Test Booklet No. _____ This booklet consists of 100 questions and 12 printed pages.

RGUCET/2024/__/_

Series NIL

RGUCET 2024

Common Entrance Test, 2024 MASTER OF TECHNOLOGY (ELECTRONICS AND COMMUNICATION ENGINEERING)

Full Marks: 100						Time: 2 Hou	rs		
Roll No.]	
Day and Da	ate o	fEx	amir	natio	n:				
Signature o	f Inv	vigila	ator(s)		 			-
Signature o	f Ca	ndid	ate _			 			_

General Instructions:

PLEASE READ ALL THE INSTRUCTIONS CAREFULLY BEFORE MAKING ANY ENTRY.

- 1. DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE TOLD TO DO SO.
- 2. Candidate must write his/her Roll Number on the space provided.
- 3. This Test Booklet contains 100 Multiple Choice Questions (MCQs) from the concerned subject. Each question carries 1 mark. There shall be negative marking of 0.25 against each wrong attempt.
- 4. Please check the Test Booklet to verify that the total pages and total number of questions contained in the test booklet are the same as those printed on the top of the first page. Also check whether the questions are in sequential order or not.
- 5. Candidates are not permitted to enter into the examination hall after the commencement of the entrance test or leave the examination hall within one hour thirty minutes.
- 6. Making any identification mark in the OMR Answer Sheet or writing Roll Number anywhere other than the specified places will lead to disqualification of the candidate.
- 7. Candidates shall maintain silence inside and outside the examination hall. If candidates are found violating the instructions mentioned herein or announced in the examination hall, they will be summarily disqualified from the entrance test.
- 8. In case of any dispute, the decision of the Entrance Test Committee shall be final and binding.
- 9. The OMR Answer Sheet consists of two copies, the Original copy and the Student's copy.

1	EMBEZZLE				a
	a)Misappropria	b) Balance	c)Remunerate	d)Clear	Misappropriat
	te				e
2	Choose the one v	which best express	ses the given sente	nce in	
	Passive/Active v				
					а
	"After driving	professor Kumar	to the museum s	he dropped him	u
	at his hotel."				
		D C		1) A C 1	
	a)After being	Professor	C)	d)After she	
	driven to the	Kumar was $1 \cdot 1 \cdot$	After she had	was driven	After being
	museum,	being driven	driven	Professor	driven to the
	Professor	dropped at his	Professor Variation to the	Kumar to the	museum,
	Kumar was	notel.	Kumar to the	museum sne	Professor
	dropped at his		museum sne	had dropped	Kumar was
	notel.		had dropped	him at his	dropped at his
			nim at nis	notel.	notei.
2	Dials and the head		notel.		
3	Pick out the dest	one which can co	mpiete incompiete	e stem correctly	
		у.			0
	1 Dosnito his h	est offorts to conc	ool his ongor		C
	1. Despite ins be		cai ills allgei		
	a) we could	b)he failed to	c)neonle came	d)he could	
	detect that he	give us an	to know that he	succeed in	people came to
	was verv	impression of	was annoved	doing it easily	know that he
	happy	his agony	was anno yea	doing it cashy	was annoyed
4	Choose the corre	ect meaning of pro	verb/idiom		
		с			
	1.To make clear	n breast of			
	a)To gain	b)To praise	c)To confess	d)To destroy	To confess
	prominence	oneself	without of	before it	without of
	1		reserve	blooms	reserve
5	Pick out the mos	t effective word(s) from the given w	vords to fill in	
	the blank to mak	e the sentence me	aningfully comple	ete.	
					а
	1. The miser gaz	zed at the pil	e of gold coins in	front of him.	
		1	1	1	
	a)avidly	b)admiringly	c)thoughtfully	d)earnestly	avidly
6	Hitler party which	ch came into powe	r in 1933 is know	n as	b
	a)Labour Party	b)Nazi Party	c)Ku-Klux-	d)Democratic	Nazi party
			Klan	Party	
1	Epsom (England) is the place asso	ciated with	1)	a
	a)Horse racing	b)Polo	c) Shooting	d)	Horse Racing
0	XX 71, : _ 1 · · ·			Snooker	
8	Which union min	nister has inaugura	ated RIWAICH M	useum in	с
	Arunachal Prade	SII (b) A ah al r	a) Vinan Diiiin	d) Drotroat	Vince Dilling
	a)INIUN Godlaari	UJASNOK Gaianathi Daire	c) Kiren Kijiju	u) Prakasn	Kiren Kijiju
0	Grand Control T	Gajapatni Kaju	Now Vorteir 4	Javadekar	<u> </u>
7	oland Central I	b)lorgast	a)longast	d) None of the	U langast reilwer
	a)mgnest	vilargest	c)iongest	a) none of the	argest rallway
	ranway station	ranway station	ranway station	above	station

