Copyrighted Material

BIOSENSOR BASED ADVANCED CANCER DIAGNOSTICS

FROM LAB TO CLINICS

EDITED BY

RAJU KHAN ARPANA PARIHAR SUNIL K. SANGHI

AP

Copyrighted Material

About the editors

Raju Khan is currently working as the principal scientist and associate professor at CSIR-Advanced Materials and Processes Research Institute (AMPRI), Bhopal, MP, India. Dr. Khan received his PhD & MSc in chemistry from the Jamia Millia Islamia (Central University), New Delhi, India. Dr. Khan has published several refereed papers in national and international journals, has filed patents, and has edited as well as coedited several books on biosensors and antimicrobial applications. He has completed several national and international collaborative projects such as Indo-Czech Republic, Indo-Russia, and United States. He is a recipient of the reputed BOYSCAST fellowship from the Department of Science & Technology (DST) within the Ministry Government of India. During the fellowship, he has worked as a visiting scientist at the University of Texas at San Antonio (UTSA), United States. Since then, Dr. Khan is continuously very productive with more than 15 years of R&D and teaching experiences, producing high-quality research, mentoring students, and supporting the analytical and microfluidics division as outsource facility. His current research activities include nano-biomaterials, biosensors, point-of-care diagnostics, nano-biotechnology, antimicrobials, and biomedical engineering.

Arpana Parihar is currently working as a Women Scientist B at CSIR-Advanced Materials and Processes Research Institute (AMPRI), Bhopal, MP, India, under the scheme of DST-WoS-B awarded from the Department of Science and Technology, Government of India. She did her PhD from Raja Rammana Centre for Advanced Technology, Indore. Her doctoral research work involves the evaluation of tumor selectivity and photodynamic therapy (PDT) efficacy of chlorin p6 through receptor-mediated targeted delivery in oral cancer. After PhD, her postdoctoral research work at the Centre for Biomedical Engineering (CBME), Indian Institute of Technology (IIT) Delhi involves the enhancement of osteoin-ductive and osteoconductive properties of various implants made up of metals, ceramics, and polymers. Dr. Parihar is awarded prestigious GATE, CSIR-NET, DST-WoS A, and WoS B fellowship. She has more than 7 years of research and teaching experience at various prestigious institutes that fetched several peer-reviewed papers in national and international journals of repute. Her current research activity includes fabrication of biosensors for early diagnosis of cancer, molecular docking and simulation for drug designing, tissue engineering, targeted cancer therapy, and 3D cell culture.

Sunil K. Sanghi was working as chief scientist, professor, and Head of Department at Microfluidics & MEMS Centre, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Bhopal, India. His past research areas were on development of manual and automated procedures for all kinds of analytes in biomedical, pharmaceutical, and environmental samples using micro liquid, capillary gas chromatographic, and capillary electrophoretic separation techniques in combination with sample preparation, derivatization and reaction-detection systems, micro-chip-based separation under the concept of lab-on-a-chip. Dr. Sanghi has successfully completed several international and national collaborative R&D projects—Indo-European Union, Indo—French, New Millennium Indian Technology Leadership Initiative (NMITLI). He was awarded the reputed Marie Curie Fellowship of the European Union, and worked as a visiting scientist for 3 years at the University of Amsterdam and Institute Curie, Paris. He holds an experience of 35 years in R&D and teaching. Recently, Dr. Sanghi has received the 2021 National Meritorious Innovation Award from Government of India.

Academic Press is an imprint of Elsevier 125 London Wall, London EC2Y 5AS, United Kingdom 525 B Street, Suite 1650, San Diego, CA 92101, United States 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom

Copyright © 2022 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www. elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

ISBN: 978-0-12-823424-2

For Information on all Academic Press publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Mara Conner Acquisitions Editor: Carrie Bolger Editorial Project Manager: Sara Valentino Production Project Manager: Prem Kumar Kaliamoorthi Cover Designer: Mark Rogers

Working together to grow libraries in developing countries www.elsevier.com • www.bookaid.org

Typeset by MPS Limited, Chennai, India

List of contributors

- Aida Alaei Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
- Kavita Arora Advanced Instrumentation & Research Facility (AIRF) and School of Computational & Integrative Sciences (SCIS), Jawaharlal Nehru University, New Delhi, India
- Neha Arya Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Ahmedabad, India; Department of Translational Medicine Centre, All India Institute of Medical Sciences, Bhopal, Bhopal, India
- **Rinti Banerjee** Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
- Saptaka Baruah Department of Physics, Rajiv Gandhi University, Itanagar, India
- **Niloy Chatterjee** Food and Nutrition Division, University of Calcutta, Kolkata, India
- Meenakshi Choudhary Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
- Samraggi Coudhury DBT-National Institute of Animal Biotechnology (DBT-NIAB), Hyderabad, Telangana, India
- Mehdi Dadmehr Department of Biology, Payame Noor University, Tehran, Iran
- Surojeet Das European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
- Krishna Das Saha Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Nitu Dogra Proteomic & Translational Research Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University Noida, Noida, India

- Manuela F. Frasco BioMark Sensor Research/UC, Faculty of Sciences and Technology, Coimbra University, Coimbra, Portugal; BioMark Sensor Research/ISEP, School of Engineering, Polytechnic Institute of Porto, Porto, Portugal; CEB - Centre of Biological Engineering, Minho University, Braga, Portugal
- Sonu Gandhi DBT-National Institute of Animal Biotechnology (DBT-NIAB), Hyderabad, Telangana, India
- Shagun Gupta Shoolini University, Solan, India
- Morteza Hosseini Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
- **Pouria Jafari** Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
- Surbhi Jain Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
- Deepak Kala Amity Centre of Nanotechnology, Amity University, Gurugram, India
- Deepshikha Pande Katare Proteomic & Translational Research Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University Noida, Noida, India
- Ankur Kaushal Amity Centre of Nanotechnology, Amity University, Gurugram, India
- **Raju Khan** Microfluidics & MEMS Centre, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Bhopal, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Lucky Krishnia Amity Centre of Nanotechnology, Amity University, Gurugram, India
- Ashok Kumar Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Bhopal, India

- Avinash Kumar Department of Mechanical Engineering, Indian Institute of Information Technology Design & Manufacturing Kancheepuram, Chennai, India
- **Pradip Kumar** Integrated Approach for Design and Product Development Division, CSIR-Advanced Materials and Processes Research Institute (CSIR-AMPRI), Bhopal, India
- Sanjeev Kumar Department of Physics, Rajiv Gandhi University, Itanagar, India
- **Bidyarani Maibam** Department of Physics, Rajiv Gandhi University, Itanagar, India
- Ruchi Jakhmola Mani Proteomic & Translational Research Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University Noida, Noida, India
- Krishnendu Manna Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Department of Food and Nutrition, University of Kalyani, Kalyani, India
- Shubhangi Mhaske Oral and Maxillofacial Pathology and Microbiology, People's College of Dental Sciences & Research Centre, People's University, Bhopal, India
- Maryam Mousavizadegan Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
- Niladri Mukherjee Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Sayali Mukherjee Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
- Sagar Narlawar DBT-National Institute of Animal Biotechnology (DBT-NIAB), Hyderabad, Telangana, India
- **Fatemeh Nemati** Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
- **Riyaz Ali M. Osmani** Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
- Udwesh Panda Department of Mechanical Engineering, Indian Institute of Information Technology Design & Manufacturing Kancheepuram, Chennai, India
- **Ritu Pandey** Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Bhopal, India
- Arpana Parihar Microfluidics & MEMS Centre, CSIR-Advanced Materials and Processes Research Institute

(AMPRI), Bhopal, India; Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India

- **Dipesh Singh Parihar** Engineering College Tuwa, Godhra, India
- Azam Bagheri Pebdeni Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
- Amarjitsing Rajput Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India; Department of Pharmaceutics, Poona College of Pharmacy, Bharti Vidyapeeth Deemed University, Erandwane, Pune, India
- **Pushpesh Ranjan** Microfluidics & MEMS Centre, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Bhopal, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- **Tripti Rimza** Integrated Approach for Design and Product Development Division, CSIR-Advanced Materials and Processes Research Institute (CSIR-AMPRI), Bhopal, India
- Amirreza Roshani Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
- **Mohd Abubakar Sadique** Microfluidics & MEMS Centre, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Bhopal, India
- M. Goreti F. Sales BioMark Sensor Research/UC, Faculty of Sciences and Technology, Coimbra University, Coimbra, Portugal; BioMark Sensor Research/ISEP, School of Engineering, Polytechnic Institute of Porto, Porto, Portugal; CEB - Centre of Biological Engineering, Minho University, Braga, Portugal
- Shikha Saxena Amity Institute of Pharmacy, Amity University, Noida, India
- Nikita Sehgal Proteomic & Translational Research Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University Noida, Noida, India
- Amit Seth School of Life Science, Manipur University, Imphal, India
- Deepshikha Shahdeo DBT-National Institute of Animal Biotechnology (DBT-NIAB), Hyderabad, Telangana, India
- Kosar Shahsavar Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran

- **Ekta Singh** Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
- Shiv Singh Lightweight Metallic Materials Division, CSIR-Advanced Materials and Processes Research Institute (CSIR-AMPRI), Bhopal, India
- Ayushi Singhal Microfluidics & MEMS Centre, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Bhopal, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Raquel Vaz BioMark Sensor Research/UC, Faculty of Sciences and Technology, Coimbra University, Coimbra, Portugal; BioMark Sensor Research/ISEP,

School of Engineering, Polytechnic Institute of Porto, Porto, Portugal; CEB - Centre of Biological Engineering, Minho University, Braga, Portugal

- Vivek Verma Shoolini University, Solan, India
- Shalu Yadav Microfluidics & MEMS Centre, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Bhopal, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- **Monal Yuwanati** Department Of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India

Contents

List of contributors About the editors	xiii xvii
1. Cancer: A <i>sui generis</i> threat and its global impact	1
Amarjitsing Rajput, Riyaz Ali M. Osmani, Ekta Singh and Rinti Banerjee	
1.1 Introduction	1
1.1.1 Cancer	1
1.1.2 Pathophysiology of cancer	1
1.1.3 Genetics and epigenetics of cancer	- 2
1.1.4 Classification and nomenclature of	
cancers	3
1.1.5 Epidemiology and demographics	3
1.2 Causes of cancer	4
1.2.1 Physical carcinogens	4
1.2.2 Chemical carcinogens	6
1.2.3 Biological carcinogens	9
1.3 Causes and risk factors of cancer	13
1.3.1 Causes	13
1.3.2 Risk factors	14
1.4 Early detection and management	16
1.4.1 Diagnosis and staging	16
1.4.2 Management	16
1.5 Current management	19
1.6 Conclusions and future prospects	20
Conflict of interest	20
List of abbreviations	20
Reterences	21
2. Types of cancer diagnostics,	
the current achievements,	
and challenges	27
Niladri Mukherjee, Niloy Chatterjee, Krishnendu Manna and Krishna Das Saha	
2.1 Introduction	27
2.2 What is cancer	27
2.3 What is diagnostics	28

2.4	Importance of diagnostics 29				
2.5	Differ	ent types of cancer diagnostics	29		
	2.5.1	Clinical symptoms	30		
	2.5.2	Physical examination	30		
	2.5.3	Laboratory tests	31		
	2.5.4	Ultrasound	31		
	2.5.5	Imaging tests	31		
	2.5.6	Cytologic and histopathological			
		technique (biopsy)	32		
	2.5.7	í Endoscopy	33		
	2.5.8	Tumor markers	33		
	2.5.9	Serological methods	33		
	2.5.10	Immunohistochemistry	33		
	2.5.11	Flow cytometry	34		
	2.5.12	Fluorescence in situ hybridization			
		technique	35		
	2.5.13	Polymerase chain reaction	35		
	2.5.14	Microarray	35		
	2.5.15	Alternative and new diagnostic			
		measures for cancers	35		
	2.5.16	Nanoparticles in			
		cancer diagnosis	36		
2.6	Factor	s that can amend			
	cance	r diagnostics	36		
2.7	Diagn	ostics for some typical and			
	mostly	y observed cancer types	37		
	2.7.1	Breast cancer	37		
	2.7.2	Lung cancer	37		
	2.7.3	Colorectal cancer	37		
	2.7.4	Prostate cancer	38		
	2.7.5	Ovarian cancer	38		
	2.7.6	Biopsy and diagnosis of carcinoma			
		of unknown primary origin	38		
	2././	Circulating tumor cells	38		
	2.7.8	Other cancers that need early	20		
2.0	A . I. '	diagnosing	39		
2.8	Achiev	vements, challenges, and future	20		
A	aim of	cancer diagnostics	39		
ACK	nowiec	ignents	39		
	inited of	interest	39		
Kefe	erences		40		

3.	Biomarkers associated with different	
	types of cancer as a potential candidate	ate
	for early diagnosis of oncological	
	disorders	47

Arpana Parihar, Surbhi Jain, Dipesh Singh Parihar, Pushpesh Ranjan and Raju Khan

3.1	Introd	47			
3.2	Cance	Cancer biomarkers			
	3.2.1	Lung cancer biomarkers	48		
	3.2.2	Gastric cancer biomarkers	49		
	3.2.3 Liver cancer biomarkers				
	3.2.4	Breast cancer biomarkers	50		
	3.2.5	Colorectal cancer biomarkers	51		
3.3	Concluding remarks				
Ref	erence	S	52		

6.

