This booklet consists of 100 questions and 11 printed pages.		
RGUCET/2024//_	Series	NIL

RGUCET 2024 Common Entrance Test, 2024

MASTER OF SCIENCE (ELECTRONICS)

Full Marks: 100	Time: 2 Hour	
Roll No.		
Day and Date of Examination:		
Signature of Invigilator(s)		
Signature of Candidate		
General Instructions:		

PLEASE READ ALL THE INSTRUCTIONS CAREFULLY BEFORE MAKING ANY ENTRY.

- 1. DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE TOLD TO DO SO.
- 2. Candidate must write his/her Roll Number on the space provided.
- 3. This Test Booklet contains 100 Multiple Choice Questions (MCQs) from the concerned subject. Each question carries 1 mark. There shall be negative marking of 0.25 against each wrong attempt.
- 4. Please check the Test Booklet to verify that the total pages and total number of questions contained in the test booklet are the same as those printed on the top of the first page. Also check whether the questions are in sequential order or not.
- 5. Candidates are not permitted to enter into the examination hall after the commencement of the entrance test or leave the examination hall within one hour thirty minutes.
- 6. Making any identification mark in the OMR Answer Sheet or writing Roll Number anywhere other than the specified places will lead to disqualification of the candidate.
- 7. Candidates shall maintain silence inside and outside the examination hall. If candidates are found violating the instructions mentioned herein or announced in the examination hall, they will be summarily disqualified from the entrance test.
- 8. In case of any dispute, the decision of the Entrance Test Committee shall be final and binding.
- 9. The OMR Answer Sheet consists of two copies, the Original copy and the Student's copy.

-	TT 11. T1	0 11		1 6	
1	He said to me, I h	h fire			
					ь
	a) He said that	b) He told me	c) He	d) He said to me	He told me
	he has often	that he had	reminded me	that he often told	that he had
	been telling me	often told me	that he often	me not to play	often told me
	not to play with	not to play with	said to me	with fire.	not to play
	fire.	fire.	not to play with fire.		with fire.
2	"I wish	to wayn natica tha		you have recently	
2				e appropriate non-	d
	finite from the fol		by choosing the	appropriate non	a
	a)bring	b) to bringing	c)to brought	d) to bring	to bring
3	Contaminating?	1 -)	1 -)	1)8	8
					Ъ
	(a)	T	a) a antainin a	d) an a amma a sain a	
	a)	b) polluting	c)containing	d)encompassing	polluting
	investing	o) politing			ponuting
4	They	her and trus	sted her for year	'S	c
	a) know	b) had known	c) knew	d) known	knew
5	Identify the corre	ct transformation	of the sentence	given containing	
	the adverb "too".				
					d
	He is too young to	o get a driving lice	ense.		
	a) He is young	b) He is young	c) He cannot	d) He is so	
	so he cannot get	due to which he	get driving	young that he	He is so young
	a driving license	cannot get	_	cannot get a	that he cannot get a driving
		driving license	because he is	driving license	license
		<u> </u>	very young		neense
6	The theory of rela	itivity is associated	d with		c
	a) Galileo	b) Johannes	c)Albert	d) Isaac Newton	Albert
	Galilei	Kepler	Einstein		Einstein
7	Which Hindi mov	ie got the first Na	tional Award?		
					С
	a) Clause 420	1.) In anit:) Mima	4) Name of these	
	a) Shree 420	b)Jagriti	c) Mirza Ghalib	d) None of these	Mirza Ghalib
8	PVC is a polymer	of	Juano	<u> </u>	
		<u> </u>			
					ь
					U
	a) Propane	b) Vinyl	c) Styrene	d) Carbonates	
	a) i iopane	chloride	o) Stylene	a) Caroonates	Vinyl chloride
9	Which of the foll		not a part of the	e Olympic Games	
	but a part of the C			J 1	d
					