10	Three fair coin a	re tossed, what is	the total outcome?	?	с
	a. 4	b. 6	c. 8	d. 16	8
11	Find the odd one 14, 28, 35, 46, 56	d			
	a. 56	b. 84	c. 35	d. 46	46
12	A man has Rs. 43	80 in the denomination	ations of one-rupe	e notes, five-	
	rupee notes and t	ten-rupee notes. T	he number of note	es of each	1
	denomination is	equal. What is the	total number of n	otes that he has	d
	a) 45	b) 60	c) 75	d) 90	90
12	A C 120			1 1 1'	
13	A group of 120	0 persons consi	sting of captain	is and soldiers	h
	cantain The n	umber of captain	ry 15 soluters t	is one	D
	a)70	b)75	c)80	d)85	75
	<i>u)</i> /0	0)75	0,000	u)05	15
14	Two unbiased coi most one head?	ins are tossed. Wha	t is the probability	of getting at	d
	a. ¹ / ₂	b. ¹ / ₃	c. ¹ / ₆	d. $\frac{3}{4}$	3/4
15	What is INS Vik	rant, recently seen	in news?		b
	a)Submarine	b)Aircraft	c)Tankers	d)Frigates	Aircraft carrier
		carrier			
16	Lunar Polar Exp	loration Mission (LUPEX), recently	seen in news, is	а
	a joint mission b	NASA & ISDO	space agencies?	1)ECA %	ISDO &
	a ISKU & IAXA	NASA & ISKU	CICINSA &	d = d = d = d = d = d = d = d = d = d =	ISKU &
17	Who is the Nobl	e Peace Prize 2023	3 winner?	MASA	3
17	a) Narges	b) Louis E.	c)MoungiBawe	d) Drew	Narges
	Mohammadi	Brus	ndi	Weissman	Mohammadi
18	Where will the F	TFA World Cup 20)26 be held?		d
	a) United	b) Canada	c) Mexico	d) All of the	All of the
	States	·	-	Above	above
19	Who is the Gove	rnor of Arunachal	Pradesh?	1. 0	a
	a)Lt Gen	b)Lt Gen Syam	c)Lt Gen	d) Smt.	Lt Gen
	Kaiwalya	Lal $\mathbf{D}_{a} = \mathbf{D}_{a} + \mathbf{D}_{a} + \mathbf{D}_{a}$	Prakash Singh $(\mathbf{D}_{1}, t, 1)$	Anusuiya	Kaiwalya
	Irivikram	Parnan(Retd.)	(Reta.)	Uikey	I rivikram Dornaile
	Parnalk (Retu.)				(Retd.)
20	Where is the per	manent secretariat	of the SAARC?	I	a (ICCU.)
	a)Kathmandu	b) New Delhi	c) Islamabad	d) Colombo	 Kathmandu
2	Which of the giv	en modulator is a	n indirect way of g	generating FM?	
1		1			b
	a) Inductance	b) Armstrong	c) Reactance	d) Zener diode	Armstrong
	FET modulator	modulator	tube modulator	modulator	modulator
22	A modulator is a	device used to	-) I (1	1) D 1 (1	d
	a)Differentiates	b) Amplify two	c) impress the	a) Reduce the	Reduce the
	two	signal	to a radia	modulating	modulating
	nequencies	signal	io a laulo		

