Test Booklet No. \qquad
This booklet consists of $\mathbf{1 0 0}$ questions and 19 printed pages.

RGUCET 2024
Series
Common Entrance Test, 2024
MASTER OF TECHNOLOGY (COMPUTER SCIENCE AND ENGINEERING)

Full Marks: 100
Time: 2 Hours

Roll No.

Day and Date of Examination:
Signature of Invigilator(s) \qquad
Signature of Candidate \qquad
General Instructions:

PLEASE READ ALL THE INSTRUCTIONS CAREFULLY BEFORE MAKING ANY ENTRY.

1. DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE TOLD TO DO SO.
2. Candidate must write his/her Roll Number on the space provided.
3. This Test Booklet contains 100 Multiple Choice Questions (MCQs) from the concerned subject. Each question carries 1 mark. There shall be negative marking of 0.25 against each wrong attempt.
4. Please check the Test Booklet to verify that the total pages and total number of questions contained in the test booklet are the same as those printed on the top of the first page. Also check whether the questions are in sequential order or not.
5. Candidates are not permitted to enter into the examination hall after the commencement of the entrance test or leave the examination hall within one hour thirty minutes.
6. Making any identification mark in the OMR Answer Sheet or writing Roll Number anywhere other than the specified places will lead to disqualification of the candidate.
7. Candidates shall maintain silence inside and outside the examination hall. If candidates are found violating the instructions mentioned herein or announced in the examination hall, they will be summarily disqualified from the entrance test.
8. In case of any dispute, the decision of the Entrance Test Committee shall be final and binding.
9. The OMR Answer Sheet consists of two copies, the Original copy and the Student's copy.

1	Instructions: Indicate whether the following statements about general English are True or False. A A complete sentence must always contain a verb. B Homophones are words that have the same spelling but different pronunciations. C Articles ("a,""an,""the") are always necessary before nouns. D The past tense is always used to talk about events that happened in the past.				Answer option (a)
	a) A-True, b-False, CFalse, D-True	b)A-True, b-False, C-True, D-True	c)A-True, b- False, C- False, D- False	d)A-False, bFalse, C-False, D-True	A-True, bFalse, C-False, D-True
2	Which punctuation mark indicates a pause longer than a comma but shorter than a full stop?				Answer option (b)
	a)Semicolon (;)	b)Colon (:)	c) $\operatorname{Dash}(-)$	d)Ellipsis(...)	Colon (:)
3 Instructions: Indicate whether the following statements about general English are True or False. A Italics are used to indicate emphasis in writing. B The colon (:) should always be followed by a complete sentence C A synonym is a word with the opposite meaning. D Exclamation points (!) should be used sparingly in formal writing					Answer option (a)
	a)A-True, B-False, CFalse, D-True	b)A- False, B- False, C- False, D- True	c)A-True, B- False, C- False, D- False	d)A-True, \quad BTrue, C-False, D-True	A-True, BFalse, C-False, D-True
4	For each word in column 1, find the matching antonym in column 2:				
	Column 1				
	1) Day		P) Sleep		
	2)Fast		Q) Slow		
	3) Darkness		R) Brightness		
	4) rise		S) Night		
	$\begin{aligned} & \hline \text { a) } \\ & 4-S \end{aligned} \quad 1-\mathrm{P}, 2-\mathrm{Q}, 3-\mathrm{R},$	$\begin{aligned} & \text { b) 1-Q, 2- } \\ & \text { Q, 3-R, } 4- \\ & \text { S } \end{aligned}$	$\begin{aligned} & \text { c) 1-S, 2-Q, } \\ & 3-\mathrm{R}, 4-\mathrm{P} \end{aligned}$	$\begin{aligned} & \text { d)1-P, 2-Q, 3-R, } \\ & 4-S \end{aligned}$	$\begin{gathered} \text { 1-S, 2-Q, 3-R, } \\ 4-\mathrm{P} \end{gathered}$
5	Assertion (A): When lightning strikes, the sound is heard a little after the flash is seen. Reason (R): The velocity of light is greater than that of the sound.				d)
	a) A is True	b) R is True	c) None are True	d) Both A and R are true	Both A and R are true
6	Choose the most appropriate word from the options given below to complete the following sentence.				c)