	a) Lawn Balls	b) Netball	c) Squash	d) All of the above	All of the above
10	Consider the follo 1. Arunachal Prad 2. Nagaland 3. Manipur	•			d
	4. Mizoram The inner line per Which among the				
	a) Only 1, 2 & 3	b) Only 1, 2 & 4	c) Only 2, 3 & 4	d) 1, 2, 3 & 4	1, 2, 3 & 4
11	Which company 'Stargate' AI super		g with OpenAI	to construct the	c)
	a) Apple	b) Google	c) Microsoft	d) IBM	Microsoft
12			l into India's ina	augural tri-service	c)
	a) Delhi	b) Bangalore	c) Mumbai	d) Chennai	Mumbai
13	Who has assume Press Information	-	Principal Direct	or General of the	c)
	a) Manish Desai	b)Neha Sharma	c) Sheyphali B. Sharan	Sharma	Sheyphali B. Sharan
14	pandemic, consideration of the Serur named Covisheid of the Sputnik Variation of the Serur named Covisheid of the Sputnik Variation of the Serur named Covisheid	er the following Institute of Ir I using mRNA pl V vaccine is ma I is an inactivate	statements: ndia produced C latform. anufactured usin ed pathogen-base	OVID-19 vaccine ag a vector-based d vaccine.	b)
	a)1 and 2 only	b)2 and 3 only		d)1, 2 and 3	2 and 3 only
15	Consider the follo	owing pairs: Wet		ons	
	Lake		Location		
	A) Hokera V		Punjab		
	B) Renuka V		Himachal Prades	sh	b)
	C) Rudrasag		Tripura		
			Tamil Nadu	19	
	How many pairs g				
	a)Only one pair	b)Only two pairs	c)Only three pairs	d)All four pairs	Only two pairs
16	Suppose a series i of question mark			comes at the place	
	1	6- · 0011			d)
	a) 91	b) 21	c) 52	d) 81	81

17	If PINK is coded	c)			
	a) 19 <i>5</i> 4	1,1052	a) 1054	4) 1062	1054
10	a) 1854	b)1853	c) 1854	d) 1963	1854
18	Statement 1: John Statement 2: Tom Statement 3: Geor If statement 1 and	runs faster than Joge runs faster than	ohn n Tom	will be -	b)
	a) True	b) False	c) Uncertain	d) None of the above	False
19	If A and B together the work in 50 day job?	er can finish the works, how many days	ork in 10 days a s B will take to o	d C together do it. and C alone can do complete the same	d)
	a)20 days	b)22 days	c)23 days	d)25 days	25 days
20	A can finish a work days. If they work			e same work in 15 to finish the job	c)
	a) 14 days	b) 15 days	c) 12 days	d) 14.5 days	12 days
21	Find the transpose $\begin{bmatrix} 1 & 3 & -2 \\ -1 & 7 & 0 \\ 1 & 0 & 8 \end{bmatrix}$	of the given Mat	rix.		a
	a. $\begin{bmatrix} 1 & -1 \\ 3 & 7 \\ -2 & 0 \end{bmatrix}$	$ \begin{bmatrix} b. \\ 1 & 1 & 1 \\ 3 & 7 & 0 \\ -2 & 0 & 8 \end{bmatrix} $	$\begin{bmatrix} 3 & 7 & 0 \\ -2 & 0 & 8 \end{bmatrix}$	$\begin{bmatrix} 3 & 7 & 0 \\ -2 & 0 & 8 \end{bmatrix}$	$\begin{bmatrix} 1 & -1 \\ 3 & 7 \\ -2 & 0 \end{bmatrix}$
22	Which of the follo	owing matrix is Sk	xew Symmetric	?	a
	$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 3 \\ -1 & 9 \end{bmatrix}$	$\begin{bmatrix} 8 & -2 \\ -1 & 3 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$
23	The velocity of light. What is the		•	is the speed of the legree?	С
	a. 30	b. 45	c. 60	d. 90	60
24				on of which scale?	a
	a. Tempera ture	b. Heat energy	c. Press ure	d. Internal energy	Temperature
25	_		rbit near a pla	net is unaffected	c
	a. Planet's mass	b. Planet's radius	c. Satell ite's mass	d. All the mentioned	Satellite's mass