			frequency	power	power
	771		carrier	requirement.	requirement.
23	The power spect	ral density of a sig	nal 1s	1) D 1	d D 1
	a)Even	b)Odd,	c) Real, odd,	d) Real, even,	Real, even,
	complex	complex, and	and negative	and non-	and non-
24	Which of the giv	en filter has maxi	mum flatness?	negative	h
27	a) Ressel filter	b) Butterworth	c) Low pass	d) High pass	Butterworth
	a) Desser mer	filter	filter	filter	filter
25	Analog data with	the highest harmo	nic at 40 kHz gene	erated by a sensor	b
	has been digitize	ed using 6 level P	CM. Find the rate	at which digital	
	signal generated	?		C	
	a) 300 kbps	b) 240 kbps	c) 450 kbps	d) 600 kbps	240 kbps
26	Properties used t	o determine stream	n's fidelity		с
	a)Sampling	b) Bit depth	c) Sampling	d) None of the	Sampling rate
	rate		rate & Bit	mentioned	& Bit depth
			depth		
27	The major advan	tage of FM over A	M is		a
	a) Reception is	b)Higher	c)Smaller	d)Small	Reception is
	less noisy	carrier	bandwidth	frequency	less noisy
20	Sup only out o dying of	requency		deviation	
20	a) Using a	b) Using a	c) Obtaining	d) None of the	Obtaining
	large number	nush-null	lower fixed	above	lower fixed
	of amplifier	circuit	intermediate	40070	intermediate
	stages	Unoun	frequency		frequency
29	As the frequency	y increases, the ab	sorption of ground	d wave by earth's	1
	surface			2	b
	a) decreases	b) increases	c) remains the	d) either (a) or	increases
			same	(c)	mercases
30					_
	Whenever a wav	e is incident on a p	erfect conductor t	hen the reflection	0
	coefficient is	1)0) 1 < 1000	1\1 1	
	a) I	6)0	c) $1 < 180^{\circ}$	a)depend upon	B (Rejected)
21	When a wave i	s incident from t	ha mara danga i	$1 \eta_1, \eta_2$	
51	medium at an an	s incluent nom t	he more dense in peeding the critica	lito a less delise	refraction
	suffers total inter	rnal	ceding the entited	i aligie, the wave	Terraction
	Surrers total inter				
	a)reflection	b)refraction	c)transmission	d) none of the	b
		-)	-)	above	
32	Radiation intensi	ity in a given direc	tion is the	L	power radiated
					per unit solid
					angle in that
		1		1	direction
	a)energy	b) power	c) power	d)	
	radiated per	radiated per	radiated per	none of the	
	square metre	square metre	unit solid angle	above	с
			in that		
22	71 200 0 1	·, · 1 · 1.1 ·	direction		
33	$\Delta L = 200 \Omega$ and	It is desired that Z	$1 = 50 \Omega$. The qua	rter wave	100 Ω
1	uansionner snot	nu nave a characle	more impedance (J1	1