	He could not understand the judges awarding her the first prize, because he thought that her performance was quite \qquad -				
	a) superb	b) medium	c) mediocre	d) exhilarating	mediocre
7	Identify the segment(s) in the following sentence that contains a grammatical error: The lady at the saloon / padded my thin hair / with artificial hairs / to make them appear fluffy. A. The lady at the saloon B. padded my thin hair C. with artificial hairs D. to make them appear fluffy				d)
	a) B only	b) D only	c) B and D only	d) C and D only	C and D only
8	Choose the most appropriate word from the options given below to complete the following sentence: If we manage to \qquad our natural resources, we would leave a better planet for our children.				d)
	a) uphold	b)restrain	c)cherish	d) conserve	conserve
9	In which state Covid-19 case was first reported in India?				c)
	a) Delhi	a) $\quad \mathrm{M}$ aharashtra	c) Kerala	b) Karnatak a	Kerala
1	In a bar chart, the gap between the bars is always:				a)
	a) Same	b) Zero	c) Varies	d) Not same	Same
1	Fresh fruit contains 70% water and dry fruit contains 40% water. How much dry fruit can be obtained from 100 kg of fresh fruits?				d
	a) 40 kg	b) 52 kg	c) 18 kg	d) 50 kg	50 kg
$\begin{aligned} & 1 \\ & 2 \end{aligned}$	In a certain coding method, "ITANAGAR" is written as "FQXKXDXO". In this coding, what is the code word for "PASIGHAT".				a
	a) MXPFDEXQ	b) MXPIDE XQ	c) MXPFDEAQ	d) MXPFGEXQ	MXPFDEXQ
$\begin{array}{\|l\|} \hline 1 \\ 3 \\ \hline \end{array}$	$5^{0} \times 8=$				c
	a) 0	b) 40	c) 8	d) 20	8
1 4	A boat travels with a speed of $12 \mathrm{~km} / \mathrm{hr}$ in still water. If the speed of the stream is $3 \mathrm{~km} / \mathrm{hr}$, the time taken by the boat to go 81 km upstream.				
	a) 9 hrs	b) 5.4 hrs	c) 6.7 hrs	d) 27 hrs	a

$\begin{array}{\|l} \hline 1 \\ 5 \\ \hline \end{array}$	What will be the cost price of a ball if on selling 15 balls at Rs. 500, there is a loss equal to the cost price of 10 balls.				Answer option (a,b,c or d)
	a) Rs. 100	b) Rs. 50	c) Rs. 250	d) Rs. 550	a
1	In which year Mahatma Gandhi returned to India?				d
	a)1932	b) 1875	c)1921	d)1915	1915
1	Which of following rivers is the longest in India?				d
	a) Ravi	b) Brahmapu tra	c) Kaveri	d) Ganga	Ganga
1	Which of the following is equal to y^{4} ?				c)
	a) $y^{6}-y^{2}$	b) $y^{6} \cdot y^{2}$	c) y^{6} / y^{2}	d) $\left(y^{6}\right)^{2}$	$\mathrm{y}^{6} / \mathrm{y}^{2}$
1	If ' X ' is inversely proportional to ' Y ' and ' Y ' is inversely proportional to ' Z ', then				b)
	a) ' X ' is inversely proportional to ' Z '	b) ' X ' is directly proportio nal to ' Z '	c) ' X ' is directly proportional to ' YZ '	d) ' X ' is constant	' X ' is directly proportional to 'Z'
2	Choose the appropriate word: If you are trying to make a strong impression on your audience, you cannot do so by being understated, tentative or \qquad				b)
	a) Hyperbolic	b) Restraine d	c) Argumenta tive	d) Indifferent	Restrained
2 1	A cache has 57 cache hits and 5 cache misses over a period of 3 seconds. The hit ratio is:				a
	A. 0.919	$\begin{array}{ll} \hline \text { B. } & 0.8 \\ 7 & \\ \hline \end{array}$	$\text { C. } 0.845$	D. 0.92	0.919
2	Match the following columns:				
	Column 1		Column 2		
	P: Indirect addressing		. Array Implementation		a
	Q: Indexed addressing		2. Writing relocatable code		
	R : Base register addressing		3. Passing array as parameter		
	a) P-3, Q-1, R-2	$\begin{array}{\|lr} \hline \text { b) } & \text { P- } \\ 2, & \mathrm{Q}-3, \\ \mathrm{R}-1 \end{array}$	$\begin{aligned} & \text { c) P-3, } \\ & \text { Q-2, } \mathrm{R}-1 \end{aligned}$	$\begin{array}{ll} \hline \text { d) } & \mathrm{P}-1, \mathrm{Q}-3, \\ \mathrm{R}-2 \end{array}$	P-3, Q-1, R-2
2 3	Which of the following statements are true? A. Direct-mapped cache has a higher hit ratio compared to fully associative cache for the same cache size. B. In a multicore processor, each core shares the same Level 1(L1) cache but has its own dedicated level 2 (L2) cache.				d