4. Biosensors: concept and importance in point-of-care disease diagnosis 59

Raquel Vaz, Manuela F. Frasco and M. Goreti F. Sales

5.

4.1	Introd	luction	59
	4.1.1	Historical perspective of biosensors	60
	4.1.2	Classification	61
4.2	POC	biosensors for cancer diagnosis	63
	4.2.1	Electrochemical POC biosensors	64
	4.2.2	Optical POC biosensors	66
	4.2.3	Piezoelectric POC biosensors	71
	4.2.4	Thermometric POC biosensors	71
4.3	Applic	cation of biomaterials	
	in bio	sensors	72
4.4	New t	rends in POC biosensors design	73
4.5	Comn	nercially available POC biosensors	
	for ca	ncer diagnosis	75
4.6	Future	e perspectives	75
Ack	nowled	lgments	75
Ref	erences	5	75
	ly dat	tection of lung cancer	
Ear	iv uei	0	
Ear bio	mark	ers through biosensor	85
Ear bio	mark	ers through biosensor	85
Ear bio <i>Mel</i>	mark	ers through biosensor Imehr, Pouria Jafari	85
Ear bio Mel and	ny den omark hdi Dad Morte	ers through biosensor Imehr, Pouria Jafari za Hosseini	85
Ear bio Mel and 5.1	ny den omark hdi Dad Morte Introd	ers through biosensor Imehr, Pouria Jafari za Hosseini Iuction	85 85
Ear bio <i>Mel</i> and 5.1	ny den omark hdi Dac Morte Introd 5.1.1	ers through biosensor Imehr, Pouria Jafari za Hosseini Iuction Lung cancer	85 85
Ear bio Mel and 5.1	<i>hdi Dac</i> <i>Morte</i> Introd 5.1.1 5.1.2	ers through biosensor Imehr, Pouria Jafari za Hosseini Iuction Lung cancer Epidemiology of lung cancer	85 85 85
Ear bic Mel and 5.1	<i>di Dac</i> <i>di Dac</i> <i>Morte</i> 5.1.1 5.1.2 5.1.3	ers through biosensor Imehr, Pouria Jafari za Hosseini luction Lung cancer Epidemiology of lung cancer Causes, genetic changes, and	85 85 85 85
Ear bio <i>Mel</i> and 5.1	Morte 5.1.1 5.1.2 5.1.3	ers through biosensor Imehr, Pouria Jafari za Hosseini luction Lung cancer Epidemiology of lung cancer Causes, genetic changes, and traditional screening of lung cancer	85 85 85 85
Ear bio Mel and 5.1	hdi Dac Morte Introd 5.1.1 5.1.2 5.1.3 Lung o	ers through biosensor dmehr, Pouria Jafari za Hosseini luction Lung cancer Epidemiology of lung cancer Causes, genetic changes, and traditional screening of lung cancer cancer biomarkers	85 85 85 85 86 86
Ear bio Mel and 5.1	hdi Dac Morte 5.1.1 5.1.2 5.1.3 Lung o 5.2.1	ers through biosensor Imehr, Pouria Jafari za Hosseini Iuction Lung cancer Epidemiology of lung cancer Causes, genetic changes, and traditional screening of lung cancer cancer biomarkers Nucleic acid-based biomarkers	 85 85 85 85 86 86 86 87

5.3	Biosen	sors for lung cancer biomarker	
	detect	ion	88
	5.3.1	Electrochemical-based approaches	88
	5.3.2	Optical-based approaches	92
	5.3.3	DNA analyte based optical	
		approaches	94
5.4	Conclu	usion and future perspectives	95
Refe	rences		95
Bio	senso	r-based early diagnosis of	
her	oatic o	cancer	97
Niki	ta Seho	al Ruchi lakhmola Mani	
Nitu	Dogra	and Deenshikha Pande Katare	
/ titu	Dogra		
6.1	Introd	uction	97
6.2	Hepat	ocellular carcinoma	97
	6.2.1	Leading causes of HCC	98
	6.2.2	Currently used HCC diagnosis	
		techniques	98
6.3	Biosen	isors in cancer	99
	6.3.1	Conventional techniques for cancer	
		diagnosis and their limitations	99
	6.3.2	Biosensors as a new wave in cancer	
		prognosis	100
6.4	Clinica	I studies on HCC serum biomarkers	
	and th	eir sensor-based detection	100
	6.4.1	Alpha tetoprotein	101
	6.4.2	Glypican-3 (GPC3)	103
	6.4.3	mikna	103
	6.4.4	Cancer stem/tumor cells	103
6.5	Other	clinically relevant biomarkers	101
	TOP HC		104
	6.5.1	Des-1-carboxyprothrombin (DCP)	
		or PIVKA II (prothrombin induced	104
	6 5 9	by vitamin K deficiency)	104
	6.5.2	Alpha L lucosidase	104
	6.5.3	Human Carbonyi reductase	104
	6 5 4	2 (IICK2) Colgi phosphoprotoin 2 (COLPH2)	104
	6.5.4	Transforming growth factor beta	105
	0.3.3 6 E 6	Hanstorning growth factor/seatter	105
	0.3.0	factor (HCE/SE)	105
	657	Fibroblast growth factor (EGE)	105
	658	Vascular endothelial growth factors	105
	659	Golgi protein 73	105
	6.5 10	Osteopontin (OPN)	106
	6 5 11	Annexin A2	106
	6 5 1 2	Squamous cell carcinoma antigen	106
	6 5 13	Midkine	106
	6.5.14	mRNAs	106
6.6	Conclu	usion	107
6.7	Future	Prospects	107
Refe	rences		107

7.	Scope and applications of biosensors in early detection of oropharyngeal			
	car	ncers	113	
	Shu	bhangi Mhaske and Monal Yuwanati		
	7.1	Introduction 7.1.1 Biosensors in detection of	113	
		oropharyngeal cancer	115	
	7.2	DNA (ct DNA)	118	
	7.3	Tumor necrosis factor	119	
	7.4	Epidermal growth factor receptor	119	
	7.5	Exosomes	119	
	7.6	Cyfra 21-1	120	
	7.7	Conclusion	120	
	Rete	erences	120	
8	Fle	ctrochemical biosensors for		
0.	ear	ly detection of cancer	123	
	Car		123	
	Mee	enakshi Choudhary and Kavita Arora		
	8.1	Introduction	123	
	8.2	Biosensors	125	
	8.3	Electrochemical biosensors	126	
		8.3.1 Amperometric biosensors for		
		cancer diagnosis	127	
		8.3.2 Potentiometric biosensors for		
		cancer diagnosis	130	
		8.3.3 Impedimetric biosensors for		
		cancer diagnosis	139	
		8.3.4 Capacitive biosensors for cancer	141	
		8.3.5 Futuristic trends	142	
	8.4	Conclusion	146	
	Ack	nowledgments	146	
	References			
	Furi	ther reading	151	
9.	Co	lorimetric technique-based		
		sensors for early detection of	152	
	Cai	icei	155	
	Kos and	ar Shahsavar, Aida Alaei ' Morteza Hosseini		
	9.1	Introduction	153	
	9.2	Colorimetric-based strategy	154	
	9.3	Nanomaterial-based approach	154	
		9.3.1 AuNPs-based colorimetric biosenso	r 154	
		9.3.2 Nanoclusters	155	
		9.3.3 Carbon nanomaterial-based		
		biosensor	156	
		9.3.4 Nanocomposite-based biosensor	156	
	9.4	DNA-based approach	157	
		9.4.1 DNA aptamer platform	157	
		9.4.2 DNA probe platform	159	

159
160
160
161
163

10. Magnetic properties-based
biosensors for early detection
of cancer165

Sagar Narlawar, Samraggi Coudhury and Sonu Gandhi

10.1	Introduction				
10.2	Biosen	sors and their types	165		
	10.2.1	Bioreceptor based biosensors	165		
	10.2.2	Transducer-based biosensors	166		
10.3	Cancer	detection and diagnostics	168		
	10.3.1	Computed tomography	168		
	10.3.2	Positron emission tomography	168		
	10.3.3	Isotopic diagnostics	169		
	10.3.4	Magnetic resonance imaging	169		
	10.3.5	Mammography	169		
	10.3.6	Prostate-specific antigen	169		
	10.3.7	CA 15-3	170		
	10.3.8	Cancer antigen 125	170		
	10.3.9	RCAS1 (EBAG-9)	170		
10.4	Applica	ations of a magnetic			
	proper	ties-based biosensor for			
	cancer	detection	170		
	10.4.1	Magnetic barcode assay	170		
	10.4.2	Nanostructured immunosensor	171		
	10.4.3	Giant magnetoresistive sensors	171		
	10.4.4	Electrochemiluminescence			
		detection	173		
	10.4.5	Magnetic bead-based			
		biosensors	173		
	10.4.6	Magnetic PCR-based assay	174		
	10.4.7	Surface plasmon			
		resonance-based assay	174		
10.5	Conclu	ision	175		
Refe	rences		176		

11. Next generation biosensors as a cancer diagnostic tool

Deepshikha Shahdeo and Sonu Gandhi

11.1	Introdu	179		
11.2	Biosen	Biosensor transducers		
	11.2.1	Electrochemical sensor	181	
	11.2.2	Optical biosensor	181	
	11.2.3	Mass-based biosensors	181	
	11.2.4	Calorimetric biosensor	182	

179

	11.3	Biosensors for cancer biomarker		
		detection		182
		11.3.1	Graphene-based biosensors	182
		11.3.2	Molvbdenum disulfide-based	
			biosensor	183
		11.3.3	Bi ₂ Se ₂ -based electrochemical	
			biosensor	186
		1134	Surface plasmon resonance-based	
		11.5.1	biosensor	188
		1135	Silicon photonic-based biosensors	: 189
		11.3.5	Colorimetric biosensors	190
	11 4	Conclu	sion and discussion	101
	Rofor	Concia		101
	Refer	chees		151
12	Mic	rofluid	ics-based devices and	
12.	thei	r role	on point-of-care testing	197
				137
	Avina	ish Kum	ar and Udwesh Panda	
	12.1	Introdu	iction	197
		12.1.1	History of microfluidics	197
		12.1.2	The behavior of fluids in	
			microscale	198
		12.1.3	Fabrication of microfluidic	
			devices	200
	12.2	Point-o	f-care devices	202
		12.2.1	Point-of-care in developing	
			countries	202
		12.2.2	Personalized medicine	203
	12.3	Nanoe	ngineered materials	204
		12.3.1	Metallic particles	204
		12.3.2	Quantum dots	205
		12.3.3	Hydrogels	205
		12.3.4	Nanotubes, nanopores, and	
			nanowires	206
	12.4	Microf	uidic devices based on specific	
		substra	tes	206
		12.4.1	Glass-based microfluidic devices	206
		12.4.2	Silicon-based microfluidic	
			devices	207
		12.4.3	Polymer-based microfluidic	
			devices	207
		12.4.4	Paper-based microfluidic	
			devices	208
	12.5	Microfl	uidic-based point-of-care	
		devices	for cancer diagnosing	208
		12.5.1	Technologies in point-of-care	
			devices	209
		12.5.2	Chemical resistor arrays	
		10 -	diagnostics	209
		12.5.3	Near-infrared-optical diagnostics	210
		12.5.4	Biomarkers and paper	a : -
			microfluidics diagnostics	210

		12.5.5	Nanowires and nanoparticle-base	ed
			diagnostics	210
		12.5.6	Nonreusable immunosensitive	04.0
		1257	diagnostics Micropucloar magnetic	210
		12.5.7	resonance diagnostics	211
		12.5.8	MEMS (micro-electromechanical	211
			system) based diagnostics	211
		12.5.9	Programmable bio-chip	
			diagnostics	211
	12.6	Curren	t trends and tuture prospects	212
	12./ Rofor	Summa	iry	210
	Furth	ences er readi	ng	223
13.	Gra	phene	-based devices for	
	cane	cer dia	gnosis	225
	Fater	neh Ner	- nati, Azam Bagheri Pebdeni	
	and I	Morteza	Hosseini	
	12 1	Introdu	iction	225
	13.1	Cancer	hiomarkers	225
	13.3	Granhe	one and its derivatives	225
	13.4	Graphe	ene-based nanomaterials in	220
		cancer	diagnosis	226
	13.5	Functio	onalization of graphene for	
		sensing	g application	227
	13.6	Graphe	ene material-based sensors	227
		13.6.1	Graphene material in	227
		1260	aptamer-based biosensors	227
		15.0.2	antibody-based sensors	233
		13.6.3	Graphene material in	255
			enzyme-based sensors	238
	13.7	Conclu	sion	239
	Refe	rences		239
	. .			
14.	Role	e of bio	osensor-based devices	
	tor (diagno	sis of nononcological	245
	aiso	raers		245
	Sayal	i Mukhe	erjee and Surojeet Das	
	14.1	Introdu	iction	245
	14.2	Biosens	sors for infectious diseases	245
		14.2.1	Biosensors for pathogenic	
			viruses	246
		14.2.2	Biosensors for pathogenic	2.40
			pacteria	248