		-	-		
	a) 100 Ω	b) 40 Ω	c) 10000 Ω	d) 4 Ω	а
34	A broadside arra wave dipoles s frequency curren radiated power w	196 W			
	a)196 W	b) 73 W	c) 36.5 W	d) 18.25 W	a
35	A material has co of 4. The freque equal to displace	onductivity of 10 ⁻² ency at which cor ment current is	² mho/m and a related address of the mean of the mea	ative permittivity n the medium is	45 MHz
	a) 45 MHz	b) 90 MHz	c) 450 MHz	d) 900 MHz	а
36	A transmission li a gain of 10 dB. total power radia	ne is feeding 1 wat The antenna is ma ted by the horn an	t of power to a hor the to the transi tenna into the free	n antenna having mission line. The space is	10 watt
	a) 10 watt	b) 1 watt	c)0.1 watt	d)0.01 watt	а
37	Poynting vector	is associated with	which of the follo	wing?	Power flow in electromagneti c field
	a) Power flow	b) Flux in	c) Charge in	d) Current in	
	in electromagneti	magnetic	electrostatic field	electrostatic field	а
	c field				
38	Which of the fol	lowing antenna is	best guided by a v	vaveguide?	Horn
	a) Biconical	b) Horn	c)Helical	d)Dish	b
39	In the below figure transformer seco	The average loa ndary current is $ \begin{array}{c} Th_1 \\ \hline V_0 \\ \hline R \\ $	d current is 15 A.	The rms value of	10.61 A
	a) 15 A	b) 10.61 A	c) 7.5 A	d) 14.14 A	b
40	A single phase h The free wheelin	alf wave rectifier g diode will cond	circuit has a free uct only if	wheeling diode.	load is purely inductive or combination of R and L
	a)load is purely resistive	b)load is purely inductive	c) load is combination of R and L	d)load is purely inductive or combination of R and L	d

a)natural commutationb)auxiliary commutationc)complementa ry commutationd) any of the abovec42An n pulse rectifier is fed by a source having an inductance L. If load current is I ₀ , the voltage drop due to overlap is $n \omega L \ 2\pi \ I_0$ d) $\frac{n \omega L \ 2\pi \ I_0}{3\pi \ I_0}$ $n \omega L \ 2\pi \ I_0$ a43For the system in the given figure the characteristic equation is $k(s+1) + \frac{s+3}{s(s+2)} + \frac{C(s)}{s(s+2)}$ $1 + \frac{k(s+1)(s+3)}{s(s+2)}$	= 0
a) natural commutationb) auxiliary commutationc) complementa ry commutationd) any of the abovec42An n pulse rectifier is fed by a source having an inductance L. If load current is I ₀ , the voltage drop due to overlap is $n \omega L$ 2π I ₀ b) $\frac{n \omega L}{\pi}$ I ₀ c) $\frac{n^2 \omega L}{\pi}$ I ₀ c) $\frac{n^2 \omega L}{\pi}$ I ₀ d) $\frac{n \omega L}{3\pi}$ I ₀ aa43For the system in the given figure the characteristic equation is $1 + \frac{k(s+1)(s+3)}{s(s+2)}$ $1 + \frac{k(s+1)(s+3)}{s(s+2)}$	0 = 0
commutationcommutationry commutationabovec42An n pulse rectifier is fed by a source having an inductance L. If load current is I ₀ , the voltage drop due to overlap is $n \omega L \over 2\pi I_0$ $n \omega L \over 2\pi I_0$ $a)$ $\frac{n \omega L}{2\pi} I_0$ $b)$ $\frac{n \omega L}{\pi} I_0$ $c)$ $\frac{n^2 \omega L}{\pi} I_0$ a 43For the system in the given figure the characteristic equation is $1 + \frac{K(s+1)(s+3)}{s(s+2)}$ $1 + \frac{K(s+1)(s+3)}{s(s+2)}$ $1 + \frac{K(s+1)(s+3)}{s(s+2)}$	= 0
42An n pulse rectifier is fed by a source having an inductance L. If load current is I ₀ , the voltage drop due to overlap is $n \omega L$ 2π I ₀ $n \omega L$ 2π I ₀ $n \omega L$ π I ₀ $n \omega L$ π I ₀ $n \omega L$ $n \omega L$ π I ₀ $n \omega L$ π $n \omega$ π <	= 0
42An n pulse rectifier is fed by a source having an inductance L. If load current is I ₀ , the voltage drop due to overlap is $\frac{n \omega L}{2\pi}$ I ₀ (c) $\frac{n \omega L}{\pi}$ I ₀ (c) $\frac{n^2 \omega L}{\pi}$ I ₀ (d) $\frac{3\pi}{3\pi}$ I ₀ (d) $\frac{3\pi}{3\pi}$ I ₀ (e) a43For the system in the given figure the characteristic equation is $\frac{R(s)}{f(s+1)}$ $\frac{R(s)}{f(s+2)}$ $\frac{R(s)}{f(s+2)}$	= 0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	= 0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	= 0
43 For the system in the given figure the characteristic equation is $ \begin{array}{c} $	= 0
(s) + (s+1) + (s+1) + (s+3) + (s+1) + (s+3) + (s+2) + (s+3) + (s+2) + (s+3)	. = 0
a) b) c) d) $s(s+2) = 0$	
K(s+1)(s+1) + K(s-1)(s-3) + K(s+1)(s+3) = a	
$1 + \frac{s(s+1)(s+1)}{s(s+2)} + \frac{s(s-2)}{s(s-2)} = 0$	
44 For the system in the given figure. The transfer function $C(s)/R(s)$ is	
$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & $	G2
a) $G1 + G2 + 1$ b) $G1 G2 + 1$ c) $G1 G2 + G2$ d) $G1 G2 + G1$ + 1 c	
45 Whether a linear system is stable or unstable that it is a prope of the syst only	rty tem
a) is a property b) depends on c) both (a) and d) either (a) or	
of the system the input (b) (b) a	
only function only	
46 At room temperature the current in an intrinsic semiconductor is due holes an electron	ıd ıs
a) holes b)electrons c)ions d)holes and d	
47 In which of these is reverse recovery time nearly zero? Schottky d	iode
a) Zener diode b) Tunnel diode c)Schottky d) PIN diode	
diode diversity contraction of the diversity of the diver	
48 A transistor has a current gain of 0.99 in the CB mode. Its current gain	
in the CC mode is 0.99	
a) 100 b)0.99 c)1.01 d)0.99 a	
49 In <i>p</i> - <i>n</i> - <i>p</i> transistor the current I_E has two components viz. I_{EP} due to	
Injection of holes from <i>p</i> -region to <i>n</i> -region and I_E due to injection of $I_{Ep} >> I_{Ep}$	n
electrons from <i>n</i> -region to <i>p</i> -region. Then	
$ a _{E_p} and b _{E_p} >> a_n c _{E_n} >> a_p c _{E_n} c _{E_n} c _{E_p} c$	
$\begin{bmatrix} 1En & are & arrivest \\ equal & & & \\ \end{bmatrix} \begin{bmatrix} (C) & & & \\ 0 & & & \\$	
50 In an n channel JFET, the gate is P type	