| | C. SIMD (Single Instruction, Multiple Data) architectures are
 particularly well-suited for applications involving vector processing
 and multimedia tasks.
 D. The Amdahl's Law states that the overall performance
 improvement gained by optimizing a single part of a system is limited
 by the fraction of time that the improved part is actually used. | |
| :--- | :--- | :--- | :--- | :--- |

	a) A-iv, B-iii, C-i, D-ii	$\begin{aligned} & \text { b) A-ii, B- } \\ & \text { iii, C-iv, } \\ & \text { D-i } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { c) A-iii, B-i, } \\ & \text { C-iv, D-ii } \end{aligned}$	$\begin{aligned} & \text { d) A-I, B-iii, C- } \\ & \text { iv, D-ii } \end{aligned}$	$\begin{gathered} \text { A-iv, B-iii, C-i, } \\ \text { D-ii } \end{gathered}$
2	Find which of the follo A. The MIPS (M Stages) architecture arithmetic operations B. Deeper pipeline to shallower pipelines C. The x86 instruct variable-length instruct D. Pipeline bubble proceed due to a depe cycles.	wing stateme icroprocess uses a load e performed always resu due to increa uction arch ions and fix or stalls oc ndency or	nts are true: or without Int store instructio directly on men ult in better perfo sed parallelism. tecture uses a d-length instruc cur when a pip azard, resulting	rlocked Pipeline n format where ory. rmance compared combination of tions. line stage cannot in wasted clock	b
	a) A only	b) C and D	c) B and D	d) A and C	C and D
	For the given statements, choose the correct answer: A: A computer system has a main memory with a total capacity of 1 GB (Gigabyte) and a cache memory with a total capacity of 256 KB (Kilobytes). The cache uses a block size of 64 bytes. B: If the cache is organized as a direct-mapped cache with a cache line size of 64 bytes, the number of cache lines is 4096 .				a
	a) Both A and B are true, and B is the correct explanation for A .	b) Both A and B are true, but B is not the correct explanatio n for A .	c) A is true but B is false	d) A is false but B is true	a) Both A and B are true, and B is the correct explanation for A.
	Consider a uniprocessor system where new processes arrive at an average of five processes per minute and each process needs an average of 6 seconds of service time. What will be the CPU utilization ?				b)
	a) 60%	b) 50 \%	c) 40%	d) 80%	50 \%
	The output of a sequential circuit depends on (A) present input only (B) past input				(c)
	(a) A is True	(b) B is True	(c) Both A and B are True	(d) None are True	Both A and B are True
3	A byte addressable computer has a memory capacity of 2 m Kbytes and can perform $2 n$ operations. An instruction involving 3 operands and one operator needs a maximum of				(d)
	(a) 3 m bits	(b) $m+n$ bits	(c) $3 \mathrm{~m}+\mathrm{n}$ bits	(d) $3 \mathrm{~m}+\mathrm{n}+30$ bits	$\begin{aligned} & 3 \mathrm{~m}+\mathrm{n}+30 \\ & \text { bits } \end{aligned}$

3	Which of the following Type Questions here for	flip-flops is r matching p	s free from race pairs: Data Storage .Set- Reset Regis .free from race co .Counter	ondition?	(a)
	$\begin{aligned} & \text { (a) A-iv, B-ii, C-iii, D- } \\ & \text { i } \end{aligned}$	$\begin{aligned} & \text { (b) A-i, B- } \\ & \text { ii, C-iii, } \\ & \text { D-iv } \end{aligned}$	(c) A-iv, Biii, C-i, D-ii	$\begin{aligned} & \text { (d) A-iv, B-ii, C- } \\ & \text { iv, D-iii } \end{aligned}$	$\begin{gathered} \text { A-iv, B-ii, C- } \\ \text { iii, D-i } \end{gathered}$
3 4	(A)Assertion: One of the main features that distinguish microprocessor from micro-computers is microprocessor does not contain I/O devices. (R) Reason: Microprocessor is the processing unit of the computer.				c)
	(a) A is Valid answer	(b) R is Valid answer	(c) Both A and R is valid answer	(d) None of the above.	Both A and R is valid answer
$\begin{array}{\|l\|} \hline 3 \\ 5 \\ \hline \end{array}$	$(\mathrm{P} V \mathrm{Q}) \Lambda(\mathrm{P} \rightarrow \mathrm{R}) \Lambda(\mathrm{Q}) \rightarrow \mathrm{S})$ is equivalent to				Answer option (c)
	a) $\mathrm{S} \Lambda \mathrm{R}$	b) $\mathrm{S} \rightarrow \mathrm{R}$	c) S V R	d) None of these	S V R
$\begin{array}{\|l\|} \hline 3 \\ 6 \\ \hline \end{array}$	Statement: Informed search algorithms offer advantages over uninformed search because: A They explore the search space in a completely random order. B They prioritize searching areas that appear closer to the goal based on a heuristic function. C They are guaranteed to find the optimal solution (shortest path, lowest cost) in all cases.				Answer option (d)
	a) A:False, A:True , A:False	b)A:True, B:True C:False	c)A:False, B:False, C:False	d)A:True,B:Tru e,C:True	A:True,B:True, C:True
3 7	Assertion (A): Communication between agents can always improve their overall performance in achieving a common goal. Reason (R): Sharing information and coordinating actions can lead to more efficient solutions for multi-agent tasks.				Answer option (b)
	a) A is True, R is True	b) Only R is True	c) Only A is True	d) None of the above	Only R is True
3 8	Some search algorithms combine elements of both uninformed and informed search strategies. An example of such a hybrid approach is:				Answer option (a)
	a)Bidirectional Search (BFS from start and goal states)	b)A* search with a perfect heuristic	c) Depth- limited search with a fixed depth limit	d)Iterative deepening search with increasing depth limits	Bidirectional Search (BFS from start and goal states)

