Test Booklet No
This booklet consists of 150 questions and 18 printed pages.
RGUPET/2024/ /

RGUPET 2024 Common Entrance Test, 2024 DOCTOR OF PHILOSOPHY IN CHEMISTRY

Full Marks Hours	s: 150				Time: 3		
Roll No.							
Day and Da	ate of Exam	ination:					
Signature o	Signature of Invigilator(s)						
Signature o	Signature of Candidate						
C 1.1							

General Instructions:

PLEASE READ ALL THE INSTRUCTIONS CAREFULLY BEFORE MAKING ANY ENTRY.

- 1. DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE TOLD TO DO SO.
- 2. Candidate must write his/her Roll Number on the space provided.
- 3. This Test Booklet contains 150 Multiple Choice Questions (MCQs) from the concerned subject. Each question carries 1 mark.
- 4. Please check the Test Booklet to verify that the total pages and total number of questions contained in the test booklet are the same as those printed on the top of the first page. Also check whether the questions are in sequential order or not.
- 5. Candidates are not permitted to enter into the examination hall after the commencement of the entrance test or leave the examination hall within two hour.
- 6. Making any identification mark in the OMR Answer Sheet or writing Roll Number anywhere other than the specified places will lead to disqualification of the candidate.
- 7. Candidates shall maintain silence inside and outside the examination hall. If candidates are found violating the instructions mentioned herein or announced in the examination hall, they will be summarily disqualified from the entrance test.
- 8. In case of any dispute, the decision of the Entrance Test Committee shall be final and binding.
- 9. The OMR Answer Sheet consists of two copies, the Original copy and the Student's copy.

1	Which of the following changes in auxiliary cannot be seen while					ь
	changing direct to in		1?) (C1 11) C	1) (337:11) C	
	a) 'Will' of future	b) 'Can' of		c) 'Shall' of	d) 'Will' of	'Can' of the
	tense is changed to	the present		future tense is	future tense is	present tense
	'would'	tense is		changed to	changed to	is changed to
		changed to		'should'	'should'	'could'
	NC 4 1 41	'could'				
2	Match the synonym	pairs:				
	A. Prosperous		i C	Covert		
	B. Surreptition	IS	ii <i>I</i>	Affluent		С
	C. Sanguine		iii	Disrespectful		
	D. Insolent		iv	Optimistic		
	a)A-i; B-ii; C-iii;	b) A-iv; B-i	ii:	c) A-ii; B-i; C-	d)A-i; B-iii;	A-ii; B-i; C-iv;
	D-iv.	C-ii; D-i.	,	iv; D-iii.	C-ii; D-iv.	D-iii
3	He is so sick that he		. (N		,	
		1	`	1 /		
	A. He is sick, so	he cannot sp	eal	ζ.		ь
		, so he cannot	-			U
		nd he cannot s	spe	ak.		
	D. He is too sicl	-		1		
	a) C	b) D		c) B	d) A	D. He is too
						sick to speak
	D : 11	• .	. 1	.1 . 1		
4	During peak hours, i	ıt	tak	e more than two l	nours.	С
	a) will	b) shall		c) can	d) should	can
5	Identify the article in	n this sentenc	e: '	l 'An annle a dav k	eens the doctor	
	away."		٠.	im appro a day n	sops the decter	c
						_
	a) the	b) a		c) an	d) apple	an
	,			,	, 11	
6	A: Assertion: Pure w	vater is neithe	rac	cidic nor basic.		
						ь
	B: Justification: The	-		n is inversely pro	portional to the	
	concentration of hyd			r	F 40	
	a) Both A and B are	b) Both A ar		c) A is true but		Both A and B
	true, and B is the	B are true, b		B is false.	but B is true.	are true, but B
	correct explanation	B is not the	he			is not the
	of A.	correct				correct
		explanation				explanation of
	XXII 1 4 6 4 6	of A.				A.
7	Who is the father of			3.5	1) D	С
	a) Linus Torvalds	b) Fre	ed	c) Martin	d) Percy	Marti C
		Morrison		Cooper	Lebaron	Martin Cooper
8	There is 10.0/ 1000 4	f an article ic	_{co} 1.	d at Ds 270 Than	Spencer the cost price	
0	There is 10 % loss if of the article is:	an article is	5010	u at KS. 2/U. Ther	i me cost price	d
	a) Rs. 250	b) Rs. 320		c) Rs. 270	d) Rs. 300	Rs. 300
L		,		,	,	