	a) n type	b) p type	c) either n or p	d)partially n & partially p	b
51	Assertion (A): A Reason (R): Wh	p-n junction has l en a reverse bias i	high resistance in r s applied to p-n ju	reverse direction.	Both A and R are true and R is correct explanation of
	of depletion laye	r increases.			А
	a) Both A and	b) Both A and R	c) A is true but	d) A is false but	
	R are true and	are true but R is	R is false	R is true	
	R is correct	not a correct			а
	explanation of	explanation of			
50	A	A		1. 1. D	
52	In the circuit of f				
	v <u>+</u>	R R D		-	to limit the current and protect LED against reverse breakdown voltage.
	a) to limit the	b) to limit the	c) to limit the	d) none of the	
	current and to	voltage and to	current and	above.	
	protect LED	protect LED	protect LED		с
	against over	against over	against reverse		
	voltage	current	breakdown		
53	In bipolar transis	IC			
					IB
	IC	I _C	IE	<u>I</u> E	h
	a) I _E	b) I _B	c) ^I B	d) ^I C	0
54	For an P-channe current if K = equivalent at 27 ^c	el enhancement ty 0.278×10^{-3} A/V C = 26 mV.	The MOSFET det $V_{GS} = -4V, V_{TS}$	ermine the drain $\Gamma = -2V$, Voltage	1.11 mA
	a) 10 mA	b) 1.11 mA	c) 0.751 mA	d) 46.98 mA	b
55	Between which i	egions does BJT ຄ	act like switch?		Cut off and saturation
	a) Cut off and	b) Cut off and	c)Forward	d) Saturation	
	saturation	forward active	active and cut	and active	а
50		•	off		•
56	A stepper motor	15			1s an
					ical device
					which actuates
					a train of sten
					a train of step angular
					movements in
					response to a
					train of input
					pulses on one
					to one basis