		e humans possess.			
4	Match the Columns valA $x^{\wedge} 2-4 x+4=0$ B $3 y+5<14$ C $\|2 x-3\|=5$ D $x+2 y=4 ; ~ y=-1$		ft with correct va y <3 i $\mathrm{x}=2.5$ or $\mathrm{x}=-0.5$ iii $\mathrm{x}=2, \mathrm{y}=-1$ iv $\mathrm{x}=2$	lues on the right:	Answer option (a)
	$\begin{aligned} & \text { a) A-iv, B- i, C- ii , D } \\ & \text {-iii } \end{aligned}$	$\begin{aligned} & \text { b)A -i, B- } \\ & \text { iv, C- ii, } \\ & \text { D -iii } \end{aligned}$	$\begin{aligned} & \text { c) A -iv, B-ii }, \\ & \text { C- i, D-iii } \end{aligned}$	$\begin{aligned} & \text { d)A -iv, B- i, C- } \\ & \text { iii , D -ii } \end{aligned}$	$\begin{aligned} & \text { A -iv, B-i, C- } \\ & \text { ii , D -iii } \end{aligned}$
4 Statement 1 : If $\mathrm{f}(\mathrm{x})$ is strictly increasing and $\mathrm{g}(\mathrm{x})$ is strictly decreasing, then their composite function $\mathrm{h}(\mathrm{x})=\mathrm{g}(\mathrm{f}(\mathrm{x}))$ is strictly increasing. Statement 2: The composite function of two continuous functions is always continuous. A Statement 1 is False, Statement 2 is False B Statement 1 is True, Statement 2 is True C Statement 1 is True, Statement 2 is False D Statement 1 is False, Statement 2 is True					Answer option (d)
	a) A	b) B	c) C	d) D	D
	Assertion (A): The power set of a set with n elements always has $2^{\wedge} n$ elements. Reason (R): The power set includes all possible subsets of the original set, including the empty set.				Answer option (a)
	a) A is True, R is True	b) A is True, R is False	c) A is False, R is True	d) A is False, R is False	A is True, R is True
4	Let $\mathrm{R} \rightarrow \mathrm{R}$ be defined by, then the value of $\mathrm{f}(-1.75)+\mathrm{f}(0.5)+\mathrm{f}(1.5)$ is,$\mathrm{f}(\mathrm{x})=\left\{\begin{array}{c} \mathrm{x}+2 \mid \mathrm{x}<=-1 \\ \mathrm{x}^{2} \mid-1<=x<=1 \\ 2-\mathrm{x} \mid \mathrm{x}>=1 \end{array}\right.$				Answer option (c)
	a) 0	b) 2	c) 1	d) -1	1
4	The number of binary relations on a set with n elements is				nswer option (c)
	a) n^{2}	b) 2^{n}	c) $2^{n^{2}}$	d)none of these	$2^{n^{2}}$
	Match the Columns value on the left with correct values on the right:				nswer option
	A $3 \mathrm{x}^{\wedge} 2+5 \mathrm{x}-2$		i Irrational number		
	B 2 $\sqrt{5}$		ii Binomial expression with a common factor		
	C $\mathrm{x}+(\mathrm{y}+\mathrm{z})$		iii Monomial		
	D $x y^{\wedge} 2$		iv Quadratic expression		
	a) A-iv, B-i, C-ii, Diii	$\begin{aligned} & \text { b)A-i, B- } \\ & \text { iv, C-ii, D- } \\ & \text { iii } \end{aligned}$	c) A-iv , B-ii, C-i, D-iii	$\begin{aligned} & \text { d)A-iv, B-i, C- } \\ & \text { iii, D-ii } \end{aligned}$	$\begin{gathered} \hline \text { A-iv, B-i, C-ii, } \\ \text { D-iii } \end{gathered}$