14.2.3	Biosensors for pathogenic	
	protozoa	250
14.2.4	Biosensors for cardiovascular	
	diseases	251

	14.3 14.4 Refer	14.2.5 Recent perspec Conclu rences	Biosensors for neurological disorders challenges and future ctives sion	252 252 253 253
15.	Bios gast	ensor- ric can	based early diagnosis of cer	257
	Sapta and S	aka Baru Sanjeev I	ah, Bidyarani Maibam Kumar	
	15.1	Introdu	iction	257
	15.2	Biomar	kers for gastric cancer	258
	15.3	Biosens	sor and gastric cancer	260
		15.3.1	Role of electrochemical	
			biosensors in early detection	
			of gastric cancer	261
		15.3.2	Role of SPR biosensor in early	
			detection of gastric cancer	263
		15.3.3	Role of surface-enhanced Raman	
			spectroscopy sensor in early	
		4504	detection of gastric cancer	264
		15.3.4	Role of GMI-based biosensing	
			system in early detection of	265
		1 E 2 E	Other types of biosensors in early	265
		13.3.3	detection of gastric cancer	265
	15 /	Conclu	sion and future parspectives	205
	Dofo:	conclu	sion and luture perspectives	203
	Refer	ences		203

16.	3D-printed device with integrated
	biosensors for biomedical
	applications

Shikha Saxena and Deepshikha Pande Katare

16.1	Introduction		271	
16.2	Basics of	of biosensors	271	
16.3	Types o	of biosensors	271	
	16.3.1	Microbial sensors	272	
	16.3.2	Cell-based sensors	273	
	16.3.3	Immunosensors	273	
	16.3.4	Biomolecule-based sensors	273	
	16.3.5 Enzyme-based sensors			
	16.3.6	Bionic sensors	273	
16.4	History	of 3D-printed biosensors	273	
16.5	Need of integrated biosensors			
16.6	Comme	ercial biosensors in the market	274	
16.7	Differe	nt materials used in		
	3D-prir	nted biosensors	274	
16.8	Types o	of 3D-printing techniques	274	
	16.8.1	Fused deposition modeling	274	
	16.8.2 Stereolithography			

	16.8.3	Polyjet method	275
	16.8.4	Selective laser sintering	275
	16.8.5	3D inkjet printing	275
	16.8.6	Digital light processing method	275
16.9	Applica	tions of 3D-printed biosensors	275
	16.9.1	Bioprinting	276
	16.9.2	As a preparative tool in surgery	276
	16.9.3	For surgical tools	276
	16.9.4	Prosthetics	276
	16.9.5	Tissue engineering	276
	16.9.6	Acellular medical devices	276
	16.9.7	Models and surgical practice	276
	16.9.8	Training and education	276
16.10	Advant	ages of 3D-printed biosensors	277
16.11	Disadva	antages of 3D-printed	
	biosens	sors	277
16.12	Some of	of the case studies	
	of bios	ensors	277
16.13	Major k	preakthrough in the field of	
	person	alized medicines	279
16.14	3D bio	sensors and cancer	279
16.15	Challer	nges faced by researchers	279
16.16	Regulat	tory aspects of biosensors	279
16.17	3D-prii	nted biosensors in Covid-19	279
16.18	Future	of 3D-integrated biosensors	281
16.19	Conclu	sion	281
Refere	ences		281
Furthe	er readin	g	283

17. Novel paper-based diagnostic
devices for early detection
of cancer285

Maryam Mousavizadegan, Amirreza Roshani and Morteza Hosseini

17.1	Introduction		285
17.2	Format	s of paper-based analytical	
	devices	5	286
	17.2.1	Paper devices based on dipsticks	286
	17.2.2	Lateral flow assays	286
	17.2.3	Paper devices based on	
		microfluidics	286
17.3	Fabrica	tion and development of	
	paper-	based analytical devices	286
	17.3.1	Fabrication methods in	
		paper-based devices	287
	17.3.2	Immobilization of biomolecules	
		on paper	287
17.4	Diagno	stic technologies	290
	17.4.1	Colorimetric	290
	17.4.2	Fluorescence	292
	17.4.3	Chemiluminescence	292
	17.4.4	Electrochemical	294

	17.4.5	Electrochemiluminescence	295
	17.4.6	Surface-enhanced Raman	
		scattering	297
17.5	Curren	t limitations	298
17.6	Conclu	ision and future perspectives	298
References		298	
Further reading		301	

303

18. Emerging technologies for salivary biomarkers in cancer diagnostics

Ritu Pandey, Neha Arya and Ashok Kumar

	18.1	Introdu	uction	303
18.2		Techno	logies for discovery of salivary	
		biomar	kers	304
		18.2.1	Transcriptomics	304
		18.2.2	Cell free microRNAs	305
		18.2.3	Proteomics	306
		18.2.4	Metabolomics	307
		18.2.5	Microbiomics	308
		18.2.6	Spectroscopy techniques	309
	18.3	Point-o	of-care technologies for detection	
		of saliv	ary biomarkers	309
		18.3.1	Types of detection system	311
		18.3.2	Commercially available POC	
			technologies	314
	18.4	Challer	nges in translating salivary	
		biomar	kers to the clinics	314
		18.4.1	Standardization of conditions	
			and methods of saliva sample	
			collection, processing,	
			and storage	314
		18.4.2	Variability in the levels of	
			potential salivary biomarkers	315
		18.4.3	The need for further validation of	
			salivary biomarkers	316
	18.5	Conclu	sion	316
	Ackn	owledgi	ment	316
	Reter	ences		316
		_		
19.	Two	-dime	nsional nanomaterials	
	for o	cancer	application	321
	Tripti	Rimza,	Shiv Singh and Pradip Kumar	
	19.1	Introdu	iction	321
	19.2	Synthe	sis of two-dimensional	
		nanom	aterials	321
		19.2.1	Mechanical exfoliation	322
		19.2.2	Liquid phase exfoliation	322

		Eiguna phase chromation	011
19.3	Two-dimensional nanomaterials for		
	cancer	applications	324
	19.3.1	Black phosphorous nanosheets	324
	19.3.2	Graphene-based materials	326

		19.3.3 Layered double hydroxides	327
		19.3.4 Transition metal carbides and	
		nitrides (MXenes)	328
		19.3.5 Transition metal dichalcogenides	328
		19.3.6 Molybdenum disulfide	328
	Concl	usion	329
	Refere	ences	329
20.	Chall	lenges and future prospects	
	and o	commercial viability of	
	biose	ensor-based devices for	
	disea	se diagnosis	333
	Niloy	Chatterjee, Krishnendu Manna,	
	Niladr	i Mukherjee and Krishna Das Saha	
	20.1	Introduction	333
	20.2	Biosensor classification for disease	
		diagnosis	334
	20.3	Biomarkers	335
	20.4	Application of biosensors in disease	
		detection	335
	20.5	The market trend of biosensors in	~~-
	20.0	disease detection	337
	20.6	Research trends of novel biosensors in	227
	20.7	disease detection	33/
	20.7	the field of disease detection	220
	20.8	Designing and advancements of	550
	20.0	biosensor design	330
	20.9	Biosensor ligands used for disease	555
	20.5	diagnosis	340
		20.9.1 Nucleic acid ligands	340
		20.9.2 Protein and peptide ligands	340
		20.9.3 Other ligands	341
	20.10	Detection of pathogenic organisms in	
		diseases by biosensors	341
		20.10.1 Virus detecting biosensors	341
		20.10.2 Bacteria detecting biosensors	341
		20.10.3 Protozoan-detecting biosensors	342
	20.11	Nanoscience and disease biosensor	343
	20.12	Conclusion	344
	20.13	Future aspects	345
	Ketere	ences	346

21. Cancer diagnosis by biosensor-based devices: types and challenges 353 *Krishnendu Manna, Niladri Mukherjee,*

Niloy Chatterjee and Krishna Das Saha

21.1	Introduction	353
21.2	Disadvantages of conventional	
	methods of cancer detection	354
21.3	Cancer biomarkers	355

	21.3.1 Proteomics-based cancer		
	biomarker detection	357	
21.4	Need of biosensors for		
	cancer diagnosis	358	
21.5	Fabrication strategies for cancer		
	biosensors	358	
21.6	Biosensors for cancer detection	359	
21.7	Structure of cancer biosensor	360	
	21.7.1 Biosensor recognition elemen	nt 360	
	21.7.2 Receptors	360	
	21.7.3 Antigen/antibody	361	
	21.7.4 Enzymes	361	
	21.7.5 Nucleic acid	361	
	21.7.6 Biosensor transducer	362	
21.8	Novel biosensors	363	
21.9	Cell and tissue-based biosensors	363	
21.10	Biosensors and nanotechnology	364	
21.11	Challenges	365	
21.12	Future aspects		
Refere	ences	367	

22. Miniaturized devices for point-of-care testing/miniaturization and integration with microfluidic systems

Ankur Kaushal, Amit Seth, Deepak Kala, Shagun Gupta, Lucky Krishnia and Vivek Verma

375

	22.1	Introduction				
	22.2	Detection of infectious and chronic				
		diseases	375			
	22.3	Role of nanotechnology in the				
		development of miniaturized devices				
		22.3.1 Magnetic nanoparticles	377			
		22.3.2 Carbon nanotubes	377			
		22.3.3 Graphene	378			
	22.4	Integration of microfluidics with				
		miniaturized point-of-care systems	378			
		22.4.1 Fabrication of microfluidics	379			
	22.5	5 Microfluidics as an emerging platform for point-of-care diagnosis				
	22.6 Conclusion References					
23.	Inte	grated low-cost biosensor				
201	for	anid and noint-of-care				
	cond	cor diagnosis	385			
	Ankur Kaushal, Deepak Kala, Vivek Verma and Shagun Gupta					

23.1	Introduction	3	85
23.2	Cancer biomarkers	3	85

	23.3	New low-cost point-of-care diagnostics for cancer detection		
		23.3.1	Low-cost disposable material	
			for the construction of biosensors	386
		23.3.2	Paper electrode-based	
		20.012	electrochemical biosensors for	
			cancer assessment	387
		1222	Low cost optical bioconcore	200
		23.3.3	Low-cost optical biosensors	200
	00.4	23.3.4	Lateral now assays	209
	23.4	Conclus	Ion	390
	Refer	ences		391
24.	Scor	be of b	iosensors, commercial	
	aspe	ects, an	d miniaturized devices	
	forr	noint_0	f-care testing from lab	
		inice of	anlightions	205
		mics a	oplications	393
	Push	oesh Ran	jan, Avushi Singhal,	
	Mohe	l Abubak	ar Sadique. Shalu Yadav.	
	Arnai	na Pariha	r and Raiu Khan	
	24.1	Introdu	uction	205
	24.1	face		222
	24.2	Scope		393
	24.3	Cancer	biomarker detection	396
		24.3.1	Breast cancer	39/
		24.3.2	Lung cancer	398
		24.3.3	Oral cancer	398
		24.3.4	Pancreatic cancer	398
	24.4	Biomar	kers for predicting the outcome	
		of vario	ous cancer immunotherapies	398
	24.5	Miniatu	urized devices for point-of-care	
		testing	from lab to clinical	
		applica	tions	398
	24.6	Miniatu	urized point-of-care biosensor	
		for can	cer diagnosis	399
		24.6.1	Electrochemical biosensor for	
		2	cancer diagnosis	399
		2462	Optical biosensor for cancer	555
		2 1.0.2	diagnosis	400
		2462	Microfluidics biosonsor for	400
		24.0.3	Micronalaics biosensor for	401
	247	C		401
	24./	Curren	t status of point-of-care cancer	
		diagno	stic devices	403
	24.8	Global	market of point-of-care	
		devices	5	407
	24.9	Limitat	ions and challenges in cancer	
		diagno	stics	408
	24.10	Conclu	sions and future prospects	408
	Acknowledgments			408
	Refer	ences		408

Index	4	11
-------	---	----

Edit Proof PDF

Chapter 15

Biosensor-based early diagnosis of gastric cancer

Saptaka Baruah, Bidyarani Maibam and Sanjeev Kumar Department of Physics, Rajiv Gandhi University, Itanagar, India

15.1 Introduction

Gastric cancer is one of the most commonly found cancers worldwide (Kono, 2016). Gastric adenocarcinomas constitute most of the stomach cancer or gastric cancer and based on the anatomical location of the tumor, it is sub-divided into cardia (gastro-esophageal junction) and noncardia (true gastric) tumors (Van Cutsem, Sagaert, Topal, Haustermans, & Prenen, 2016). Gastric cancer is uncommon in all populations below the age of 50, and the incidence rate increases with the increase in age, reaching its peak at the age of 55-80 years. The frequency of gastric cancer is two- to threefold higher in men than in women. The age-standardized incidence rate is 15.7 per 1,000,000 men and 7 per 1,000,000 women in 2018 (Thrift & El-Serag, 2020). The highest incidence rate was seen in the high-income Asia Pacific region (29.5 per 100,000 population, age-standardized), especially Japan South Korea, and East Asia (28.6 per 100,000 population). In East Asia, China contributed about half of the global meident in 2017, followed by Eastern Europe and Andean Latin America. Other than these regions, Mongolia and Afghanistan had the overall highest age-standardized incidence rates. Southern and eastern sub-Saharan Africa and high-income North America experienced the lowest incidence rates. The highest age-standardized death rate is experienced by East Asia, followed by Andean Latin America and central Asia (Etemadi et al., 2020). India falls in the low incidence category in the context of gastric cancer. There is a huge regional difference in gastric cancer occurrence across India. According to the national cancer registries, gastric cancer is the leading problem in the northeastern and southern states of the Indian subcontinent. As per the available report, Aizawl, Mizoram, has the highest recorded incidence of gastric cancer followed by Tamil Nadu. The lowest incidence of gastric cancer in India is reported in Gujrat. Gastric cancer is the fifth most frequent cancer among men and sixth among women in India. It is also the second most common reason for cancer-associated death in Indian men and women among the age group of 15-44. Detection of gastric cancer in the advanced stage in most of the patients leads to a decrease in the 5-year survival rate in comparison with the countries where early diagnosis is made. The treatment standard and protocol in most of the institutions are good as any other country, although it is not observed evenly across the country (Dikshit, Mathur, & Mhatre, 2011; Servarayan Murugesan et al., 2018; Sharma & Radhakrishnan, 2011). The incidence of stomach cancer remarkably decreases in the last half century. Nonetheless, stomach cancer is in the fifth and third positions of cancer incidence and deaths due to cancer, respectively, all over the world (Balakrishnan, George, Sharma, & Graham, 2017).