planets are: a. Perfect b. Square c. Trian d. Ellicircle 27 What is the order of the differential equation, y"+y'-3xy=sinx? a. 1 b. 2 c. 3 d. 4 28 What is the degree of the equation, 4x³-6x² y³+2y=0? a. 2 b. 3 c. 4 d. 5 29 Give the SI unit of resistivity.	b 2 d 5 c m/met ohmmetre
27 What is the order of the differential equation, y"+y'-3xy=sinx? a. 1 b. 2 c. 3 d. 4 28 What is the degree of the equation, 4x³-6x² y³+2y=0? a. 2 b. 3 c. 4 d. 5	2 d 5 c
a. 1 b. 2 c. 3 d. 4 28 What is the degree of the equation, $4x^3-6x^2y^3+2y=0$? a. 2 b. 3 c. 4 d. 5	2 d 5 c
28 What is the degree of the equation, $4x^3-6x^2y^3+2y=0$? a. 2 b. 3 c. 4 d. 5	d 5 c
a. 2 b. 3 c. 4 d. 5	5 c
	c
1 29 Give the SI unit of resistivity.	
	n/met onmmetre
a. ohm/met b. ohm c. ohm d. ohn re	
30 What is the SI unit of current?	ь
a. Coulomb (C) b. Ampere (A) c. Farad (F) d. Newton	(N) Ampere (A)
31 Give the SI unit of the magnetic field.	ь
a. Ampere b. Tesla c. Oersted d. Weber	Tesla
32 What is the instrument used in Faraday's experiment?	a
a. Galvanometer b. Ammeter c. Voltmeter d. Meter B	
33 The energy by virtue of its position is known as:	<u>b</u>
a. Kinetic b. Potenti c. Inter d. Hea	
energy al energy nal energy energy	energy
34 What should be the angle between force and displacement	nt for a
maximum work to be done?	
00 11 000 1 000	
a. 0° b. 90° c. 180° d. 30°	0°
35 A train with a whistle frequency 'f'. What will be the frequency	heard a
by a person sitting in the train? Speed of the train is 'v'.	
	(330+ f
v)/330 30-v) v)	
36 What is the SI unit of magnetic flux?	c
a. teslas b. maxwel c. webe d. New	wton weber
What is the relation between Power 'P', Current 'I' and Resis 'R'?	stance d
a. $P = IR^2$ b. $P = 2IR$ c. $P = I$ d. $P = I$	$= I^2R$ $P = I^2R$
38 Which one of the following is similar between electrostatic force gravitational force?	ce and d
a. Force can be b. The force c. Both the d. Force	e is Force is
attractive or depends on the forces are inversely	inversely
repulsive medium strong forces proportions	_
	stance the distance
bodies between	the between the
bodies	bodies
The total capacitance of capacitors connected in parallel is giv	ven by b
a. product of the b. sum of all c. sum of d. product	ct of sum of all the
individual the individual their their recipr	
reciprocals	