5	Statement 1: A function $f(x)=x^{\wedge} 2$ is injective but not surjective. Statement 2: A bijective function (one-to-one and onto) necessarily has an inverse function. A Statement 1 is True, Statement 2 is True B Statement 1 is True, Statement 2 is False C Statement 1 is False, Statement 2 is True D Statement 1 is False, Statement 2 is False				Answer option (a)
	a) A	b) B	c) C	d) D	A
5 1	Assertion (A): If set A is a subset of set B , then the Venn diagram representing them will show A completely inside B . Reason (R): Every element in set A must also be an element in set B for A to be a subset.				Answer option (a)
	a) A and R are True	b) A is True and R are False	c) A and R are False	d) None of the above	A and R are True
5 2	If A and B are sets and $A U B=A \cap B$, then				Answer option (c)
	a) $A=\varnothing$	b) $\mathrm{B}=\emptyset$	c) $\mathrm{A}=\mathrm{B}$	d) None of these	$\mathrm{A}=\mathrm{B}$
5 3	Which sorting algorithm has the same average-case and worst-case running time:				Answer option (b)
	a) Bubble Sort	b) $\quad \mathrm{M}$ erge sort	$\begin{array}{ll} \hline \text { c) } & \text { Quick } \\ \text { sort } \end{array}$	d) Insertion	Merge sort
5	In a binary search tree, the in-order and pre-order traversal sequences are D, F, B, A, G, E, H, C and A, B, D, F, C, E, G, H respectively. The post-order traversal sequence is:				Answer option (b)
	$\begin{aligned} & \text { a) } \mathrm{H}, \mathrm{G}, \mathrm{E}, \mathrm{C}, \mathrm{~F}, \\ & \mathrm{D}, \mathrm{~B}, \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { b) } \quad \mathrm{F}, \\ & \mathrm{D}, \mathrm{~B}, \mathrm{G}, \\ & \mathrm{H}, \mathrm{E}, \mathrm{C}, \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { c) } \quad \text { C, H, } \\ & \text { E, G, A, B, F, } \\ & \text { D } \end{aligned}$	$\begin{aligned} & \text { d) G, H, E, } \\ & \text { C, F, D, B, A } \end{aligned}$	$\begin{aligned} & \mathrm{F}, \mathrm{D}, \mathrm{~B}, \mathrm{G}, \mathrm{H}, \\ & \mathrm{E}, \mathrm{C}, \mathrm{~A} \end{aligned}$
5	Suppose n data items $A_{1}, A_{2}, \ldots, A_{n}$ are sorted, i.e. $A_{1}<A_{2}<\cdots<$ A_{n}. Assume the items are inserted into an empty binary search tree. What is the worst-case running time to search an element?				Answer option (a)
	a) $\mathrm{O}(\mathrm{n})$	b) $\quad 0($	c) $\quad \mathrm{O}(\mathrm{nlo}$	d) $\quad O\left(n^{2}\right)$	O(n)
5	Find the minimum number of scalar multiplications required to multiply 4 matrices described by $\left(r_{0}, r_{1}, r_{2}, r_{3}, r_{4}\right)=(20,50,3,50,2)$. a)				Answer option (a)
	a) 2600	$\begin{array}{ll} \text { b) } & 80 \\ 00 & \end{array}$	c) 3420	d) 2420	2600
5	Consider the sequences $\mathrm{X}=<1,2,3,2,4,1,2>$ and $\mathrm{Y}=<2,4,3,1,2$, $1>$. The longest common sequence(s) of X and Y are (i) $<2,3,2,1>$ (ii) $<2,4>$				Answer option (d)

