A Report on the One-Day Workshop on

# Gas adsorption Technique and Dynamic Light Scattering (DLS) Technique

March 11, 2022



> Organised by Department of Chemistry Rajiv Gandhi University Arunachal Pradesh

In association with Anton Paar India Pvt. Ltd. Gurgaon, INDIA

# Contents

|        | Acknowledgements<br>Organizing Committee                                          |                                          | iii<br>iv   |
|--------|-----------------------------------------------------------------------------------|------------------------------------------|-------------|
| Part 1 | PREFACE<br>1.1. Background<br>1.2. Objectives<br>1.3. Themes                      |                                          | 1<br>1<br>2 |
|        | <ol> <li>1.4. Resource F</li> <li>1.5. About the S</li> <li>1.6 Budget</li> </ol> | Persons<br>Sponsoring Agency             | 2<br>2<br>2 |
| Part 2 | SESSION WISE D<br>2.1. Technical S                                                |                                          | 2           |
| Part 3 | 3.2. Policy Impli                                                                 | implications in the context of Knowledge | 3<br>3<br>3 |
| Part 4 | ANNEXURES                                                                         |                                          |             |
|        | Annexure I: Prog                                                                  | gramme Schedule                          | 4           |
|        | Annexure II: List                                                                 | of Participants                          | 5           |
|        | Annexure III: Photographs                                                         |                                          | 6           |
|        | Annexure IV: Media Coverages                                                      |                                          | 6           |

# One-day Workshop on Gas Adsorption Technique and Dynamic Light Scattering (DLS) Technique

March 11, 2022



## Acknowledgements

### **Rajiv Gandhi University**

Rono Hills Doimukh Arunachal Pradesh



Anton Paar India Pvt. Ltd. Gurgaon, INDIA

## **Organising Committee**



**Prof. Saket Kushwaha** Vice Chancellor Rajiv Gandhi University

#### PATRONS



**Prof. Amitava Mitra** Pro Vice Chancellor Rajiv Gandhi University



**Dr. Nabam T. Rikam** Registrar Rajiv Gandhi University



**Dr. Rajesh Chakrabarty** Head, Department of Chemistry Rajiv Gandhi University

#### COORDINATOR



**Dr. Md. Harunar Rashid** Department of Chemistry Rajiv Gandhi University

#### **MEMBERS**



**Dr. Lakhinath Saikia** Department of Chemistry Rajiv Gandhi University



**Dr. Ramen Jamatia** Department of Chemistry Rajiv Gandhi University



**Dr. Dwipen Kakati** Department of Chemistry Rajiv Gandhi University



**Dr. Bharat Kumar Allam** Department of Chemistry Rajiv Gandhi University

# PART 1: PREFACE

#### 1.1 Background

Gas adsorption is of major importance for the characterisation of a wide range of porous materials. Of all the many gases and vapours, which are readily available and could be used as adsorbate, nitrogen has remained universally pre-eminent. With the aid of user-friendly commercial equipment and on-line data processing, it is now possible to use nitrogen adsorption at 77 K for both routine quality control and the investigation of new materials. In view of the importance of the technique, it is of interest to the researchers to learn more on the technique.

The light scattering is another most common measurement technique for particle size analysis in the nanometre range and estimating surface charges of colloidal particles. Dynamic light scattering (DLS) is based on the Brownian motion of dispersed particles. When particles are dispersed in a liquid they move randomly in all directions and constantly colliding with solvent molecules. These collisions cause a certain amount of energy to be transferred, which induces particle movement. The energy transfer is more or less constant and therefore has a greater effect on smaller particles. As a result, smaller particles are moving at higher speeds than larger particles. If one knows all other parameters which have an influence on particle movement, he/she can determine the hydrodynamic diameter by measuring the speed of the particles.

This one day Workshop provides robust discussions on principle and application of gas adsorption and dynamic light scattering techniques which are very much essential tools for chemistry and materials science research. This workshop surely provided basic theoretical concepts and hands on training on dynamic light scattering techniques to the researchers and the young faculties.

### **1.2 Objectives**

The specific objectives of the workshop are to:

- introduce the basics of gas adsorption and dynamic light scattering technique among the students and young researchers of the university
- understand how to operate the instruments and analyze the collected data for scientific presentation

#### **1.3 Themes**

This Workshop on Gas adsorption technique and dynamic light scattering (DLS) technique is being organized on the theme: "Analytical techniques in Basic Research." It featured lectures and demonstration on the techniques by Application Specialist from Anton Paar India Pvt. Ltd.

### **1.4 Resource Person**



**Dr. Rishi Gupta** Application Specialist Anton Paar India Pvt. Ltd. Gurgaon, India

#### **1.5 About the Sponsoring Agency**

Anton Paar develops, produces and distributes highly accurate laboratory instruments and process measuring systems, and provides custom-tailored automation and robotic solutions. It is the world leader in the measurement of density, concentration and CO<sub>2</sub> and in the field of rheometry. Anton Paar GmbH is owned by the charitable Santner Foundation.

### 1.6 Budget

Not applicable.

# **PART 2: SESSION WISE DETAILS**

#### 2.1 Technical Session

More than 31 delegates from different department of Rajiv Gandhi University took part in the event. Dr. Rishi Gupta delivered lecture of the workshop on gas adsorption technique and dynamic light scattering technique. In his first lecture, Dr. Rishi discussed in details the basic principle of gas adsorption technique and application. In his second lecture, he discussed the basics of dynamic light scattering and electrophoretic light scattering & application. The third lecture includes the demonstration of dynamic light scattering and electrophoretic light scattering technique (model: Litesizer 500) for particle size and zeta potential analysis.