					
	capacitors in	capacitors in			capacitors in
	parallel	parallel			parallel
40	Current carrier in		_		a
	a. Electron	b. Proton	c. Neutron	d. Positron	Electron
41	Insulation breakdo	own may occur at			a
	a. High	b. Low	c. At any	d. Depends on	High
	temperature	temperature	temperature	pressure	temperature
42	Superconductors 1	nave			a
	a. Almost zero	b. Very high	c.	d. Moderate	Almost zero
	resistivity	resistivity	Temperature	value of	resistivity
			-dependent	resistivity	
			resistivity		
43	Give the SI unit o	f self-inductance.			c
	a. Farad	b. Ampere	c. Henry	d. Maxwell	Henry
44	An intrinsic semic	conductor, at the a	bsolute zero ten	nperature, behaves	a
	like which one of	the following?			
	a. Insulator	b.	c. n-type	d. p-type	Insulator
		Superconducto	semiconduct	semiconductor	
		r	or		
45	Equivalent of dec	imal number (15)	10 is		b
	a. (1000) ₂	b. (1111) ₂	c. (100	d. (1100) ₂	$(1111)_2$
			1)2	, ,	
46	Equivalent of dec	imal number (15)	10 is		c
	a. (10) ₁₆	b. (0A) ₁₆	c. $(0F)_1$	d. None of	$(0F)_{16}$
			6	these	
47	A source of sound	d moves towards	an observer. Wl	hat happens to the	c
	speed of sound in	the medium?			
	a. Increase	b. Decrea	c. Rem	d. Depends	Remains the
	S	ses	ains the	on speed with	same
			same	which source	
				moves	
48	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	u r) do da da is	a agual ta		c
	$\left[egin{array}{cccc} \int $	(y+z)dydxdz is	s equal to		
	$\frac{-10 x-z}{4}$	b4	c. 0	d. none	0
49			C. 0	d. none	<u> </u>
49	$\int_0^1 \int_{y^2}^1 \int_0^{1-x} x \ dz$	$dx \ dy$			U
	a. 2/35	b. 4/35	c. 4/17	d. 2/17	4/35
50	Compute the dive			-	d
	a. 0	b. 1	c. 2	d. 3	3
51	Find the divergen				b
	a1	b. 0	c. 1	d. 3	0
52	Find the divergen				b
	a. $xyz + 2x$		c. xyz+	d. $2xyz + z$	2xyz + x
		X	2z		Ž
53	Friction can be re	duced by changing	g from		b
		b) sliding to		d) potential	sliding to
	sliding	rolling	to static	energy to kinetic	rolling
				energy	S
54	What is the formu	la of kinetic energ	 3y	,	a
	a. 0.5 m v^2	b. mgh	c. 0.5m	d. mv ²	0.5mv^2
			gh		
-		•	· -	·	