	(iii) $<1,2>$ (iv) $<2,4,1,2>$				
	a) Only (i) is true	b) Bo th (ii) and (iii) are true	c) Only (iv) true	d) Both (i)	Both (i) and (iv) are true
5	Match List-I with List- Choose the correct ans	II conquer gorithm ng rogramming ver from the	List-II (i) Prim' (ii) Quick (iii) Bellm algorithm ,(iv) \quad N-Qu options given b	s Algorithm Sort an-Ford een Problem low:	Answer option (b)
	$\begin{array}{lcc} \hline \text { a) } & \text { A-(i), } & \text { B-(ii), } \\ \text { C-(iv), } & \text { D-(iii) } \end{array}$	$\begin{aligned} & \hline \text { b) } \quad \text { A- } \\ & \text { (ii), } \mathrm{B}-(\mathrm{i}), \\ & \text { C-(iv), D- } \\ & \text { (iii) } \end{aligned}$	$\begin{aligned} & \text { c) A-(i), } \\ & \text { B-(iii), } \quad \text { C- } \\ & \text { (iv), D-(ii) } \end{aligned}$	$\begin{aligned} & \text { d) A-(iv), B-(ii), } \\ & \text { C-(iii), D-(i) } \end{aligned}$	$\begin{array}{lr} \text { d) } & \text { A-(ii), } \\ \text { B-(i), } & \text { C-(iv), } \\ \text { D-(iii) } & \end{array}$
$\begin{aligned} & 5 \\ & 9 \end{aligned}$	What is the chromatic number of a complete graph with n vertices, where n is an even number?				Answer option (a)
	a) $\mathrm{n}-1$	b) n	c) $\mathrm{n}+1$	d) $2 \mathrm{n}-1$	$\mathrm{n}-1$
6	1. Given below two statements: Assertion (A): The divide and conquer algorithms solve each subproblem many times. Justification (J): Divide and conquer does not store the intermediate results. In the light of the above statements, select the most appropriate answer:				Answer option (d) Both (A) and (J) are true and (J) is the correct explanation of (A).
6	The maximum height of a red-black Binary Search Tree (BST) with 1024 nodes is:				Answer option (d))
	a) 10	b) 11	c) 12	d) 20	20
2	How can NFA be converted to DFA?				Answer option b
	a) Chomsky algorithm	b) subset constructi on	c) Pumping lemma for	d) Directed Acyclic Graph	subset construction

			regular languages		
6	Consider the following statements about a Moore machine: A Moore machine can recognize a subset of context free languages only. B The output of Moore machine is determined by its current state. C The output of Moore machine is also determined by the current input. D Has less or the same number of states as an equivalent Mealy machine.				Answer option d
	a) only (B) and (C)	b) (B), (C) and (D) only	c) (A) and (B) only	d) (B) only	(B) only
$\begin{aligned} & 6 \\ & 4 \end{aligned}$	Consider the language $\mathrm{L}=\left\{0^{\mathrm{n}} 1^{\mathrm{n}}: \mathrm{n} \geq 0\right\}$ A: A non-deterministic pushdown automaton can be constructed to recognize L. B: Language L is a context free language				Answer option a
	a) Both (A) and (B) are true	b) Both (A) and (B) are false	c) (A) is false but (B) is true	d) (A) is true but (B) is false	Both (A) and (B) are true
$\begin{aligned} & \hline 6 \\ & 5 \end{aligned}$	For each entry in the first column, find a suitable grammar in the second column:				Answer option b
	A Regular Expression B NFA C CFG D Mealy Machines	$\begin{array}{l\|l} 1 \\ \hline & I \\ \hline \end{array}$	Type 0 Type 1 Type 2 Type 3		
	a) A-I, B-I, C-III, D-II	b) A-IV, B-IV, CIII, D-IV	$\begin{aligned} & \text { c) A-I, B-I, C- } \\ & \text { IV, D-II } \end{aligned}$	$\begin{aligned} & \text { d) A-IV, B-IV, } \\ & \text { C-II, D-IV } \end{aligned}$	$\begin{gathered} \hline \text { A-IV, B-IV, C- } \\ \text { III, D-IV } \end{gathered}$
	The regular expression $((0+1)(0+1))^{*}$ represents the language				Answer option b
	a) $00\|01\| 10 \mid 11$ followed by 0 or 1	b) Str ings with length multiple of 2	c) all strings of $(0,1)^{*}$	d) $01 \mid 10$ repeated two times.	e) Strings with length multiple of 2
6 7	Consider the following grammar: $E \rightarrow E * E\|E+E\| a$ A. More than one parse tree is possible for string $a * a+a$ B. Pumping lemma for CFGs can determine ambiguity of a grammar				Answer option a