Helicobacter pylori (*H. pylori*) infection is the most important risk factor which causes a prolonged inflammatory reaction of the immune response (Crew & Neugut, 2006; Rawla & Barsouk, 2019). Salt and salt preserved food may also increase the threat of stomach cancer. A decrease in stomach cancer is associated with a reduction of *H. pylori* infection (Cisco, Ford, & Norton, 2008). The decline in infection rate is due to better sanitation, hygienic practice, and better food preservation methods (Sharma & Radhakrishnan, 2011). Stomach cancer epidemiology has significant geographical diversity leading to at least a 10-fold variation of incidence worldwide (Servarayan Murugesan et al., 2018). Part of this variation is related to *H. pylori* infection frequency throughout the population, and environmental factors which are also responsible for stomach cancer (Etemadi et al., 2020). Cigarette smoking is a risk factor for both the type of cancer. Because of the higher occurrence of risk factors such as smoking or hormonal factors, both the cancers are more common in males.

Biosensor Based Advanced Cancer Diagnostics. https://doi.org/10.1016/B978-0-12-823424-2.00023-5 Copyright © 2022.

The decline in gastric cancer is not universal (Balakrishnan et al., 2017). Reduction in the incident cases and deaths in East Asia will lead to a decrease in absolute incident cases and death, as half of the incident cases and death occur there. Migrant studies and secular trends in stomach cancer rates reveal that environmental factors play a significant role in the pathogenesis of stomach cancer. In contrast, only about 1–3% are known to be hereditary syndromes (Thrift & El-Serag, 2020; Van Cutsem et al., 2016). Reduction in high salt food consumption in Asian countries is an approach to decrease stomach cancer since lifestyle, particularly high sodium diets in East Asian peoples and smoking in males, plays a significant part in stomach cancer burden. The main focus is on preventing *H. pylori* infection, since it is the most crucial element of danger for stomach cancer.

Gastric cancer is grouped into two: (1) early gastric cancer (EGC, stages I and II) defined as the malignant tumor confined to the mucosa and submucosa irrespective of lymph node metastasis; and (2) advance gastric cancer (AGC, stages III and IV); there is lack of a homogeneous definition of advance gastric cancer. However, gastric cancer is a cancer that has attacked the muscularis propria or gastric wall (Cisco et al., 2008, Ooki et al., 2009; Saragoni, 2015). Surgery can treat EGC, but AGC usually requires multidisciplinary treatment. Early diagnosis and careful staging can reduce mortality. Despite all this, gastric cancer staging is facing difficulties because of the lack of defined risk factors. Thus, late diagnosis and inadequate staging arrangements may cause an increase in mortality. So a fast and noninvasive method is needed for early diagnosis and staging of gastric cancer.

General cancer treatment procedures are related to characterizing the cancer cells at the early stages, like chemotherapy, surgery, and radiation. So the diagnosis of cancer is essential for timely individuating a viable cancer treatment. Existing tumor diagnosis depends on an assortment of complicated clinical settings, which include x-ray, magnetic resonance imaging (MRI), computerized tomography (CT), endoscopy, positron emission tomography (PET), cytology, sonography, thermography, and biopsy. In addition, both genomic- and proteomic-based molecular tools are progressively used, such as polymerase chain reaction (PCR), radioimmunoassay (RIA), enzyme linked immunosorbent assay (ELISA), immunohistochemistry (IHC), and flow cytometry (Altintas & Tothill, 2013; Mittal, Kaur, Gautam, & Mantha, 2017; Prabhakar, Shende, & Augustine, 2018). The current technologies and methods are proficient, but most of them are invasive, costly, time-consuming, and restricted to laboratory centers in big hospitals (Cui, Zhou, & Zhou, 2019). For instance, an invasive method biopsy is a medical process that needs the insertion of the medical tool into the patient's body to deduce specific tissues to be examined to find the presence of cancer cells. Such a procedure is tedious, and further, has numerous constraints. Patients experiencing biopsies complain of weak health, nausea, sleeping disorder with further postbiopsy impacts. Therefore, the requirement for noninvasive detection has come into significance in the present time. Also, rapid detection is needed to give patients instant results to start treatment without wasting any time. So the requirement of rapid noninvasive detection of cancer has driven the researchers to develop instruments that would identify cancer early without an invasive technique. This lead to the development of biosensors for noninvasive early detection of cancer (Devi & Laskar, 2018).

15.2 Biomarker for gastric cancer

Researchers and scientist from all around the world have turned their attention to the noninvasive diagnosis of cancer using cancer biomarkers due to numerous drawbacks of the invasive process of cancer detection (Devi & Laskar, 2018; Grossmann, Avenarius, Mastboom, & Klaase, 2010; Wu & Qu, 2015). Cancer biomarkers are essential indicators of cancer status (Karley, Gupta, & Tiwari, 2011). They are utilized not only to analyze and monitor disease but also to provide a prognostic approach to deal with treatment (Chatterjee & Zetter, 2005; Mayeux, 2004). The National Cancer Institute (NCI) (Park, Ross, Klagholz, & Bevans, 2018) defines a biomarker as "a biological molecule found in blood, other body fluids, or tissues that is a sign of a normal or abnormal process or a condition or disease." A biomarker may be used to see how well the body responds to a treatment for a disease or condition (Biomarkers Definitions Working Group, 2001). Biomarkers can be of several molecular origins, counting DNA (i.e., specific mutation, translocation, amplification, and loss of heterozygosity), RNA, or protein (i.e., hormone, antibody, oncogene, or tumor suppressor). The existence of biomarkers in blood or some other body fluid confirms the presence of cancer cells in the body (Tothill, 2009). There are different biomarkers for different types of cancers (Meyer & Rustin, 2000; Smith, Humphrey, & Catalona, 1997; Tothill, 2009). The maximum of these biomarkers still has to exhibit adequate sensitivity and specificity for translation into routine clinical use or treatment monitoring. This is an area that biosensor technology can improve upon (Bohunicky & Mousa, 2011).

There are several biomarkers available for the early diagnosis of gastric cancer (Fu, 2016). Fig. 15.1 displays the summary of gastric cancer biomarkers. Serum protein biomarkers of gastric cancer are gastric tissue specific or related to gastricspecific infections and divided into two types: gastric cancer-specific markers, and general tumor markers. Proteins such as pepsinogen I (PGI or PGA), pepsinogen II (PGII or PGC), and gastrin 17 are considered specific markers of gastric cancer

Biosensor-based early diagnosis of gastric cancer Chapter | 15 3

FIGURE 15.1 Summary of gastric cancer biomarker.

because of their gastric specific gene expression (Hallissey, Dunn, & Fielding, 1994; Shiotani et al., 2005). Antibodies linked to gastric specific infections such as H. Pylori, CagA, and antiparietal cell antibodies, which reflect current or past gastric infections associated with gastric cancer growth, are useful biomarkers for assessing gastric cancer risk (Kaise et al., 2013; Kikuchi, Crabtree, Forman, & Kurosawa, 1999; Sugiu et al., 2006). Many proteins are regarded as gastric cancer screening markers, although most of them are not gastric cancer specific. These proteins comprise carcinoembryonic antigen (CEA), pyruvate M2 kinase, cancer antigen 125 (CA125), cancer antigen 19-9 (CA19-9), Alpha-fetoprotein (AFP), serum amyloid A, macrophage migration inhibitory factor, leptin, dickkopf (Dkk), olfactomedin 4, VAP-1, UPA, cathepsin B, HMW kininogen, P53 antibody, cytokeratin 18, RegIV, IPO-38, S100A6, thrombin light chain, fibrinopeptide A, angiopoietin-like protein 2 (Capelle et al., 2009; Chan et al., 2007; Ebert et al., 2005, 2006; Gao, Xie, Ren, & Yang, 2012; Ghosh et al., 2013; Hao et al., 2008; Harbeck et al., 2008; Herszenyi et al., 2008; Ick et al., 2004; Kaplan et al., 2014; Kumar, Tapuria, Kirmani, & Davidson, 2007; Lee et al., 2012; Liu, Sheng, & Wang, 2012; Mitani et al., 2007; Suppiah & Greenman, 2013; Tas, Karabulut, Serilmez, Ciftci, & Duranyildiz, 2014; Umemura et al., 2011; Yu, Wang, & Chen, 2011; Zhang, Zhang, Jiang, & Zhang, 2014). Among them, carcinoembryonic antigen (CEA) and cancer antigen 19-9 (CA19-9) are most commonly used. CEA was firstly recognized by Gold and Freedman in 1965 (Gold & Freedman, 1965) and was first used for the diagnosis of early gastric cancer in 1980 (Tatsuta et al., 1980). CEA is currently regarded as the most valuable serum protein marker for identifying patients at risk of developing gastric cancer and for the diagnosis of early-stage gastric cancer (Jin, Jiang, & Wang, 2015). CEA was observed to improve colon carcinoma cells' metastasis with its sialofucosylated glycoforms which function as selecting ligands (Deng et al., 2015; Kikuchi et al., 1999). CEA is produced in a high amount of carcinomas in numerous different organs (Kikuchi et al., 1999; Kumar et al., 2007). CEA significantly affects the tumor prognosis because of its effect on tumor metastasis and may be connected with gastric cancer prognosis, Gastric cancer patients show expanded CEA levels, which are associated with patient survival based on an organized analysis of serum markers for gastric cancer (Sugiu et al., 2006). As per literature, preoperative CEA levels could predict gastric cancer (Ick et al., 2004; Schneider & Schulze, 2003), yet few reports deny this thought (Chan et al., 2007; Kumar et al., 2007; Moshkovskii, 2012). There is still discussion encompassing gastric cancer patients' prognosis with expanded CEA levels (Gao et al., 2012; Lee et al., 2012). Henceforth, it is important to build up a state-of-the-art, highly specific, and sensitive CEA detection technique for clinical examination and diagnostics (Tao, Du, Cheng, & Li, 2018). CA19–9 is a glycoprotein highly associated with malignant tumors and a commonly used marker in gastrointestinal cancer; however, it is present in some cancer types, particularly pancreatic, colorectal, and gastric cancer. The CA 199 test combined with the CEA test is a beneficial aide for observing carcinoma of the stomach; though, the sensitivity of performing these tests concurrently is similar to performing the CEA test alone in gastric carcinoma (Szymendera, 1986).

Warburg effect (i.e., cancer cells' dependence on glycolysis for energy and normal cell dependence on oxidative phosphorylation) is the most important difference between cancer cells and normal cells (Vander Heiden, Cantley, & Thompson, 2009; Liberti & Locasale, 2016). In gastric patient's serum or tissue samples, level of lactate which is a result of glucose glycolysis was found to increase constantly (Abbassi-Ghadi et al., 2013; Hirayama et al., 2009). Besides, cancer cells have a high protein synthesis rate. Hence, in gastric cancer patients, numerous metabolic studies showed an increase of amino acids; for example, glycine, asparagine, methionine, tyrosine, and aspartate. Moreover, cancer cells have a high nucleotide synthesis rate for the growing demands of DNA synthesis and DNA repair. Reports also suggested altered nucleotide metabolites in a certain type of cancers. Some of the researchers studied the fatty acid metabolism metabolites in gastric cancer patients. Though both increased fatty acid synthesis (FASN) and fatty acid oxidation (CPT1A) have been related to cancer growth. Fatty acid oxidation metabolites, such as β -hydroxybutyrate and acetone, have been recognized as possible biomarkers of gastric cancer (Fu, 2016).

Usually, RNA is inappropriate for cancer as biomarkers since it is an unsteady species of biomolecules. But current research proposed that certain serum non-coding RNA could also be possible gastric specific markers, for example, RNA HULC and H19 were favorable novel biomarkers in plasma of gastric cancer patients (Abbassi-Ghadi et al., 2013). MicroRNA (miRNA) is a comparatively stable type of RNA in the serum. In gastric cancer, 21 individual miRNAs and six miRNA clusters are consistently upregulated, while miR29c, miR30a5p, miR148a, miR375, and miR638 are usually downregulated (Tatsuta et al., 1980). The most frequently used tumor markers, such as CEA and CA19-9, have limited application in early diagnosis of gastric cancer since they have insufficient sensitivity and specificity. Thus, the foundation of novel robust definite biomarkers with adequate sensitivity is a perfect approach for improving the early detection and the cure rates for gastric cancer patients. Also, these biomarkers should be easy to estimate and consistently linked with clinical results. miRNAs are seen as a desirable cancer biomarker because of the acceptance of their part in tumorigenesis. Discovery of miRNAs and the approval of their role in tumorigenesis and the development of various cancers have presented them as suitable cancer biomarkers. There is also developing evidence that miRNAs exist in cells as well as in an assortment of body fluids, counting blood, saliva, and urine. Those miRNAs that can be found in the circulation system are called circulatory miRNAs. They are generally cancer-specific, and their expression patterns are incredibly comparable among healthy persons and patients. The circulatory miRNAs are remarkably resistant to RNase digestion, non-physiologic pH values, and high temperature. Henceforth, these miRNAs have been considered as a capable biomarker for early detection of cancer (Daneshpour, Omidfar, & Ghanbarian, 2016). But the selection of a high reference gene is an essential element in using miRNA as a tumor biomarker.