# PART 3: OUTCOME OF THE PROGRAMME

#### 3.1 Immediate Implications in the Context of Knowledge

It is our belief that the experience acquired during the workshop will help the participants in their future research in terms of analysis using the techniques.

### **3.2 Policy Implications**

Although there is no such policy implication per se, it is our belief that the workshop will help the participants in analyzing materials samples using those techniques.

### 3.3 Other Implications (if any)

NA

# **PART 4: ANNEXURES**

### **Annexure I: Programme Schedule**

## 11 March 2022

| 3.00 pm – 3.45 pm  | Basics of Gas sorption techniques & application                                                                                                                 |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.45 pm – 3.55 pm: | Tea Break                                                                                                                                                       |
| 3.55 pm – 4.30 pm: | Basics of Dynamic Light Scattering & Electrophoretic Light Scattering & Application                                                                             |
| 4.30 pm – 5.30 pm: | Demonstration of Dynamic Light Scattering & Electrophoretic<br>Light Scattering Technique (Model: Litesizer 500) for Particle Size &<br>Zeta Potential analysis |

Speaker: **Dr. Rishi Gupta**, Application Specialist, Anton Paar India Pvt. Ltd., Gurgaon, India

## Annexure II: List of Participants

| Sr.<br>No. | Name                | Designation          | Affiliation                                |
|------------|---------------------|----------------------|--------------------------------------------|
| 1.         | Xavy Borgohain      | Research Scholar     | Rajiv Gandhi University, Arunachal Pradesh |
| 2.         | Amar Jyoti Bhuyan   | Research Scholar     | Rajiv Gandhi University, Arunachal Pradesh |
| 3.         | Babul Kalita        | Research Scholar     | Rajiv Gandhi University, Arunachal Pradesh |
| 4.         | Prakash Bhuyan      | Research Scholar     | Rajiv Gandhi University, Arunachal Pradesh |
| 5.         | Utpal Dutta         | Research Scholar     | Rajiv Gandhi University, Arunachal Pradesh |
| 6.         | Rei Star            | Research Scholar     | Rajiv Gandhi University, Arunachal Pradesh |
| 7.         | Jinku Borah         | Research Scholar     | Rajiv Gandhi University, Arunachal Pradesh |
| 8.         | Saddam Iraqui       | Research Scholar     | Rajiv Gandhi University, Arunachal Pradesh |
| 9.         | Karishma Devi Borah | Guest Faculty        | Rajiv Gandhi University, Arunachal Pradesh |
| 10.        | Ramen Jamatia       | Assistant Professor  | Rajiv Gandhi University, Arunachal Pradesh |
| 11.        | Bharat Kumar Allam  | Assistant Professor  | Rajiv Gandhi University, Arunachal Pradesh |
| 12.        | Kenma Gibi          | Laboratory Assistant | Rajiv Gandhi University, Arunachal Pradesh |
| 13.        | Koj Grayu           | Technical Assistant  | Rajiv Gandhi University, Arunachal Pradesh |
| 14.        | Tage Seema          | Research Scholar     | Rajiv Gandhi University, Arunachal Pradesh |
| 15.        | Manab Jyoti Goswami | Research Scholar     | Rajiv Gandhi University, Arunachal Pradesh |
| 16.        | Parismrita Dutta    | Student              | Rajiv Gandhi University, Arunachal Pradesh |
| 17.        | Greeshma Chetry     | Student              | Rajiv Gandhi University, Arunachal Pradesh |
| 18.        | Dikshita Hazarika   | Student              | Rajiv Gandhi University, Arunachal Pradesh |
| 19.        | Kabita Bhuyan       | Student              | Rajiv Gandhi University, Arunachal Pradesh |
| 20.        | Monalisha Pegu      | Student              | Rajiv Gandhi University, Arunachal Pradesh |
| 21.        | Neha Singh          | Student              | Rajiv Gandhi University, Arunachal Pradesh |
| 22.        | Durga Kumari        | Student              | Rajiv Gandhi University, Arunachal Pradesh |
| 23.        | Mingkim Tatak       | Student              | Rajiv Gandhi University, Arunachal Pradesh |
| 24.        | Osik Tayeng         | Student              | Rajiv Gandhi University, Arunachal Pradesh |
| 25.        | Likar Ete           | Student              | Rajiv Gandhi University, Arunachal Pradesh |
| 26.        | Abhijeet Das        | Research Scholar     | Rajiv Gandhi University, Arunachal Pradesh |
| 27.        | Asinja Meme         | Student              | Rajiv Gandhi University, Arunachal Pradesh |
| 28.        | Tage Lampung Rinyo  | Student              | Rajiv Gandhi University, Arunachal Pradesh |
| 29.        | Taba Jumsi          | Student              | Rajiv Gandhi University, Arunachal Pradesh |
| 30.        | Plabita Rajkhowa    | Research Scholar     | Rajiv Gandhi University, Arunachal Pradesh |
| 31.        | Rekhamoni Das       | Research Scholar     | Rajiv Gandhi University, Arunachal Pradesh |

## **Annexure III: Photographs**



Dr. Rishi Gupa delivering the lecture



Hands-on training by Dr. Rishi Gupta

## Annexure IV: Media Coverages

NA