	a) (A) is true but (B) is not the correct explanation	b) (A) is true and (B) is the correct explanatio n	c) (A) is false but (B) is true	d) (A) is false and (B) is false	(A) is true but (B) is not the correct explanation
	Which of the following regular expressions correctly describe an integer?				Answer option a
	a) [+-]? [0-9]+	${ }_{\text {b) }}^{\text {b }}[0-9]^{*}{ }^{\text {a }}$	$\begin{array}{ll}\text { c) } \\ 9]+ & {[0-}\end{array}$	d) $9]^{*}$$\quad[0-9][0-$	[+-]?[0-9]+
6	Consider the following assertions regarding the Chomsky Normal Form: A. CNF can represent Context Free Grammars only B. A production can generate a single terminal or C. A production can generate two non-terminals D. Start symbol can generate ϵ Which of the above assertions are true?				Answer option c
	a) (A), (B) and (C) only	b) (B) and (C) only	c) (A), (B), (C) and (D)	d) (A), (B) and (D) only	$\begin{gathered} \text { (A), (B), (C) } \\ \text { and (D) } \\ \hline \end{gathered}$
	Which of the following options best describe the language recognized by the following automata? A) Strings of odd length B) Strings ending with 0 's C) Strings ending with 1's D) Strings ending with 01 or 10				Answer option d
	a)A, B and C only	b)A, B, C and D	c) B, C and D only	d) B and C only	B and C only
	Assertion: (A) Quick Sort is generally faster in practice compared to other sorting algorithms like Merge Sort and Heap Sort. Justification: (B) Quick Sort has a worst-case time complexity of				Answer option (c)

	$\mathrm{O}\left(\mathrm{n}^{2}\right)$.				
	a) Both A and B are true, and B is the correct explanation of A.	b) Both A and B are true, but B is not the correct explanatio n of A.	c) A is true, but B is false.	d) A is false, but B is true.	A is true, but B is false.
2	What will be post order traversal of a binary tree T, if preorder and inorder traversals of T are given by AGDNIH and GANDHI respectively?				Answer option (d)
	a)GIHNDA	$\begin{array}{\|l} \hline \text { b) GHNID } \\ \text { A } \end{array}$	c)GDNIAH	d)GNHIDA	GNHIDA
3	A parentheses checker program would be best implemented using				Answer option (b)
	a) List	b) Stack	c) Queue	d) Tree	Stack
7	What is the output of following function for a function call statement display(5); void display(int num) \{if (num>1) display(num-1); printf(" \%d ",num); \}				Answer option (c)
	a) 54321	b) 5555	c) 12345	d) 5	12345
7	What is structured data?				b
	a) Structured data is a type of data that is huge in number and has many inaccurate values	b) Structured data is a type of data that is very less in number and can be stored in proper rows and columns	c) Structured data is a type of data that has inaccurate values but can be stored in rows and columns	d) Structured data is a type of data that has absolute values but can be stored in rows and columns	Structured data is a type of data that is very less in number and can be stored in proper rows and columns
6	Which type of machine learning is defined by using only labeled data to predict some outcome?				c
	a) Semi-supervised Machine learning	b) Unsupervi sed Machine learning	c) Supervised Machine learning	d) Reinforcement Machine learning	Supervised Machine learning

$\begin{array}{\|l\|} \hline 7 \\ 7 \end{array}$	Decision tree belongs to which of the following machine learning categories? A. Semi-supervised Machine learning B. Unsupervised Machine learning C. Supervised Machine learning D. Reinforcement Machine learning				c
	a) A only	b) B only	c) C only	d) A and D	C only
78	Choose the correct matching pairs:				b
	1. Data cleaning	a) First step of data preparation b) Second step of data preparation			
	2. Data reduction				
	3. Data transformation		c) Third step of data preparation		
	4. Data integration		d) Fourth step of data preparation		
	a) 1-a, 2-b, 3-c, 4-d	b) 1-a, 2- b, 3-d, 4-c	c) 1-b, 2-a, 3- c, 4-d	$\begin{aligned} & \text { d) 1-a, 2-c, 3-b, } \\ & 4-\mathrm{d} \end{aligned}$	$\begin{aligned} & \text { 1-a, 2-b, 3-d, } \\ & 4-c \end{aligned}$
$\begin{array}{\|l\|} \hline 7 \\ 9 \end{array}$	Choose the correct option: Assertion (A): Descriptive data analysis provides a summary of the raw data set. Reason (R): Descriptive data analysis involves summarizing and organizing data to describe the data set's main features.				a
	a) Both Assertion (A) and Reason (R) are true, and Reason (R) is the correct explanation of Assertion (A).	b) Diagnosti c data analysis	c) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of Assertion (A).	d) Assertion (A) is false, but Reason (R) is true.	Both Assertion (A) and Reason (R) are true, and Reason (R) is the correct explanation of Assertion (A).
$\begin{array}{\|l\|} \hline 8 \\ 0 \\ \hline \end{array}$	What do you mean by the model planning phase in the life cycle of data analytics?				a
	a) This phase involves creating data sets for training for testing, production, and training purposes	b) This phase involves the processin g of big raw data	c) This Phase involves the team which is responsible for evaluating the tools	d) This phase involves the finalization of big raw data	This phase involves creating data sets for training for testing, production, and training purposes
8 1	K-Nearest Neighbors (KNN) is classified as what type of machine learning algorithm?				a
	a) Instance-based learning	b) Parametri c learning	c) Nonparametric learning	d) Model-based learning	Instance-based learning