55	What is the formu	ıla of potential ene	ergy		ь
	a. 0.5 m v^2	b. mgh	c. 0.5m gh	d. mv ²	mgh
56	Which of the foll	owing cannot be		les expansion of a	ь
30	periodic signal?	O			
	a)	b)	c)	d)	$x(t)=2\cos(\pi t)+$
	$x(t)=2\cos(t)+3c$	$x(t)=2\cos(\pi t)+$	$x(t)=2\cos(t)$	$x(t)=2\cos(t)+3c$	7cos(t)
	os(3t)	7cos(t)	+0.5	os(3.5t)	. ,
57	The trigonometric have the	Fourier series of	an even function	on of time does not	С
	a) DC term	b) Cosine Term	c) Sine Term	d) odd harmonic	Sine term
				term	
58	Drift current in th	e semiconductors	depends upon		С
	a) only the	b)only the	c)both the	d) both the	both the
	electric field	carrier	electric and	electric and	electric and
		concentration	carrier	carrier	carrier
		gradient	concentratio	concentration	concentration
			n	gradient	
59	The concentration under equilibrium	•	ers in an extrin	sic semiconductor	ь
	a) direct	b)inversely	c) directly	d) inversely	inversely
	proportional to	proportional to	proportional	proportional to	proportional to
	the doping	the doping	to the	the intrinsic	the doping
	concentration	concentration	intrinsic	concentration.	concentration
			concentratio		
			n		
60	What is Eigen va				С
60	a. A vector	b. A	c. A	d. It is the	A scalar
60	a. A vector obtained from	b. A matrix	c. A scalar	inverse of the	A scalar associated with
60	a. A vector	b. A matrix determined	c. A scalar associated		A scalar associated with a given linear
60	a. A vector obtained from	b. A matrix determined from the	c. A scalar associated with a given	inverse of the	A scalar associated with
60	a. A vector obtained from	b. A matrix determined from the algebraic	c. A scalar associated with a given linear	inverse of the	A scalar associated with a given linear
60	a. A vector obtained from	b. A matrix determined from the	c. A scalar associated with a given linear transformati	inverse of the	A scalar associated with a given linear
	a. A vector obtained from the coordinates	b. A matrix determined from the algebraic equations	c. A scalar associated with a given linear transformati on	inverse of the transform	A scalar associated with a given linear
60	a. A vector obtained from the coordinates A semiconductor	b. A matrix determined from the algebraic equations	c. A scalar associated with a given linear transformati on apperature coefficients.	inverse of the transform	A scalar associated with a given linear
	a. A vector obtained from the coordinates	b. A matrix determined from the algebraic equations	c. A scalar associated with a given linear transformati on	inverse of the transform cient of resistance d) None of the	A scalar associated with a given linear transformation
61	a. A vector obtained from the coordinates A semiconductor a) Positive	b. A matrix determined from the algebraic equations has ten	c. A scalar associated with a given linear transformati on apperature coefficient (c) Negative	inverse of the transform cient of resistance d) None of the above	A scalar associated with a given linear transformation Negative c
	a. A vector obtained from the coordinates A semiconductor a) Positive The most common	b. A matrix determined from the algebraic equations has tem b) Zero	c. A scalar associated with a given linear transformati on apperature coeffice. c) Negative	inverse of the transform cient of resistance d) None of the above	A scalar associated with a given linear transformation Negative c Silicon
61	a. A vector obtained from the coordinates A semiconductor a) Positive The most common a) Germanium	b. A matrix determined from the algebraic equations has tem b) Zero nly used semicono b) Silicon	c. A scalar associated with a given linear transformati on apperature coefficient c) Negative ductor is	inverse of the transform cient of resistance d) None of the above d) Sulphur	A scalar associated with a given linear transformation Negative c Silicon b
61	a. A vector obtained from the coordinates A semiconductor a) Positive The most common a) Germanium The random most	b. A matrix determined from the algebraic equations has tem b) Zero nly used semiconomic b) Silicon tion of holes and	c. A scalar associated with a given linear transformati on apperature coefficient c) Negative ductor is	inverse of the transform cient of resistance d) None of the above	A scalar associated with a given linear transformation Negative c Silicon
61	a. A vector obtained from the coordinates A semiconductor a) Positive The most common a) Germanium The random most agitation is called	b. A matrix determined from the algebraic equations has tem b) Zero nly used semiconomic b) Silicon tion of holes and	c. A scalar associated with a given linear transformati on apperature coefficient c) Negative ductor is	inverse of the transform cient of resistance d) None of the above d) Sulphur s due to thermal	A scalar associated with a given linear transformation Negative c Silicon b
61	a. A vector obtained from the coordinates A semiconductor a) Positive The most common a) Germanium The random most	b. A matrix determined from the algebraic equations has tem b) Zero nly used semiconomic b) Silicon tion of holes and	c. A scalar associated with a given linear transformati on apperature coefficient c) Negative ductor is	inverse of the transform cient of resistance d) None of the above d) Sulphur	A scalar associated with a given linear transformation Negative c Silicon b
61	a. A vector obtained from the coordinates A semiconductor a) Positive The most common a) Germanium The random mon agitation is called a) Diffusion	b. A matrix determined from the algebraic equations has tem b) Zero nly used semiconomic b) Silicon tion of holes and b) Pressure	c. A scalar associated with a given linear transformation perature coefficients	inverse of the transform cient of resistance d) None of the above d) Sulphur s due to thermal d) None of the above	A scalar associated with a given linear transformation Negative c Silicon b Diffusion
61 62 63	a. A vector obtained from the coordinates A semiconductor a) Positive The most common a) Germanium The random most agitation is called	b. A matrix determined from the algebraic equations has tem b) Zero nly used semiconomic b) Silicon tion of holes and b) Pressure	c. A scalar associated with a given linear transformati on apperature coefficient c) Negative c) Carbon d free electron c) Ionisation c) β = α / (1 –	inverse of the transform cient of resistance d) None of the above d) Sulphur s due to thermal d) None of the above	A scalar associated with a given linear transformation Negative c Silicon b Diffusion
61 62 63	a. A vector obtained from the coordinates A semiconductor a) Positive The most common a) Germanium The random most agitation is called a) Diffusion The relation betwork a) $\beta = 1/(1-\alpha)$	b. A matrix determined from the algebraic equations has tem b) Zero b) Silicon tion of holes and b) Pressure een β and α is b) β = (1 - α) / α	c. A scalar associated with a given linear transformation perature coefficients	inverse of the transform cient of resistance d) None of the above d) Sulphur s due to thermal d) None of the above	A scalar associated with a given linear transformation Negative c Silicon b Diffusion a $\beta = \alpha/(1-\alpha)$
61 62 63	a. A vector obtained from the coordinates A semiconductor a) Positive The most common a) Germanium The random most agitation is called a) Diffusion The relation betwork a) $\beta = 1/(1-\alpha)$ $C = \alpha IE + \dots$	b. A matrix determined from the algebraic equations has tem b) Zero nly used semiconor b) Silicon tion of holes and b) Pressure een β and α is b) β = (1 – α) / α	c. A scalar associated with a given linear transformation perature coefficient c) Negative ductor is	inverse of the transform d) None of the above d) Sulphur s due to thermal d) None of the above d) $\beta = \alpha/(1+\alpha)$	A scalar associated with a given linear transformation Negative c Silicon b Diffusion a $\beta = \alpha/(1-\alpha)$
61 62 63	a. A vector obtained from the coordinates A semiconductor a) Positive The most common a) Germanium The random most agitation is called a) Diffusion The relation betwork a) $\beta = 1/(1-\alpha)$	b. A matrix determined from the algebraic equations has ten b) Zero b) Silicon tion of holes and b) Pressure een β and α is b) $\beta = (1 - \alpha) / \alpha$	c. A scalar associated with a given linear transformation perature coefficient c) Negative c) Negative c) Carbon d free electron c) Ionisation c) β = α / (1 – α)	inverse of the transform d) None of the above d) Sulphur s due to thermal d) None of the above d) $\beta = \alpha/(1+\alpha)$	A scalar associated with a given linear transformation Negative c Silicon b Diffusion a $\beta = \alpha/(1-\alpha)$