	a)	b) is a kind of	c)	d) is an	
	a two phase induction	amplifier	is an electromagneti	cal device	
	motor	1	c transducer	which actuates	
			used to convert	a train of step	
			an angular	angular	d
			position of	movements in	
			shaft into	response to a	
			electrical	train of input	
			signal	to one basis	
57	The gain margin	for a stable system	n		has a positive
	<u> </u>				decibel value
	a) has a	b) has a	c) has a large	d) has a large	
	positive decibel	negative	negative	negative	а
58	The signal flow	accident value	is shown in the	iven figure. The	
50	effect of disturba	ince T_D can be red	uced by	given figure. The	
		1	T-		
		R(s)	C(s)		Increasing
			G ₂ (s)		$G_1(S)$
		01(0)	-21-1		
		-H((s)		
	a) increasing $G_{2}(s)$	b) decreasing $G_{2}(s)$	c)increasing	d)decreasing	с
59	In root locus ana	lysis the breakawa	v and break in po	ints	either lie on
57	In root roous and		<i>y</i> and broak in po	11105	the real axis or
					occur in
					complex
					conjugate
	<u> </u>	1 \ 1.1 11		4	pairs
	a) lie on the real	b) either lie on	c) always occur	d)	
	axis	the real axis or	in complex	none of the	h
		complex	conjugate pairs	above	U
		conjugate pairs			
60	In control system	is the output of set	nsor usually, is	1	analog or
	-	*	• •		digital
					electrical
		· · · · · · · · ·			signal
	a) analog	b) digital	c)mechanical	d) analog or	
	electrical signal	electrical signal	signal	digital electrical signal	D (Rejected)
61	Which of the foll	lowing cannot be t	the Fourier series	expansion of a	В
	periodic signal?	1 \		1)	
	a) $y(t) = 2 \cos(t) + 2$	b) $\mathbf{x}(t) = 2\cos(-t)$	c)	d	$x(t)=2\cos(\pi t)+$
	$x(t) - 2\cos(t) + 3$ $\cos(3t)$	$x(t) - 2\cos(\pi t) + 7\cos(t)$	$x(t) - 2\cos(t) + 0.$	$\frac{x(t)-2\cos(t)+3}{\cos(3-5t)}$	$/\cos(t)$
62	The trigonometri	C Fourier series of	f an even function	of time does not	
02	have the	e i ourier series of		or time does not	С