8 2	Which algorithm is best suited for a binary classification problem? A. K-nearest Neighbors B. Decision Trees C. Random Forest D. Linear Regression				b
	a) A only	b) B only	c)A and C	d) C and B	B only
8	Assertion (A): AdaBoost improves classification accuracy. Reason (R): AdaBoost is an ensemble learning method that combines multiple weak classifiers to create a strong classifier. By iteratively adjusting weights and focusing on incorrectly classified instances, AdaBoost tends to improve overall classification accuracy. Choose the correct option:				a
	a) Both Assertion (A) and Reason (R) are true, and Reason (R) is the correct explanation of Assertion (A)	b) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanatio n of Assertion (A).	c) Assertion (A) is true, but Reason (R) is false.	d) Assertion (A) is false, but Reason (R) is true.	Both Assertion (A) and Reason (R) are true, and Reason (R) is the correct explanation of Assertion (A)
	In order to invoke a system call, tick which of the following activities need to be performed: P. Copy syscall number to a designated register Q. Pass syscall arguments via registers / stack R. Perform a software interrupt only				d)
	a) P and R only	b) Q and R only	c) P and Q only	d) P, Q and R only	P, Q and R only
8	Which of the following statements about Linux processes are true? P. P. Ctrl-C command kills a foreground process. Q. Q. Ctrl-Z command kills a background process. R. R. Ctrl-S command suspends a foreground process.				a)
	a) P only	b) Q only	c) R only	d) P and R only	P only
	In x86 64-bit assembly language programming, how do we execute a system call?				d)
	a) software interrupt int 0×80	b) software interrupt int 128	c) software interrupt int 0q200	d) syscall	syscall
8	The purpose of a swap partition in a modern operating system is :				(d)

| | a) To swap or replace
 bad sectors in hard
 disk | b) It acts
 as an I/O
 mechanis
 for for
 efficient
 schedulin
 g | c) Tore
 swapped out
 process IDs. | d) To increase
 virtual memory
 of the system | To increase
 virtual memory
 of the system |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

		n set computer			
	If memory address size $=22$ bits and it is 2-byte addressable, then memory size $=$ \qquad				c)
	a) 2 MB	b) 4 MB	c) 8 MB	d) 16 MB	8MB
9	Identify which of the following interrupt signals in 8085 processors are maskable? A. TRAP B. RST 7.5 C. RST 6.5 D. INTR				d
	a) A only	b) B and C only	c) A and D only	$\begin{aligned} & \text { d) } \mathrm{B}, \mathrm{C} \text { and } \mathrm{D} \\ & \text { only } \end{aligned}$	$\begin{aligned} & \mathrm{B}, \mathrm{C} \text { and } \mathrm{D} \\ & \text { only } \end{aligned}$
	Which of the following instruction cycles are present in 8085 architectures? A. Instruction Fetch B. Instruction Decode C. Instruction Execute D. Instruction pipelining				b
	a) A and B only	$\begin{array}{\|l\|l\|} \hline \text { b) A, } \\ \text { B and C } \\ \text { only } \end{array}$	$\begin{aligned} & \hline \text { c) A, B, } \\ & \text { C and D only } \end{aligned}$	d) D only	$\begin{gathered} \mathrm{A}, \mathrm{~B} \text { and } \mathrm{C} \\ \text { only } \end{gathered}$
$\begin{array}{\|l\|} \hline 9 \\ 8 \end{array}$	Match the following:				b)
	A. Stack pointer	i. contains address of the next instruction to be executed			
	B. Program counter	ii. contains address at the top of the stack			
	C. Limit register	iii. a specific register in some CPU architectures			
	D. Accumulator	iv. Mechanism to allocate processspace			
	a) A-ii, B-i, Ciii, D-iv	$\begin{array}{ll} \hline \text { b) } \quad \text { A- } \\ \text { ii, } & \text { B-i, } \\ \text { iv, } & \text { D-iii } \end{array}$	$\begin{array}{lc} \hline \text { c) } & \text { A-iii, } \\ \text { B-ii, } & \text { C-i, } \\ \text { iv- } \\ \hline \end{array}$	$\begin{aligned} & \text { d) A-iv, B- } \\ & \text { ii, C-iii, D-i } \end{aligned}$	$\begin{gathered} \text { A-ii, B-i, C-iv, } \\ \text { D-iii } \end{gathered}$
	Which of the following statements about the 8085 microprocessor are TRUE? A. The address bus in the 8085 microprocessor is bi-directional B. There are two register pairs to store memory address and other data.				b
	a) A only	b) B only	c) Both A and B	d) Neither A nor B	B only