	· ·	b)Biasing	c) Transistor	d) None of the	c
(7	circuit	circuit	1 .	above	D 1'
67	Hartley oscillator	is commonly used	d in		Radio receivers
	a)Radio receivers	b)Radio transmitters	c)TV receivers	d) None of the above	a
68	In an AM wave us				Sidebands
	a) Carrier	b) Sidebands	c)Both	d) None of the	
		,	sideband and carrier		ь
69	Superhertodyne p	rinciple refers to			Obtaining
		1			lower fixed
					intermediate
					frequency
	a) Using a large	b) Using a	c) Obtaining	d) None of the	
	number of		lower fixed	above	_
	amplifier stages	circuit	intermediate		С
			frequency		
70	The binary nun	nber 10101 is		decimal number	21
	a) 19	b)12	c)27	d)21	d
71	/	/		cule of all gases at	kinetic
	a given temperatu			8	energy
	a) Speed	b) momentum	c) kinetic	d) mass	
	., ., .,	-)	energy	,	c
72	The phenomenon	of thermal conduc			Energy
	a) Energy	b) mass	c) momentum	d) electron	a
73	Cyclotron can acc	elerate			Proton
	a) Proton	b) neutron	c) electron	d)all particle	a
74	According to Kiro zero	chhoff's law when	re the algebraic	sum of current is	at a junction
	a) In a linear network	b) in closed circuit	c) at a junction	d) none of these	c
75	At series resonance	the circuit acts	,		resistive
	a) Inductive	b) capacitive	c) resistive	d) all of the above	c
76	Sharpness of resor	nance in series LC	R circuit deper	ids on the value of	resistance
	a) Inductance	b) capacitance	c) resistance	d) none of these	С
77	Series resonant ci	/ 1		,	acceptor circuit
	a) Rejector		c) tank	d) all of the	ь
<u> </u>	circuit	circuit	circuit	above	Ü
78	At series resonand is	ce the phase differ	ence between v	oltage and current	zero
	a) Infinity	b) zero	c) finite	d) none of the above	ь
79	Ultrasonic waves	are			Longitudinal
	a) Longitudinal	b) Progressive	c) Transverse	d) Inverse	a
80				s with input and	Integrating
	capacitor in feedb			<u>-</u>	amplifier