	a) DC term	b) Cosine Term	c) Sine Term	d) odd	Sine term
63	The Fourier Seri	es of an odd perio	dic function, conta	ains only	С
	a) Even harmonic	b) Cosine Term	c) Sine Term	d)Odd Harmonic	Sine Term
64	To obtain very h	igh input and outp	ut impedances in	a feedback	В
	Ampimer, the m	b) Current	a) Valtaga	d) Current	
	Series	Series	Shunt	Shunt	Current Series
65	Crossover distor	tion behavior is ch	aracteristic of		В
	a) class A	b) class B	c) class AB	d) common	1
	output stage	output stage	output stage	base output	class B output
	1 0	1 0	1 0	stage	stage
66	A class-A transfe	ormer coupled, trai	nsistor power Am	plifier is required	D
	to deliver a powe	er rating of the trai	nsistor should not	be less than.	В
	a) 5W	b) 10W	c) 20 W	d) 40W	10 W
67	Consider the foll	lowing two statem	ents.		
	Statement 1: As	stable Multivibrate	or can be used for	generating	_
	Square Wave.		1 10		В
	Statement 2: B1				
	information.D	1) 1	<u>) 1 4</u>	1) 1 41	
	a) only	b) only	c) both	d) both	only statement
	statement 1 is	statement 2 is	$\frac{1}{2}$ are correct	2 are incorrect	2 is correct
68	A network has 7	nodes and 5 inder	endent loops. The	2 are medicer	
00	branches in the r	С			
	a)13	b)12	c)11	d)10	11
69	The Fourier serie	es of a real periodi	c function has onl	V	
	P. Cosine terms i	if it is even		5	
	Q. Sine terms if	it is even			٨
	R. Cosine terms	if it odd			А
	S. Sine terms if i	t is odd			
	Which of the abo	ove statement are o	correct?	1	
	a) P & S	b) P & R	c) Q & S	d) Q & R	P & S
70	The number of c is	omparators require	ed in a 3-bit comp	arator type ADC	С
	a) 2	b)3	c)7	d)8	7
71	The number of c	omparators in 4-b	it flash ADC is		С
	a) 4	b) 5	c)15	d) 16	15
72	The resolution of	f a 4-bit counting	ADC is 0.5 Volts.	For an analog	D
	input of 6.6 Volts	s, the digital outpu	t of the ADC will	be	U
	a)1011	b)1101	c)1100	d)1110	1110
73	In an 8085 micro	pprocessor, the shi	ft registers which	store the result	R
	of an addition an	d the overflow bit	are, respectively.		U U
	a) A & B	b) A & F	c) C &A	d) B & F	A & F
74	Which of the foll	owing matrix is Sk	ew Symmetric?		А

	a.	b.		d.	[0 1]
		0 1	0 3	8 -2	
	$\begin{bmatrix} -1 & 0 \end{bmatrix}$	1 0	$\begin{bmatrix} -1 & 9 \end{bmatrix}$	[-1 3 _]	$\begin{bmatrix} -1 & 0 \end{bmatrix}$
75	What is the sum	mation of the prob	ability of all the e	vents.	В
	a. 0	b. 1	c. Not defined	d. Insuffic ient data	1
76	A 3 phase induct the stator voltage	tion motor is fed b e. The variation in	y a 3 phase ac reg speed will be mor	gulator to change e if	load torque increases with increase in speed
	a) load torque is constant	b) load torque increases with increase in speed	c) load torque decreases with increase in speed	d) either (a) or (b)	b
77	A fair coin is tos same outcomes?	sed thrice, what is	the probability of	getting all 3	В
	a. 1/2	b. 1⁄4	c. 1⁄6	d. 1⁄8	1/4
78	An instruction us classified as	sed to set the carry	flag in a compute	er can be	С
	a) Data Transfer	b) arithmetic	c) logical	d) program control	logical
79	What is the period	d of the Fourier tra	nsform $X(\omega)$ of the	e signal x(n)?	D
	a) π	b) 1	c) Non-periodic	d) 2π	2π
80	Maxwell's fourth	В			
	a) Ohm's law	b)Ampere's circuital law	c)Coulomb's law	d)Faraday's law	Ampere's circuital law
81	Maxwell's first e	equation is based o	on		А
	a) Gauss's law for electrostatic	b)Ampere's circuital law	c)Coulomb's law	d)Faraday's law	Gauss's law for electrostatic
82	PROM stands fo	r			A
	a) Programmable Read Only Memory	b) Pre-fed Read Only Memory	c) Pre-required Read Only Memory	d)Programmed Read Only Memory	Programmable Read Only Memory
83	In general, the so	olution of the Schr	odinger wave equ	ation is-	С
	a) Real	b) Imaginary	c) Complex	d) None	Complex
84	The Schrodinge describing-	er wave equation	n is a mathema	tical depression	D
	a) energy of the electron,	b) momentum of the electron,	c) position of the electron,	d) All of them	All of them
85	A potentiometer It is connected in accumulator of e source of 1.2V is wire. What is the	wire of length 100 a series with a resisent 8V having neg balanced against e value of L?) cm has a resistan stance of 20 ohms ligible internal res a length L of the p	ace of 30 ohms. and sistance. A potentiometer	В