Volatile organic compounds (VOCs) released from cancer cell metabolism are considered significant markers for biochemical procedures are happening in cancer cells. The study of VOCs may be capable of predicting and diagnosing early cancer. Volatile metabolites associated with genomics and proteomics represent pathway feedback mechanisms, which positively point out the possible pathophysiological growth in cancer cells. To a certain point, volatile metabolites embody the status of cancer cells. Considering volatile biomarkers from gastric cancer cells and creating an ultrasensitive detection method will help early warning and diagnosis of gastric cancer (Capelle et al., 2009; Chan et al., 2007; Ebert et al., 2005, 2006; Gao et al., 2012; Ghosh et al., 2013; Hao et al., 2008; Harbeck et al., 2008; Herszenyi et al., 2008; Ick et al., 2004; Kaplan et al., 2014; Kumar et al., 2007; Lee et al., 2012; Liu et al., 2012; Mitani et al., 2007; Suppiah & Greenman, 2013; Tas et al., 2014; Umemura et al., 2011; Yu et al., 2011; Zhang et al., 2014).

15.3 Biosensor and gastric cancer

Evidence recommends that a growing amount of attention have been focused on developing rapid techniques named "biosensor technology" for the identification, detection, and checking of human health-related conditions (Islam & Uddin, 2017). A biosensor is an analytical device used to identify biological analytes, be it environmental or biological in the source (i.e., inside the human body). A usual biosensor contains a recognition element, a transducer, and a signal-processing unit (Qian et al., 2019). The signal in the form of an analyte is detected by a molecular recognition component converted into an electrical signal by a transducer (Bohunicky & Mousa, 2011). Cammann used the word "biosensor" first (Cammann, 1977), and the International Union of Pure and Applied Chemistry (IUPAC) introduced its definition (Thévenot, Toth, Durst, & Wilson, 2001) and Clark and Lyonsin started biosensor application journey in 1960s (Clark & Lyons, 1962). Biosensors' applications for cancer diagnosis are very promising for conventional methods since it provides better performance in terms of speed, flexibility, automation, and costs (Balaji & Zhang, 2017; Bohunicky & Mousa, 2011; Jainish & Prittesh, 2017; Li, Li, & Yang, 2012; Mittal et al., 2017; Pasinszki, Krebsz, Tung, & Losic, 2017). The recognition of cancer biomarkers present in the blood is the most challenging task because of the low biomarkers' concentration in early-stage patients. A biosensor can measure shallow levels of biomarkers in physiological samples, which can help diagnose cancer at an early stage (Choi, Kwak, & Park, 2010).

Fig. 15.2 demonstrates the working procedure of biosensors for the detection of cancer. The process comprises three key steps: discovery of biomarker, biomarker detection with biosensors, and analysis of data. Every stage plays a vital role and decides the outcomes of the biosensor device (Qian et al., 2019).

15.3.1 Role of electrochemical biosensors in early detection of gastric cancer

Among all biosensors, electrochemical sensors have been of great interest, mainly because they are simple, portable, sensitive, inexpensive, and offer a fast response (Topkaya, Azimzadeh, & Ozsoz, 2016). Electrochemical biosensors use electrochemical transducers that transfer a biological entity (i.e., protein, RNA, and DNA) into an electrical signal that can be analyzed and detected (Qian et al., 2019; Wang, 2006). Amperometric and potentiometric transducers are most commonly

Biosensor-based early diagnosis of gastric cancer Chapter | 15 5

FIGURE 15.2 Working procedure of biosensors for cancer diagnosis.

used in conjunction with electrochemical biosensors. In potentiometric devices, the analytical information is obtained by converting the biorecognition process into a potential signal in connection to the use of ion selective electrodes (ISE). Amperometric biosensors operate by applying a constant potential and monitoring the current associated with the reduction or oxidation of an electroactive species involved in the recognition process. An amperometric biosensor may be more attractive because of its high sensitivity and wide linear range (Wang, 2006). Electrochemical impedance spectroscopy (EIS), differential pulse voltammetry, square wave voltammetry, capacitance measurement, and dielectrophoresis spectroscopy have also been used to measure biosensor response to biomarkers.

Daneshpour et al. (2016) fabricated a novel electrochemical nano biosensor using a double-specific probe approach and a gold-magnetic nanocomposite as tracing tag to detect miR-106a gastric biomarker. EIS and cyclic voltammetry (CV) approaches were used to confirm the electrode's successful modification and hybridization with the target miRNA. For quantifiable estimation of miR-106a, recording the reduction peak current of gold nanoparticles DPV approach was used. The proposed biosensor showed notable selectivity, high specificity, linearity ranging from 1×10^{-3} p.m. to 1×10^{3} p.m., agreeable storage stability, and great performance in real sample investigations and offered a promising application to be used for medical early detection of gastric cancer. B. Li et al. (Balaji & Zhang, 2017; Bohunicky & Mousa, 2011; Jainish & Prittesh, 2017; J. Li et al., 2012; Mittal et al., 2017; Pasinszki et al., 2017) carried out a two-stage cyclic enzy-matic amplification method (CEAM) to determinate miRNA-21in in the blood serum of gastric cancer patients. The electrochemical biosensor exhibits a low detection limit of 0.36fM with notable specificity. Most importantly, it can be employed to study the expression level of mRNA in the gastric cancer patient blood serum. Tao et al. (2018) developed a selective and sensitive sandwich-type electrochemical aptasensor based on Pt/Au/DN-graphene-CEAapt2-Tb bioconjugate to detect gastric cancer. The proposed method was demonstrated to be sensitive, as indicated by the improved electrochemical response, since the dendritic Pt/Au/DN-graphene showed peroxidase-mimic activity for the reduction of H_2O_2 introduced into the electrolytic cell, thereby confirming its desirable catalysis capacity. Since dendritic Pt/Au/ND-graphene is very conductive and possesses peroxidase-mimic activity, the electrochemical response signal and the charge transfer were promoted through catalysis of H₂O₂ reduction introduced into the electrolyte cell. Hence, aptasensor was found to enhance analytical capacity and attained desirable sensitivity. Amouzadeh Tabrizi et al. (Amouzadeh Tabrizi, Shamsipur, Saber, Sarkar, & Sherkatkhameneh, 2017) also fabricated a sandwich type electrochemical aptasensor for the sensitive detection of adenocarcinoma gastrie cell AGS cancer cells in the presence of H₂O₂ by using MWCNT-Aunano as a nanoplatforms and the secondary aptaner-Au@Ag nanoparticles as the labeled aptamers. The aptasensor was also used in the detection of AGS cancer cells in a human serum sample. The developed aptasensor showed a wide linear range and good stability and selectivity. Ilie and Stefan-van Staden (2019) developed a graphite paste modified with 2, 6-bis((E)-2-(furan-2-yl) vinyl)-4-(4,6,8trimethylazulen-1-yl) pyridine based electrochemical sensor for the detection L-tryptophan gastric cancer biomarker, which is an amino acid in real whole blood samples. The proposed gastric cancer sensor exhibits a high sensitivity with a low limit of detection. Zhang, et al. (Y. Zhang et al., 2014) developed an ultrasensitive electrochemical biosensing interface based on Au-Ag Alloy coated MWCNTs to detect volatile biomarkers of gastric cancer cells. Results displayed that eight various volatile biomarkers were screened out between MGC-803 and GES-1 gastric cancer cells. Fig. 15.3 shows cyclic voltammogram of MWNTs/AU-Ag/GCE was exposed to the head space of MGC-803 gastric cancer cells, GES-1gastric mucosa cells, and cell-free medium. The particular volatile biomarkers of MGC-803 gastric cancer cells and the well-adapted electrochemical system have substantial potential in the near future for applications, for example, screening and warning of early gastric cancer. Rahman et al. fabricated an Ag-Cu bimetallic alloy nanoscale based electrochemical sensor (Rahman et al.,

FIGURE 15.3 CVs of MWNTs/AU-Ag/GCE exposed to the head space of MGC-803 gastric cancer cells, GES-1gastric mucosa cells, and cell-free medium.

2015) for the monitoring of 2-butanone. The sensor showed the best sensing properties for the detection of 2-butanone with 0.1 μ M detection limit. It was expected that the designed sensor could effectively be applied to detect the early stages of gastric and lung cancer caused by 2-butanone. We and Qu developed a novel and sensitive nonenzymatic sandwich type electrochemical immunosensor (Devi & Laskar, 2018; Grossmann et al., 2010; L. Wu & Qu, 2015) for the detection of gastric cancer biomarker CA72-4 using dumbbell-like PtPd-Fe₃O₄ nanoparticles (NPs). The immunosensor was fabricated by modifying the glassy carbon electrode by rGO-TEPA for effective immobilization of primary anti-CA72-4 antibody, and the secondary anti-CA72-4 antibody was adsorbed onto the PtPd-Fe3O4 NPs. The proposed immunosensor showed wide linearity ranging from 0.001-10 U/mL with a low detection limit of 0.0003 U/mL and possessed outstanding clinical value in cancer screening along with suitable point-of-care diagnostics. To meet the clinical demands for early detection of gastric cancer, Yao et al. (Yao et al., 2013) developed a disposable easy-to-use electrochemical microfluidic chip combined with multiple antibodies against six kinds of biomarkers. The electrochemical microfluidic chip showed linearity ranging from 0.37-90 ng mL⁻¹, 10.75–172 U mL⁻¹, 10–160 U L⁻¹, 35–560 ng mL⁻¹, 37.5–600 ng mL⁻¹, and 2.5–80 ng mL⁻¹ for CEA, CA19–9, HP, P53, PG I, and PC II biomarkers, respectively (Fig. 15.4). This method showed improved sensitivity compared with ELISA results of 394 specimens of gastric cancer sera. The electrochemical microfluid chip is a promising candidate for early screening of gastric cancer, therapeutic evaluation, and real-time dynamic review of gastric cancer advancement in the near future. Mohammad Shafiee and Parhizkar (2020) successfully fabricated Au nanoparticles/g-C₃N₄ modified electrochemical gastric cancer biosensor for the detection of miRNA. The sensor used a hairpin locked nucleic acids probe and Zn^{2+} functionalized TiP nanospheres labels. The sensor showed linearity ranging from 0.6 nM to 6 nM with a limit of detection to 80 pM. For the detection of miR-100 in the sera gastric cancer patients, Zhuang, Wan, and Zhang (2021) developed a rapid, selective, and sensitive biosensor based on Au electrode (AuE) modified with gold nanoparticle (AuNP) which was attached with DNA capture probes (CPs) (CPs/AuNP-AuE). The range of detection and detection limit of the biosensor for miR-100 was 100 a.m. to 10 p.m. 100 a.m. respectively.

15.3.2 Role of SPR biosensor in early detection of gastric cancer

In recent decades, various optical biosensor approaches have been established, counting surface plasmon resonance (SPR) (Nelson, Grimsrud, Liles, Goodman, & Corn, 2001), ellipsometry (Arwin, Poksinski, & Johansen, 2004), and quartz crystal microbalance (QCM) (Frank, Elke, Neil, Kenichi, & Yoshio, 1997). Amongst them, the SPR-based method is a representative type of label-free procedure for checking biomolecular interactions in a real-time (Nguyen, Park, Kang, & Kim, 2015). SPR is an optical phenomenon take place in the overall internal reflection of light at a metal film-liquid interface (Van Oss & van Regenmortel, 1994; Raether, 1988). At the point when the incident light is completely reflected, a part of the incident light momentum named as evanescent wave penetrates the liquid medium near the metal (generally Au)

Biosensor-based early diagnosis of gastric cancer Chapter | 15 7

FIGURE 15.4 Linear detection ranges of six kinds of biomarkers (A) CEA, (B) CA19–9, (C) HP, (D) P53, (E) PG I, and (F) PG II by differential pulse voltammetry.

surface. In the thin metal film surface, the evanescent wave interacts with longitudinally oscillating free electrons termed surface plasmon. During SPR, metal film absorbed the energy of incident light, decreasing the light intensity. While the angle of incidence is fixed, the resonance phenomenon happens only at an accurately defined wavelength, which depends upon the medium's refractive index (RI) near the metal surface. RI changes in a direct extent to the mass and dielectric permittivity of the present medium. Immobilization of antibodies on the metal surface causes the corresponding antigen to bond on the surface when it touches the liquid samples. The binding method can be observed via observing the SPR wavelength which depends on the quantity of antibody-antigen binding. The SPR biosensor is sensitive to refractive index adjustments or thickness of biomaterials at the interface between a metal thin film and a surrounding medium. Therefore, using antibodies peculiar to pathogens of interest can measure the number of pathogenic bacteria existents in a sample by quantifying the

change in refractive index and characterize interactions of biomolecules on the surface in real time without labeling (Brockman, Nelson, & Corn, 2000; Fang et al., 2010; Green et al., 2000)

For the early diagnosis of gastric cancer, Fang et al. (2010) fabricated a SPR sensor based on the detection of MG7-Ag, a gastric cancer-specific tumor-associated antigen in human sera. The measurements contained two cases of healthy blood donors, nine cases of gastric cancer patients, and an MKN45 cancer cell lysate sample solution for positive control. Results showed the binding of MG7-Ag onto the sensor surface was observed from SPR spectra. The prepared SPR biosensor showed potential for the early diagnosis of gastric cancer, but the limit of detection and measure for cancer risk assessment in early diagnosis was not confirmed. F. Liu (Capelle et al., 2009; Chan et al., 2007; Ebert et al., 2005, 2006; Gao et al., 2012; Ghosh et al., 2013; Hao et al., 2008; Harbeck et al., 2008; Herszenyi et al., 2008; Ick et al., 2004; Kaplan et al., 2014; Kumar et al., 2007; Lee et al., 2012; Liu et al., 2012; Mitani et al., 2007; Suppiah & Greenman, 2013; Tas et al., 2014; Umemura et al., 2011; Yu et al., 2011; Zhang et al., 2014) used surface plasmon resonance phase sensing to detect EGFR on active human gastric cancer BCC823 cells. The results showed that the SPR phase sensing is proficient of real-time recognition of molecular interactions and cellular responses on living cells. It also proposed that more studies on the mechanism and method might let SPR sensing become a useful tool for the essential research of cell biology, yet also for medical diagnosis and drug development.