	a) Differentiating amplifier	b)Integrating amplifier	c)Logarithmi c amplifier	d) Exponential amplifier	b
81	Which of the follo	owing is non-sinus	soidal oscillator	?	Multivibrator
	a) Multivibrator	b) Relaxation oscillator using UJT	c)Relaxation oscillator using tunnel diode	d) Any of the above	a
82	A dc amplifier car	n operate			at zero frequency
	a) at zero frequency	b) only at low frequency	c) only at high frequencies	and high frequencies	a
83	ac ground the volt	tage gain is about	$g_m r_d$	source terminal at	A is correct R is wrong
	a) Both A and R are correct and R is correct explanation for A	b)Both A and R are correct but R is not correct explanation for A	c)A is correct R is wrong	d)A is wrong R is correct	С
84	In a P-N-P transis	tor, with normal b	ias, the emitter	junction	offers a low resistance
	a) is always reverse biased	b) offers very high resistance	c) offers a low resistance	d) remains open	c
85	The most widely	used LC oscillator	is		Hartley oscillator
	a) Hartley oscillator	oscillator	c)Colpitt's oscillator	d)Clapp's oscillator	a
86	Assertion (A): A Reason (R): A de				A is true, R is false
	a) Both A and R are correct and R is correct explanation of A	b) Both A and R are correct but R is not correct explanation of A	c) A is true, R is false	d) A is false, R is true	С
87	2's complement o	f binary number (101 is		1011
	a) 1011	b) 1111	c) 1101	d) 1110	a
88	A	te in the given fig		_	Ā
90	a) l	b)0	c)A	d) A	d
89	The basic storage	element in a digit	aı system is		flipflop

	a) flipflop	b)	c)	d) encoder	a
90	The universal gate	counter	multiplexer		NAND gate
70	a) NAND gate		c) E-xor gate	d) OR gate	a a
91	Find the Eigen val $A = \begin{bmatrix} 1 & 8 \\ 2 & 1 \end{bmatrix}$, ,	-3
	a) -3	b) 2	c) 6	d) 4	a
92	If the function f(x) is even, then wh	ich of the follov	wing is zero?	b_n
	a) a _n	b) b _n	c) a ₀	d) nothing is zero	ь
93	The number of bit	ts in ASCII is			7
	a) 12	b) 10	c) 9	d) 7	d
94	The initial permea				the permeability almost in non magnetized state
	a) the highest permeability of the iron rod	b) the lowest permeability of the iron rod	c) the permeability at the end of the iron rod	d) the permeability almost in non magnetized state	d
95	Magnetism of a m	agnet can be dest	royed by		by all above methods
	a) heating	b) hammering	c) by inductive action of another magnet	d) by all above methods	d
96	For which of the highest?	e following mate		tion value is the	Ferrites
	a) Ferromagnetic materials	b) Paramagnetic materials	c) Diamagnetic materials	d) Ferrites	d
97	U 1		•	ne conductors are of each conductor	0.1 N
	a) 100 N	b) 10 N	c) 0.1 N	d) 1 N	c
98	Unit for quantity		·	T	coulomb
00	a) ampere-hour	b) watt	c) joule	d) coulomb	d
99	A keeper is used t				provide a closed path for flux
	a) provide a closed path for flux	b) amplify flux	c) restore lost flux	d) change the direction of magnetic lines	a
10		in motion relativ	e to a coil the in	nduced e.m.f. does	resistance of
0	not depend upon				the coil
	a)resistance of the coil	b)motion of the magnet	c)number of turns of the coil	d)pole strength of the magnet	a