	a) 20	b) 25	c) 30	d) 35	25
86	Which of the fol	lowing biosensors	function by the pr	roduction of a	р
	current when a p	otential is applied	between two elec	trodes?	D
	a) Calorimetric	b)Potentiometr	c)Optical	d)Amperometri	Amperometric
	biosensor	ic biosensor	biosensor	c biosensor	biosensor
87	In calorimetric b	biosensor, the tem	perature changes	are measured by	С
	means of				
	a)Ion-selective	b)Clark oxygen	c)Thermistors	d)Colorimetric	Thermistors
	electrodes	electrode		test strips	
88	Which of these is	s not true for therr	nistors?		D
	a) Low	b) Low range	c) Increasing	d) generation or	generation or
	sensitivity		the heat output	absorption	absorption
				hydrogen ions	hydrogen ions
89	How many addre	ess line is used by	8085 during I/O n	napping?	A
	a) 8	b)12	c) 14	d) 16	8
90	A region of nega	tive differential re	sistance is observe	ed in the current	А
	voltage character	ristics of a silicon	PIN junction if	1) 4 • . • •	
	a) Both the P	b) N region is	c) P region is	d) An intrinsic	
	and N region	heavily doped	heavily doped	silicon region	Both the P and
	are heavily	compared to	compared to N	1s inserted	N region are
	aopea	the p region	region	between the P	heavily doped
				region and N	• 1
01	Duift annuat in t			region	C
91	Diffit current in the a	h) an ly the	a)hath tha	d) hath tha	C
	a) only the	operation	c)ootii tile	a) both the	both the
	electric field	carrier			electric and
		gradient	concentration	concentration	carrier
		gradient	concentration	gradient	concentration
92	Which one of the	following proces	ses is preferred to	from the gate	
12	dielectric (SiO ₂)	of MOSFETs?	ses is preferred to	from the gate	D
	a) Sputtering	b) Molecular	c) Wet	d) Drv	
	<i>)</i> ~p	Beam Epitaxy	Oxidation	Oxidation	Dry Oxidation
93	In MOSFET fab	rication, the chann	el length is define	d during the	G
	process of	,	8	U	С
	a) Isolation	b) Channel	c) Polysilicon	d) Lithography	
	Oxide Growth	Stop	gate patterning	step leading to	Polysilicon
		implantation		the contact	gate patterning
				pads	
94	The concentratio	n of minority carr	iers in an extrinsic	semiconductor	P
	under equilibriur	n is:			D
	a) direct	b)inversely	c) directly	d) inversely	inversely
	proportional to	proportional to	proportional to	proportional to	proportional to
	the doping	the doping	the intrinsic	the intrinsic	the doping
	concentration	concentration	concentration	concentration.	concentration
95	A single phase f signal is	full wave regulato	r feeds R-L load.	The best gating	pulse train
	a) short	b)long duration	c) pulse train	d) either (a) or	
	duration pulses	pulses		(b)	с
96	The total number	r of byte in MOV.	A, B instruction in	1 8085 is	А

	a) 1	b) 2	c) 3	d) 4	1			
97	In a microproces	D						
	instruction to be	ruction to be fetched is						
	a. Accumulator	b. Program	c. Stack	d. Instruction	Program			
		Counter	Pointer	Register	Counter			
98	In register index	А						
	a. the index	b. the sum of	c. the operand	d. the				
	register value	the register		difference of	the index			
		value and the		the index value	register velue			
		operand		and the	register value			
				operand				
99	The following fi							
	microprocessor.							
	MVI A, 33H							
	MVI B, 78H							
	ADD B				В			
	CMA							
	ANI 32H							
	The Accumulato	r value immediate	ly after the execut	ion of the fifth				
	instruction is							
	a. 00H	b. 10H	c. 11H	d. 32H	10H			
10	Which of the fol	lowing analog mo	dulation scheme re	equires the	C			
0	minimum transm	nitted power and m	ninimum channel l	pandwidth?	C			
	a. VSB	b. DSB-SC	c. SSB	d. AM	SSB			