δw/δp.    (4)

     

  

Where,  

δw is the change in deflection with respect to applied change in pressure 

δp. 

The deflection and mechanical sensitivity of the diaphragm depends on 

many parameters such as Young’s modulus, Poisson’s Ratio of the 

materials, length, breadth and thickness of the diaphragm.  

3.1. Electrostatic modeling 

 In electrostatic, the capacitance, C, of a parallel plate capacitor is given 

by eqn. 5 

C =ƐA/g     (5) 

Where, Ɛ is the relative permittivity, A is the area of the plate and g is the 

gap between the plates.  

To calculate the capacitance value of the comb drive, there are 5 (five) 

parallel plate capacitances and fringing capacitance, which connected in 

parallel in a simple comb structure as shown in fig. 2. Parallel plate 

capacitances C3, C4 and C5 are same value and Capacitance C1 and C2 has 

same value since they have same gabs, area and dielectrics.  

The overall parallel plate capacitance, Cparallel, of the simple comb drive is 

given by eqn. 6. 

Cparallel = C1 + C2 + C3 + C4 + C5   (6) 

Cparallel =2C1 +3C3    (7) 

 

 

Fig. 2 Various capacitance in comb drive. 

 

Considering, the design structure dimensions, the capacitance C1 and C3 

values will be given by eqn. 8 and eqn. 9 respectively. 

 

C1=Ɛl(δw)/G3  (8)  

    

C3 = Ɛtl/(G1- δw)    (9) 

Where, Ɛ is the relative permittivity, l is the length of the finger, t is the 

thickness of the finger, G3 is the gap between the two finger, G1 is the gap 

between the tips of the  finger and base of the opposite comb and δw is the 

change in displacement of the finger. N3 is the total number of fringing 

area. 
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The total capacitance of the design comb drive can be express by eqn. 10. 

Cparallel = N1C1 + N2C3 .   (10) 

The fringing effect capacitance is given by eqn. 11. 

 Cfringing = N3 Ɛ(G1 – δw)l/ G3   (11) 

   

Ctotal  = Cparllel +Cfringing.    (12) 

The electrostatic sensitivity of the sensor is the sensitivity which is the 

ration of change in capacitance to change in deflection. It is given by eqn. 

13. 

SE =δCtotal/δw     (13) 

The overall sensitivity is the sensitivity which is the ratio of change in 

capacitance to change in applied pressure. It is given by eqn.14.  

STotal = δCtotal/δw = (δw/δp)(δCtotal/δw) = SMSE. (14) 

The overall sensitivity is equal to the product of mechanical sensitivity 

and electrostatic sensitivity.  

4. FEM Simulation 

The proposed 3D meshing model is designed in the COMSOL 

Multiphysics simulator as it illustrated in the fig.3. The device has ten 

fingers in each, movable comb drive and fixed comb drive. The material 

used is gold (Au) from the inbuilt COMSOL material for the fingers and 

diaphragm. The gap between the combs is filled with air as a dielectric. A 

voltage of positive one volt is given in the movable plate and ground on 

the fixed plate. The physics for simulation is Electromechanics (emi) and 

the study is stationary. The meshing is done with Free Tetrahedral and 

number of elements is 1164398. 

 

Fig. 3 Mesh model of comb drive. 

Table 1. Gold (Au) properties. 

Properties Value Unit 

Density 19300 Kgm-3 

Young’s Modulus 70 GPa 

Poisson’s Ratio 0.44 1 

5. Comparisons of Simulated values and analytical values 

Various comparisons are made between the analytical and simulated 

values. The mathematical model equations are realized in MATLAB and 

simulation in COMSOL Multiphysics. The graph between the deflections 

and the applied pressure in Fig. 5 shows linearly varying. The Mechanical 

Sensitivity (SM) of the analytical and simulated are 0.023 µm/KPa and 

0.020 µm/KPa. 

 

Fig. 5 Applied pressure Vs Displacement 

The comparison is made between the analytical and simulated value of 

capacitance for the set of applied pressure in table 2. 

Table 2. Analytical and Simulated value of Capacitance for applied 

pressure. 

Applied Pressure 

(KPa) 

Analytical 

Capacitance (pF) 

Simulated 

Capacitance (pF) 

0 0.073413 0.071560 

1 0.073430 0.071570 

2 0.073447 0.071580 

3 0.073464 0.071590 

 4 0.073481 0.071600 

5 0.073498 0.071610 

The overall Sensitivity (Stotal) of analytical and simulated are 0.000017 

pF/KPa and 0.000010 pF/KPa respectively.  The electrostatic sensitivity 

(SE) of analytical and simulated are 0.000739 pF/µm and 0.000500 pF/µm 

respectively. 
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6. Conclusion 

From this study, the sensitivity of diaphragm-based comb drive capacitive 

pressure sensor depends on the material properties and dimension of the 

diaphragm and the structural design of the comb drive. The capacitance of 

the sensors is increased linearly with an increase in pressure. For this 

particular design, the sensitivity is found to be 0.000017 pF/KPa and 

0.000010 pF/KPa for analytical and simulation respectively.  
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