15.3.3 Role of surface-enhanced Raman spectroscopy sensor in early detection of gastric cancer

Amongst optical nano biosensors, those established on surface-enhanced Raman scattering (SERS) spectroscopy have been drawing significant attention. It is because of the combination of the intrinsic prerogatives of the technique, such as structural specificity and sensitivity, and the high degree of modification in nano-manufacturing, which translates into consistent and robust real-life applications. In SERS, the excitation of localized surface plasmon resonances (LSPR) at the surface of nanostructured metals with light induces the massive intensification of the Raman scattering from molecules located close to the metallic surface. This effect yields an ultrasensitive plasmon-enhanced spectroscopic technique that retains Raman spectroscopy's intrinsic structural specificity and experimental flexibility. As impressive advances in instrumentation and nanofabrication techniques enabling the engineering of finely tuned plasmonic nanomaterials continue, SERS is progressively expanding into the realm of viable biomedical applications (Guerrini & Alvarez-Puebla, 2019).

There are 14 VOC biomarkers in human breath used for differentiating gastric cancer patients from healthy persons. Chen et al. (2016) fabricated a SERS sensor based on breath analysis to identify VOC biomarkers to distinguish EGC and AGC cancer patients from healthy persons. They prepared a clean SERS sensor using hydrazine vapor adsorbed in graphene oxide (GO) film by in situ formations of gold nanoparticles (AuNPs) on reduced GO (RGO) deprived of any organic stabilizer. The SERS sensor effectively analyzed and distinguished various simulated breath samples and 200 breath samples of medical patients with over 83% and 92% sensitivity and specificity, respectively. Yunsheng Chen et al. (2018) fabricated non-invasive, cheap, fast SERS sensors based on salivary analysis to screen early and advance gastric cancer patients. The developed graphene oxide nanoscrolls wrapped with gold nanoparticle (A/GO NSs)-based SERS sensors detect the biomarkers in 220 clinical houid saliva. These sensors successfully analyzed and distinguished various stimulated and medical patients' samples with sensitivity and specificity greater than 80% and 87.7%, respectively. For the detection of miR-34a biomarker, Lee et al. (Capelle et al., 2009; Chan et al., 2007; Ebert et al., 2005, 2006; Gao et al., 2012; Ghosh et al., 2013; Hao et al., 2008; Harbeck et al., 2008; Herszenyi et al., 2008; Ick et al., 2004; Kaplan et al., 2014; Kumar et al., 2007; Lee et al., 2012; Liu et al., 2012; Mitani et al., 2007; Suppiah & Greenman, 2013; Tas et al., 2014; Umemura et al., 2011; Yu et al., 2011; Zhang et al., 2014) fabricated a uniform, highly robust, and ultra-sensitive surface-enhanced Raman scattering substrate by using silver nanostructures grown in gold nanobowls (SGBs). They were accomplished by consistent and direct detection of miR-34a in human gastric cancer cells by applying the advantages of SGBs In SERS sensing. An essential chemokine named interleukin 8 (IL-8) plays a vital part in tumor growth and angiogenesis and has been found in various human tumors, counting gastric and breast cancer. Zhen-yu Wang et al. (Qian et al., 2019; Wang, 2006) fabricated a double antibody sandwich format-based SERS immunosensor for the determination of IL-8. The immunosensor showed high sensitivity, selectivity, and low detection limits for the detection of IL-8 in PBS and human serum, hence, providing a great possibility for application in clinical diagnosis.

15.3.4 Role of GMI-based biosensing system in early detection of gastric cancer

In recent times, the giant magnetoimpedance (GMI) effect has attracted considerable attention due to its possible application in magnetic field sensing (Wang et al., 2017). The GMI effect is the change of complex impedance of soft magnetic mate-

rials conveying alternating current upon the use of the external magnetic field in Beach and Berkowitz (1994), Knobel and Pirota (2002), Phan and Peng (2008), and Panina and Mohri (1994)

Kurlyandskaya et al. (2003) introduced a GMI sensor into the field of biosensors. A GMI-based biosensing system linking with the magnetic labeled technology was used to distinguish gastric cancer cells (Chen et al., 2016). For the recognition of functional nanoparticles-probed gastric cancer cells, Lei Chen et al. (2011) planned, fabricated, and tested a GMIbased biosensing system with a Co-based ribbon sensing element. Functionalized nanoparticles were structured by coating Fe₃O₄ with chitosan and conjugating with cyclic RGD peptides. This fabricated system can recognize the dissimilarities among targeted and nontargeted cells.

15.3.5 Other types of biosensor in early detection of gastric cancer

Different types of biosensors can also detect gastric cancer related biomarkers. Stefan-van Staden et al. (Stefan-Van Staden, Ilie-Mihai, Pogacean, & Pruneanu, 2019) developed an exfoliated graphene (E-NGr) based high sensitive stochastic sensor used for pattern recognition of CEA, CA19-9, and p53 in whole blood and urine samples of patients found in very early and later gastric cancer stages.

15.4 Conclusion and future perspectives

Due to the numerous limitations in conventional detection methods of cancer, scientists and researchers are showing their attention to biosensors' development for effective rapid noninvasive detection of cancer markers. In the body, presence of cancer cells is confirmed by cancer markers. These markers exist in saliva, blood, or some other body fluids. As a complex heterogeneous disease, gastric cancer is one of the most widely recognized malignancies around the world. Gastric malignant growth is the fifth most regular kind of disease and the subsequent driving reason for the third leading malignant growth-related mortality (accounted for 8.2%) overall (Sitarz et al., 2018; Zhou et al., 2018). Early gastric cancer can be cured with surgery. In contrast, advanced gastric cancer often needs combined multidisciplinary therapy, and delayed diagnosis and inadequacies of the staging system may increase mortality. Therefore, it is very demanding to develop a rapid and noninvasive diagnosis technique to realize early detection of gastric cancer and simultaneous staging. Consequently, it is challenging to create a rapid and noninvasive diagnosis technique to realize early detection of gastric cancer and simultaneous staging. Early detection of gastric cancer prominently increases the probabilities for effective treatment and survival rates of cancers. Several types of biosensors have been proposed to detect gastric biomarkers and have shown an excellent opportunity for the early diagnosis of gastric cance

References

Abbassi-Ghadi, N., Kuma, S., Huang, J., Goldin, R., Takats, Z., & Hanna, G.B. (2013). Metabolomic profiling of oesophago-gastric cancer: A systematic review, European Journal of Cancer, 49(17), 3625–3637. https://doi.org/10.1016/j.ejc.2013.07.004. Altintas, Z., & Tothill, I. (2013). Biomarkers and biosensors for the early diagnosis of lung cancer. Sensors and Actuators, B:

Chemical, 188, 988-998, https://doi.org/10.1016/j.snb.2013.07.078.

Amouzadeh Tabrizi, M., Shamsipur, M., Saber, R., Sarkar, S., & Sherkatkhameneh, N. (2017). Flow injection amperometric sandwichtype electrochemical aptasensor for the determination of adenocarcinoma gastric cancer cell using aptamer-Au@Ag nanoparticles

as labeled apamer. Electrochimica Acta, 246, 1147–1154. https://doi.org/10.1016/j.electacta.2017.06.115. Arwin, H., Poksinski, M., & Johansen, K. (2004). Total internal reflection ellipsometry: Principles and applications. Applied Optics, 43(15), 3028–3036. https://doi.org/10.1364/AO.43.003028. Balaji, A., & Zhang, J. (2017). Electrochemical and optical biosensors for early-stage cancer diagnosis by using graphene and

Balaji, A., & Zhang, J. (2017). Electrochemical and optical of sensors for fairly graphene oxide. Cancer Nanotechnology, 8(1). https://doi.org/10.1186/s12645-017-0035-z.

Balakrishnan, M., George, R., Sharma, A., & Graham, D.Y. (2017). Changing trends in stomach cancer throughout the world. Current Gastroenterology Reports, 19(8). https://doi.org/10.1007/s11894-017-0575-8.

Beach, R.S., & Berkowitz, A.E. (1994). Giant magnetic field dependent impedance of amorphous FeCoSiB wire. Applied Physics Letters, 64(26), 3652-3654. https://doi.org/10.1063/1.111170.

Biomarkers Definitions Working Group. (2001). Biomarkers definitions working group. Biomarkers and surrogate endpoints. Clinical Pharmacology & Therapeutics, 69(3), 89-95.

Bohunicky, B., & Mousa, S.A. (2011). Biosensors: The new wave in cancer diagnosis. Nanotechnology, Science and Applications, 4.

Brockman, J.M., Nelson, B.P., & Corn, R.M. (2000). Surface plasmon resonance imaging measurements of ultrathin organic films. Annual Review of Physical Chemistry, 51, 41-63. https://doi.org/10.1146/annurev.physchem.51.1.41.

Cammann, K. (1977). Bio-sensors based on ion-selective electrodes. Fresenius' Zeitschrift Für Analytische Chemie, 287(1), 1-9. https: //doi.org/10.1007/BF00539519.

L.G. Capelle A.C. De Vries J. Haringsma E.W. Steyerberg C.W.N. Looman N.M.A. Nagtzaam ...E.J. Kuipers Serum levels of leptin as marker for patients at high risk of gastric cancer Helicobacter 14 6 2009 596 604 https://doi.org/10.1111/j.1523-5378.2009.00728.x

D.C. Chan C.J. Chen H.C. Chu W.K. Chang J.C. Yu Y.J. Chen ...J.H. Chen Evaluation of serum amyloid a as a biomarker for gastric cancer Annals of Surgical Oncology 14 1 2007 84 93 https://doi.org/10.1245/s10434-006-9091-z

- Chatterjee, S.K., & Zetter, B.R. (2005). Cancer biomarkers: Knowing the present and predicting the future. Future Oncology, 1(1), 37-50. https://doi.org/10.1517/14796694.1.1.37.
- L. Chen C.C. Bao H. Yang D. Li C. Lei T. Wang ... D.X. Cui A prototype of giant magnetoimpedance-based biosensing system for targeted detection of gastric cancer cells Biosensors and Bioelectronics 26 7 2011 3246 3253 https://doi.org/10.1016/j.bios.2010.12.03
- Y. Chen S. Cheng A. Zhang J. Song J. Chang K. Wang ... D. Cui Salivary analysis based on surface enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons Journal of Biomedical Nanotechnology 14 10 2018 1773 1784 https://doi.org/10.1166/jbn.2018.2621
- Y. Chen Y. Zhang F. Pan J. Liu K. Wang C. Zhang ...D. Cui Breath analysis based on surface-enhanced raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons ACS Nano 10 9 2016 8169 8179 https://doi.org/10.1021/ac snano.6b01441
- Choi, Y.E., Kwak, J.W., & Park, J.W. (2010). Nanotechnology for early cancer detection. Sensors, 10(1), 428-455. https://doi.org/10.3 390/s100100428
- Cisco, R.M., Ford, J.M., & Norton, J.A. (2008). Hereditary diffuse gastric cancer implications of genetic testing for screening and prophylactic surgery. Cancer, 113(7), 1850–1856. https://doi.org/10.1002/cncr.23650.
 Clark, L.C., & Lyons, C. (1962). Elecyrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences, 102(1), 29–45. https://doi.org/10.1111/j.1749-o632.1962.tb13623.x.
 Crew, K.D., & Neugut, A.I. (2006). Epidemiology of gastric cancer. World Journal of Gastroenterology, 12(3), 354–362. https://doi.org/10.1011/j.1749-0632.1962.tb13623.x.
- g/10.3748/wjg.v12.i3.354
- Cui, F., Zhou, Z., & Zhou, H.S. (2019). Measurement and analysis of cancer biomarkers based on electrochemical biosensors. Journal of the Electrochemical Society, 167, 3.
- Daneshpour, M., Omidfar, K., & Ghanbarian, H. (2016). A novel electrochemical nanobiosensor for the ultrasensitive and specific detection of femtomolar-level gastric cancer biomarkee miRNA-106a. Beilstein Journal of Nanotechnology, 7(1), 2023–2036. https://doi.org/10.1016/j.com/1016/j.com/10.1016/j.com/10.1016/j.com/10.1016/j.com/10.1016/j.com/10.1016/j.com/10.1016/j.com/10016/j.com/10016/j.com/10016/j.com/10016/j.com/10016/j.com/10016/j.com/10016/j.com/10016/j.com/10016/j.com/10016/j.com/10016/j.com/10016/j.com //doi.org/10.3762/BJNANO.7.193.
- Deng, K., Yang, L., Hu, B., Wu, H., Zhu, H., & Tang, C. (2015). The prognostic significance of pretreatment serum CEA levels in gastric cancer: A metaanalysis including 14651 patients. PLoS One, 10(4), e0124151. https://doi.org/10.1371/journal.pone.0124151.
 Devi, N., & Laskar, S. (2018). A review on application of biosensors for cancer detection. ADBU Journal of Electrical and Electronics
- Engineering, 2(2), 17-21.
- Engineering, 2(2), 17–21.
 Dikshit, R.P., Mathur, G., & Mhatre, S. (2011). Epidemiological review of gastric cancer in India. Indian Journal of Medical and Paediatric Oncology, 32(1), 3–11. https://doi.org/10.4103/0971-5851.81883.
 M.P.A. Ebert S. Lamer J. Meuer P. Melfertheiner M. Reymond T. Buschmann ... V. Seibert Identification of the thrombin light chain a
- as the single best mass for differentiation of gastric cancer patients from individuals with dyspepsia by proteome analysis Journal of Proteome Research 4 2 2005 586 590 https://doi.org/10.1021/pr049771i
- Proteome Research 4 2 2005 586 590 https://doi.org/10.1021/pr0497/11
 M.P.A. Ebert D. Niemeyer S.O. Deininge/ T. Wex C. Knippig J. Hoffmann ...C. Röcken Identification and confirmation of increased fibrinopeptide A serum protein levels in gastric cancer sera by magnet bead assisted MALDI-TOF mass spectrometry Journal of Proteome Research 5 9 2006 2152 2158 https://doi.org/10.1021/pr060011c
 A. Etemadi S. Safiri S.G. Sepanlou K. Ikuta C. Bisignano R. Shakeri ...A. Almasi-Hashiani The global, regional, and national burden of stomach cancer in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease study 2017 The Lancet Gastroenterology and Hepatology 5 1 2020 42 54 https://doi.org/10.1016/S2468-1253(19)30328-0
 Fang, X., Tie, J., Xie, Y. Li, Q., Zhao, Q., & Fan, D. (2010). Detection of gastric carcinoma-associated antigen MG7-Ag in human sera using surface plasmont resonance sensor. Cancer Enidemiology 34(5), 648–651. https://doi.org/10.1016/scanep.2010.05.004
- using surface plasmon resonance sensor. Cancer Epidemiology, 34(5), 648-651. https://doi.org/10.1016/j.canep.2010.05.004. Frank, C., Elke, R., Neil, F.D., Kenichi, N., & Yoshio, O. (1997). Quartz crystal microbalance study of DNA immobilization and
- hybridization for nucleic acid sensor development. Analytical Chemistry, 2043-2049. https://doi.org/10.1021/ac961220r.
- Fu, H. (2016). New developments of gastric cancer biomarker research. Nano Biomedicine and Engineering, 8(4), 268–273. https://doi.org/10.5101/nbe.v8i4.p268-273.
 Gao, C., Xie, R., Ren, C., & Yang, X. (2012). Dickkopf-1 expression is a novel prognostic marker for gastric cancer. Journal of Biomedicine and Biotechnology, 2012. https://doi.org/10.1155/2012/804592.
- Ghosh, I., Bhattacharjee, D., Das, A.K., Chakrabarti, G., Dasgupta, A., & Dey, S.K. (2013). Diagnostic role of tumour markers CEA, CA15-3, CA 012-0257-0. CA19-9 and CA125 in lung cancer. Indian Journal of Clinical Biochemistry, 28(1), 24-29. https://doi.org/10.1007/s12291-
- Gold, R. & Freedman, S.O. (1965). Specific carcinoembryonic antigens of the human digestive system. The Journal of Experimental Medicine, 122(3), 467-481. https://doi.org/10.1084/jem.122.3.467.
- Green, R.J., Frazier, R.A., Shakesheff, K.M., Davies, M.C., Roberts, C.J., & Tendler, S.J.B. (2000). Surface plasmon resonance analysis of dynamic biological interactions with biomaterials. Biomaterials, 21(18), 1823–1835. https://doi.org/10.1016/S0142-961 2(00)00077-6.
- Grossmann, I., Avenarius, J.K.A., Mastboom, W.J.B., & Klaase, J.M. (2010). Preoperative staging with chest CT in patients with colorectal carcinoma: Not as a routine procedure. Annals of Surgical Oncology, 17(8), 2045-2050. https://doi.org/10.1245/s10434-010-0962-v
- Guerrini, L., & Alvarez-Puebla, R.A. (2019). Surface-enhanced raman spectroscopy in cancer diagnosis, prognosis and monitoring. Cancers, 11(6). https://doi.org/10.3390/cancers11060748.
- Hallissey, M.T., Dunn, J.A., & Fielding, J.W.L. (1994). Evaluation of pepsinogen a and gastrin-17 as markers of gastric cancer and high-risk pathologic conditions. Scandinavian Journal of Gastroenterology, 29(12), 1129-1134. https://doi.org/10.3109/0036552940 9094899
- Y. Hao Y. Yu L. Wang M. Yan L. Ji Y. Qu ... Z. Zhu IPO-38 is identified as a novel serum biomarker of gastric cancer based on clinical proteomics technology Journal of Proteome Research 7 9 2008 3668 3677 https://doi.org/10.1021/pr700638k

- Harbeck, N., Schmitt, M., Vetter, M., Krol, J., Paepke, D., Uhlig, M., ... Thomssen, C. (2008). Prospective biomarker trials chemo NO and NNBC-3 Europe validate the clinical utility of invasion markers uPA and PAI-1 in node-negative breast cancer. In Breast care (Vol. 3, Issue 2, pp. 11-15). S. Karger A.G. https://doi.org/10.1159/000151734
- Herszenyi, L., István, G., Cardin, R., De Paoli, M., Plebani, M., Tulassay, Z., & Farinati, F. (2008). Serum cathepsin B and plasma urokinase-type plasminogen activator levels in gastrointestinal tract cancers. European Journal of Cancer Prevention, 17(5), 438-445. https://doi.org/10.1097/CEJ.0b013e328305a130.
- A. Hirayama K. Kami M. Sugimoto M. Sugawara N. Toki H. Onozuka ...T. Soga Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry Cancer Research 69 11 2009 4918 4925 https://doi.org/10.1158/0008-5472.CAN-08-4806
- H.G. Ick Y.C. Hak S.B. Ho S.J. Ho P.Y. Lai K.H. Dai ... P.W. Kil Predictive value of preoperative serum CEA, CA19-9 and CA125 lev-els for perioneal metastasis in patients with gastric carcinoma Cancer Research and Treatment 2004 178 https://doi.org/10.4143/crt. 2004.36.3.178
- Ilie, R.M., & Stefan-van Staden, R.-I. (2019). Determination of l-tryptophan in whole blood samples using a new electrochemical sensor. UPB Scientific Bulletin, Series B: Chemistry and Materials Science, 81(1), 42–46.
- Islam, M.T., & Uddin, M.A. (2017). Biosensors, the emerging tools in the identification and detection of cancer markers. Journal of Gynecology and Women's Health, 5, 4.

- Jainish, P., & Prittesh, P. (2017). Biosensors and biomarkers: Promising tools for cancer diagnosis. Int J Biosen Bioelectron, 3, 4. Jin, Z., Jiang, W., & Wang, L. (2015). Biomarkers for gastric cancer Progression in early diagnosis and prognosis (review). Oncology Letters, 9(4), 1502-1508. https://doi.org/10.3892/ol.2015.2959
- Letters, 9(4), 1502–1508. https://doi.org/10.3892/01.2015.2959.
 Kaise, M., Miwa, J., Fujimoto, A., Tashiro, J., Tagami, D., Sano, H. & Ohmoto, Y. (2013). Influence of Helicobacter pylori status and eradication on the serum levels of trefoil factors and pepsinogen test: Serum trefoil factor 3 is a stable biomarker. Gastric Cancer: Official Journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association, 16(3), 329–337. https ://doi.org/10.1007/s10120-012-0185-v
- M.A. Kaplan M. Kucukoner A. Inal Z. Urakci O. Evliyaoglu U. Firat ...A. Isikdogan Relationship between serum soluble vascular adhesion protein-1 level and gastric cancer prognosis Oncology Research and Treatment 37 6 2014 340 344 https://doi.org/10.1159/00 0362626

- Karley, D., Gupta, D., & Tiwari, A. (2011). Biomarker for cancer: A great promise for future. World Journal of Oncology, 2, 4.
 Kikuchi, S., Crabtree, J.E., Forman, D., & Kurosava, M. (1999). Association between infections with CagA-positive or-negative strains of *Helicobacter pylori* and risk for gastric cancer in young adults. American Journal of Gastroenterology, 94(12), 3455–3459. https://doi.org/10.1016/S0002-9270(99)00666-8.
- Knobel, M., & Pirota, K.R. (2002). Giant magnetoimpedance: Concepts and recent progress. Journal of Magnetism and Magnetic Materials, 242–245(I), 33–40. https://doi.org/10.1016/S0304-8853(01)01180-5. Kono, S. (2016). Gastric cancer. International encyclopedia of public health (pp. 215–222). Elsevier Inc. https://doi.org/10.1016/B978-
- 0-12-803678-5.00167-3
- Kumar, Y., Tapuria, N., Kirmani, N., & Davidson, B.R. (2007). Tumour M2-pyruvate kinase: A gastrointestinal cancer marker. European. Journal of Gastroenterology and Hepatology, 19(3), 265–276. https://doi.org/10.1097/MEG.0b013e3280102f78.
- Kurlyandskaya, G.V., Sánchez, M.L., Hernando, B., Prida, V.M., Gorria, P., & Tejedor, M. (2003). Giant-magnetoimpedance-based sensitive element as a model for biosensors. Applied Physics Letters, 82(18), 3053–3055. https://doi.org/10.1063/1.1571957.

- sensitive element as a model for biosensors. Applied Physics Letters, 82(18), 3053–3055. https://doi.org/10.1063/1.1571957.
 Lee, H.S., Lee, H.E., Park, D.J., Kim, H.H., Kim, W.H., & Park, K.U. (2012). Clinical significance of serum and tissue Dickkopf-1 levels in patients with gastric cancer. Clinica Chimica Acta, 413(21–23), 1753–1760. https://doi.org/10.1016/j.cc.2012.07.003.
 Li, J., Li, S., & Yang, C.F. (2012). Electrochemical biosensors for cancer biomarker detection. Electroanalysis, 24(12), 2213–2229. http s://doi.org/10.1002/elan.201200447.
 Liberti, M.V., & Locasale, J.W. (2016). The Warburg effect: How does it benefit cancer cells? Trends in Biochemical Sciences, 41(3), 211–218. https://doi.org/10.1016/j.tibs.2015.12.001.
 Liu, X., Sheng, W. & Wang, Y. (2012). An analysis of clinicopathological features and prognosis by comparing hepatoid adenocarcinome of the stomach with AFP-producing gastric cancer. Journal of Surgical Oncology, 106(3), 299–303. https://doi.org/10.1002/iso.23073. 10.1002/jso.23073.
- Mayeux, R. (2004). Biomarkers: Potential uses and limitations. NeuroRx: the Journal of the American Society for Experimental NeuroTherapeutics, 1(2), 182–188. https://doi.org/10.1602/neurorx.1.2.182.
- Meyer, T., & Rustin, G.J.S. (2000). Role of tumour markers in monitoring epithelial ovarian cancer. British Journal of Cancer, 82(9), 1535–1538.
 Y. Mitami N. Oue S. Matsumura K. Yoshida T. Noguchi M. Ito ...W. Yasui Reg IV is a serum biomarker for gastric cancer patients and a concerned of the service of the service
- predicts response to 5-fluorouracil-based chemotherapy Oncogene 26 30 2007 4383 4393 https://doi.org/10.1038/sj.onc.1210215
- Kaur, H., Gautam, N., & Mantha, A.K. (2017). Biosensors for breast cancer diagnosis: A review of bioreceptors, Mittal, S., biotransducers and signal amplification strategies. Biosensors and Bioelectronics, 88, 217-231. https://doi.org/10.1016/j.bios.2016. 08.028
- Mohammad Shafiee, M.R., & Parhizkar, J. (2020). Au nanoparticles/g-C3N4 modified biosensor for electrochemical detection of gastric cancer miRNA based on hairpin locked nucleic acids probe. Nanomedicine Research Journal, 5(2), 152-159. https://doi.org/ 10.22034/NMRJ.2020.02.006.
- Moshkovskii, S.A. (2012). Why do cancer cells produce serum amyloid a acute-phase protein? Biochemistry (Moscow), 77(4), 339-341. https://doi.org/10.1134/S0006297912040037.
- Nelson, B.P., Grimsrud, T.E., Liles, M.R., Goodman, R.M., & Corn, R.M. (2001). Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. Analytical Chemistry, 73(1), 1-7. https://doi.org/10.1021/ac001 0431
- Nguyen, H.H., Park, J., Kang, S., & Kim, M. (2015). Surface plasmon resonance: A versatile technique for biosensor applications. Sensors (Switzerland), 15(5), 10481-10510. https://doi.org/10.3390/s150510481.

- Ooki, A., Yamashita, K., Kikuchi, S., Sakuramoto, S., Katada, N., & Watanabe, M. (2009). Phosphatase of regenerating liver-3 as a prognostic biomarker in histologically node-negative gastric cancer. Oncology Reports, 21(6), 1467-1475. https://doi.org/10.3892/o r 00000376.
- Panina, L.V., & Mohri, K. (1994). Magneto-impedance effect in amorphous wires. Applied Physics Letters, 1189-1191. https://doi.org/ 10.1063/1.112104
- Park, J., Ross, A., Klagholz, S.D., & Bevans, M.F. (2018). The role of biomarkers in research on caregivers for cancer patients: A scoping review. Biological Research for Nursing, 20(3), 300-311. https://doi.org/10.1177/1099800417740970.
- Pasinszki, T., Krebsz, M., Tung, T.T., & Losic, D. (2017). Carbon nanomaterial based biosensors for non-invasive detection of cancer and disease biomarkers for clinical diagnosis. Sensors (Switzerland), 17(8). https://doi.org/10.3390/s17081919.
- Phan, M.H., & Peng, H.X. (2008). Giant magnetoimpedance materials: Fundamentals and applications. Progress in Materials Science, 53(2), 323-420. https://doi.org/10.1016/j.pmatsci.2007.05.003.
- Brabhakar, B., Shende, P., & Augustine, S. (2018). Current trends and emerging diagnostic techniques for lung cancer. Biomedicine and Pharmacotherapy, 106, 1586–1599. https://doi.org/10.1016/j.biopha.2018.07.145.
 L. Qian Q. Li K. Baryeh W. Qiu K. Li J. Zhang ...G. Liu Biosensors for early diagnosis of pancreatic cancer: A review Translational
- Research 213 2019 67 89 https://doi.org/10.1016/j.trsl.2019.08.002 Raether, H. (1988). Surface plasmons on smooth and rough surfaces and on gratings: Vol. 111. Springer. https://doi.org/10.1007/
- BFb0048317.
- BF 00048517.
 L.U. Rahman A. Shah S.K. Lunsford C. Han M.N. Nadagouda E. Sahle-Demessie ...D.D. Dionysiou Monitoring of 2-butanone using a Ag-Cu bimetallic alloy nanoscale electrochemical sensor /RSC Advances 5 55 2015 44427 44434 https://doi.org/10.1039/c5ra03633j
 Rawla, P., & Barsouk, A. (2019). Epidemiology of gastric cancer: Global trends, risk factors and prevention. Przeglad Gastroenterologiczny, 14(1), 26–38. https://doi.org/10.5114/pg.2018.80001.
 Saragoni, L. (2015). Upgrading the definition of early gastric cancer: Better staging means more appropriate treatment. Cancer Biology and Medicine, 12(4), 355–361. https://doi.org/10.7497/j.issn.2095-3941.2015.0054.
 Schneider, I. & Schulze, G. (2003). Commarison of tumor M2. PWI variance transmission entropy (CEA).

- Schneider, J., & Schulze, G. (2003). Comparison of tumor M2-pyruvate kinase (tumor M2-PK), carcinoembryonic antigen (CEA), carbohydrate antigens CA 19-9 and CA 72-4 in the diagnosis of gastrointestinal cancer. Anticancer Research, 23(6 D), 5089–5093.
 Servarayan Murugesan, C., Manickavasagam, K., Chandramohan, A., Jebaraj, A., Jameel, A.R.A., Jain, M.S., & Venkataraman, J. (2018). Gastric cancer in India: Epidemiology and standard of treatment. Updates in Surgery, 70(2), 233–239. https://doi.org/10.1007/ 7/s13304-018-0527-3
- Sharma, A., & Radhakrishnan, V. (2011). Gastric cancer in India. Indian Journal of Medical and Paediatric Oncology, 32(1), 12–16. htt ps://doi.org/10.4103/0971-5851.81884.
- A. Shiotani H. Iishi N. Uedo M. Kumamoto Y. Nakae S. Ishiguro ...D.Y. Graham Histologic and serum risk markers for noncardia early gastric cancer International Journal of Cancer 115 3 2005 463 469 https://doi.org/10.1002/ijc.20852 Sitarz, R., Skierucha, M., Mielko, J., Offerhaus, G.J.A., Maciejewski, R., & Polkowski, W.P. (2018). Gastric cancer: Epidemiology,
- SItarz, K., Skierucha, M., Mielko, J., Offerhaus, G.J.A., Maciejewski, R., & Polkowski, W.P. (2018). Gastric cancer: Epidemiology, prevention, classification, and treatment. Cancer Management and Research, 10, 239–248. https://doi.org/10.2147/CMAR.S149619.
 Smith, D.S., Humphrey, P.A., & Catalona, W.J. (1997). The early detection of prostate carcinoma with prostate specific antigen: The Washington University experience. In Cancer, 80(Issue 9), 1852–1856. https://doi.org/10.1002/(SICI)1097-0142(19971101)80:9<1852::A1D-CNCR25>3.0.CO;2-3.
 Stefan-Van Staden, R.I., Hie Mihai, R.M., Pogacean, F., & Pruneanu, S. (2019). Graphene-based stochastic sensors for pattern recognition of gastric cancer biomarkers in biological fluids. Journal of Porphyrins and Phthalocyanines, 23(11–12), 1365–1370. htt ps://doi.org/10.1142/S1088424619501293.
 K. Sugin T. Kamada, M.Le, S. Kaya, A. Tanaka, H. Kusunoki, K. Haruma Anti-parietal cell antibody and score province accenteria.
- K. Sugiu T. Kamada M. Ito S. Kaya A. Tanaka H. Kusunoki ...K. Haruma Anti-parietal cell antibody and serum pepsinogen assessment in screening for gastric carcinoma Digestive and Liver Disease 38 5 2006 303 307 https://doi.org/10.1016/j.dld.2005.10.021
- Suppiah, A., & Greenman, J. (2013). Clinical utility of anti-p53 auto-antibody: Systematic review and focus on colorectal cancer. World Journal of Castroenterology, 19(29), 4651–4670. https://doi.org/10.3748/wjg.v19.i29.4651.
- Szymendera, J.J. (1986). Clinical usefulness of three monoclonal antibody-defined tumor markers: CA 19-9, CA 50, and CA 125. Tumour Biology, 7(5-6), 333-342.
 Tao, Z., Du, J., Cheng, Y., & Li, Q. (2018). Electrochemical immune analysis system for gastric cancer biomarker carcinoembryonic.
- antigen (CEA) detection. International Journal of Electrochemical Science, 13(2), 1413–1422. https://doi.org/10.20964/2018.02.21.
- Tas, F., Karabulut, S., Serilmez, M., Ciftci, R., & Duranyildiz, D. (2014). Serum levels of macrophage migration-inhibitory factor (MIF) have diagnostic, predictive and prognostic roles in epithelial ovarian cancer patients. Tumor Biology, 35(4), 3327–3331. http ://doi.org/10.1007/s13277-013-1438-z.
- Tatsuta, ዂ Itoh, T., Okuda, S., Yamamura, H., Baba, M., & Tamura, H. (1980). Carcinoembryonic antigen in gastric juice as an aid in diagnosis of early gastric cancer. Cancer, 46(12), 2686-2692. https://doi.org/10.1002/1097-0142(19801215)46:12<2686::AID-CNCR2820461225>3.0.CO;2-E.
- Thevenot, D.R., Toth, K., Durst, R.A., & Wilson, G.S. (2001). Electrochemical biosensors: Recommended definitions and classification. Biosensors and Bioelectronics, 16(1-2), 121-131. https://doi.org/10.1016/S0956-5663(01)00115-4.
- Thrift, A.P., & El-Serag, H.B. (2020). Burden of gastric cancer. Clinical Gastroenterology and Hepatology, 18(3), 534-542. https://doi. org/10.1016/j.cgh.2019.07.045.
- Topkaya, S.N., Azimzadeh, M., & Ozsoz, M. (2016). Electrochemical biosensors for cancer biomarkers detection: Recent advances and challenges. Electroanalysis, 28(7), 1402-1419. https://doi.org/10.1002/elan.201501174.
- Tothill, I.E. (2009). Biosensors for cancer markers diagnosis. Seminars in Cell and Developmental Biology, 20(1), 55-62. https://doi.or g/10.1016/j.semcdb.2009.01.015.
- H. Umemura A. Togawa K. Sogawa M. Satoh K. Mogushi M. Nishimura ...F. Nomura Identification of a high molecular weight kininogen fragment as a marker for early gastric cancer by serum proteome analysis Journal of Gastroenterology 46 5 2011 577 585 https://doi.org/10.1007/s00535-010-0369-3
- Van Cutsem, E., Sagaert, X., Topal, B., Haustermans, K., & Prenen, H. (2016). Gastric cancer. The Lancet, 388(10060), 2654–2664.

https://doi.org/10.1016/S0140-6736(16)30354-3.

- Vander Heiden, M.G., Cantley, L.C., & Thompson, C.B. (2009). Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science, 324(5930), 1029-1033. https://doi.org/10.1126/science.1160809.
- Van Oss, C.J., & van Regenmortel, M.H.V. (1994). Immunochemistry. Marcel Dekker.
- Wang, J. (2006). Electrochemical biosensors: Towards point-of-care cancer diagnostics. In Biosensors and Bioelectronics, 21(Issue 10), 1887-1892. https://doi.org/10.1016/j.bios.2005.10.027 Vol.
- Wang, T., Zhou, Y., Lei, C., Luo, J., Xie, S., & Pu, H. (2017). Magnetic impedance biosensor: A review. Biosensors and Bioelectronics, 90, 418–435. https://doi.org/10.1016/j.bios.2016.10.031.
- Wu, L., & Qu, X. (2015). Cancer biomarker detection: Recent achievements and challenges. Chemical Society Reviews, 44(10), 2963-2997. https://doi.org/10.1039/c4cs00370e.
- Yao, X., Xiao, Z., Su, H., Kan, W., Zhen, Y., He, N., & Cui (2015). A novel electrochemical microfluidic chip combined with multiple biomarkers for early diagnosis of gastric cancer. Nanoscale Res Lett, 10. https://doi.org/10.1186/s11671-015-1153-3.
 Yu, L., Wang, L., & Chen, S. (2011). Olfactomedin 4, a novel marker for the differentiation and progression of gastrointestinal cancers.
- Neoplasma, 58(1), 9-13. https://doi.org/10.4149/neo_2011_01_9.
- Zhang, J., Zhang, K., Jiang, X., & Zhang, J. (2014). S100A6 as a potential serum prognostic biomarker and therapeutic target in gastric cancer. Digestive Diseases and Sciences, 59(9), 2136–2144. https://doi.org/10.1007/s10620-014-3137-z.
 Y. Zhang G. Gao H. Liu H. Fu J. Fan K. Wang ...D. Cui Identification of volatile biomarkers of gastric cancer cells and ultrasensitive electrochemical detection based on sensing interface of Au-Ag alloy coated MWCNTs Theranostics 4 2 2014 154 162 https://doi.org/ g/10.7150/thno.7560
- Zhou, Z., Lin, Z., Pang, X., Tariq, M.A., Ao, X., Li, P., & Wang, J. (2018). Epigenetic regulation of long non-coding RNAs in gastric cancer. Oncotarget, 9(27), 19443–19458. https://doi.org/10.18632.oncotarget.23821.
 Zhuang, J., Wan, H., & Zhang, X. (2021). Electrochemical detection of miRNA-100 in the sera of gastric cancer patients based on DSN-assisted amplification. Talanta, 225, 121981. https://doi.org/10.1016/j.talanta.2020.121981.

Further reading

- T. Lee J.S. Wi A. Oh H.K. Na J. Lee K. Lee ...S. Haam Highly robust, uniform and ultra-sensitive surface-enhanced Raman scattering substrates for microRNA detection fabricated by using silver nanostructures grown in gold nanobowls Nanoscale 10 8 2018 3680
- 3687 https://doi.org/10.1039/c7nr080666
 B. Li F. Liu Y. Peng Y. Zhou W. Fan H. Yin X. Zhang Two-stage cyclic enzymatic amplification method for ultrasensitive electro-chemical assay of microRNA-21 in the blood serum of gastric cancer patients Biosensors and Bioelectronics 79 2016 307 312 https: //doi.org/10.1016/j.bios.2015.12.051 Liu, F., Zhang, J., Deng, Y., Wang, D., Lu, Y., & Yu, X. (2011). Detection of EGFR on living human gastric cancer BGC823 cells using
- surface plasmon resonance phase sensing. Sensors and Actuators, B: Chemical, 153(2), 398-403. https://doi.org/10.1016/j.snb.2010 11 005
- Wang, Z. y, Li, W., Gong, Z., Sun, P. r. Zhon, T., & Cao, Xw (2019). Detection of IL-8 in human serum using surface-enhanced Raman scattering coupled with highly-branched gold nanoparticles and gold nanocages. New Journal of Chemistry, 43(4), 1733–1742. http s://doi.org/10.1039/C8NJ05353G.
- Wu, D., Guo, Z., Liu, Y., Guo, A., Lou, W., Fan, D., & Wei, Q. (2015). Sandwich-type electrochemical immunosensor using dumbbell-like nanoparticles for the determination of gastric cancer biomarker CA72-4. Talanta, 134, 305–309. https://doi.org/10.1016/j.talant a.2014.11.025.