9	In a group of friends, Alice is taller than Bob, but shorter than Claire. David is taller than Bob, but shorter than Alice. Who is the tallest in the group?					С
	a) Alice	b) Bob		c) Claire	d) David	Claire
10	C. All sides are	e? gles are su e not nece necessari	upplemessarily	entary. v equal in length.	properties of a	a
	a) A	b) B	8	c) C	d) D	Opposite angles are supplementary
11	A clock is set right a will be the right time					С
	a) 7 pm	b) 6 pm		c) 5 pm	d) 4 pm	5 pm
12	Which letter would		the sa	me when viewed		a
	a) S	b) O		c) X	d) H	S
13	'Unnat Bharat Abhi					d
	a) Ministry of Textiles	b) Minis Rural Develop	•	c) Ministry of Culture	d) Ministry of Education	Ministry of Education
	A. Plastic pollo B. Deforestation C. Depletion of layer D. Acid rain	on	i. ii. ecosys iii. iv.	Skin cancer Destruction of natems Rising CO ₂ leve	els	ь
	a) A-i, B-iii, C-ii, D-iv	b) A-ii, C-i, D-i		c) A-iii, B-i, C-ii, D-iv	d) A-iii, B-iv, C-i, D-ii	A-ii, B-iii, C-i, D-iv
15	A: Assertion: Increasing the temperature of a gas increases its pressure. B: Justification: According to the ideal gas law, pressure is directly proportional to temperature when the volume and the amount of gas remain constant.					a
	a) Both A and B are true, and B is the correct explanation of A.	b) Both B are tru B is no correct explanator of A.	ue, but of the	c) A is true but B is false.	d) A is false but B is true.	Both A and B are true, and B is the correct explanation of A
16	Which one of the fol mentioned?		the co	ntext in which the		a
	a) Quantum Computing	b) V Light Commu	/isible nicati	c) Cloud Services	d) Wireless Communicati on Technologies	Quantum Computing

		on Technologies			
17	What kind of cell		l ohone batterv wł	len it is being	
_ ,	charged?	С			
	a) Solar cell	b) Fuel cell	c) Electrolytic	d) Galvanic	Electrolytic
			cell	cell	cell
18	Which of the follow				b
10	a) methanol	b) ethanol	c) kerosene	d) acetone	ethanol
19	Malinithan is located a) Assam		a) A mina aha1	d) Moninus	c Arunachal
	a) Assaiii	b) Tripura	c) Arunachal Pradesh	d) Manipur	Pradesh
20	The Fame India scho	eme of Govt. of		the adoption	Tracesii
	of-			are ameparen	c
	a) solar power	b) biodiesel	c) electric and	d) organic	electric and
	-		hybrid	foods	hybrid
			vehicles		vehicles
21	Experimental resear		T		b
	a) invention of	b) testing of	c) systematic	d) none of	testing of
	novel products	variables in laboratory	study of past events	these	variables in laboratory
22	A good synopsis is o		events		b
	a) a complete	b) a half-way	c) a partial	d) a	
	research	research	research	beginning of	a half-way
				research	research
23	Identify the true stat	ement(s) among	st the following:		
	A. Action research i problems.B. Action research is C. Action research is D. Action research i	s a research relat s anapplied resea	ed to sports.	nmediate	a
			c) B	d) B, D	Action
	<i>u)</i> 11	0)11, 0	() D	(a) D, D	research is a
					research
					carried out to
					solve
					immediate
24	Hymathagia is				problems.
24	Hypothesis is a) a thoughtful	b) a	c) a temporary	d) all of these	d
	statement	forwarding	solution	a) an or mese	all of these
	Statement	statement	Solution		an or these
25	A research reporting		ed out-	<u>.</u>	b
	a) in an imaginary	b) in a	c) copying	d)	
	way	scientific way	from previous	improvising	in a scientific
			reports	available	way
2.5		1		reports	
26	A research design de	-	1 1 1 1	1) 11 0.1	d
	a) nature of	b) purposes	c) objectives	d) all of these	all of these
	research problem	of research	of research		

27	The false statement	The false statement regarding hypothesis is:						
	A. It allows to ident							
	B. It allows to identify	d						
	research.	j j	1					
	C. It can be tested, v							
		D. It predicts the outcomes and consequences of the research.						
	a) B	b) A, D	c) B, C	d) D	It predicts the			
					outcomes and consequences			
					of the research			
28	The value that has h	igher frequency	in a given set of v	values is called	b			
	a) mean	b) mode	c) median	d) average	mode			
29	Which of the follow statistical data?	ing is not a meas	sure of the dispers	sion of	d			
	a) mean deviation	b) range	c) standard	d) none of	none of these			
30	'ANOVA' stands for	_	deviation	these	ь			
30	a) Analysis and	b) Analysis of	c) Analysis	d) Analytical				
	variance	variance	and	validation	Analysis of			
	, 532 25322 5	, war 10,110 c	verification		variance			
31	The ethics of research				С			
	a) scientific method	b) reliability	c) self interest	d) humanity	self-interest			
32	In general, the quali	ty of a research j	ournal is assessed		a			
	a) impact factor	b) price	c) editorial	d) number of				
			board	issues per year	impact factor			
33	Which of the follow	ring may be cons	idered as plagiari		d			
	a) complete	b) copying of	c) patch	d) all of these				
	copying of	ideas	writing		all of these			
	someone else's				an or mese			
34	work Identify the true stat	compant(a) in town	a of research ethi	25				
34	identity the true stat	emem(s) in term	is of research enii	cs.				
	A. Plagiarism should	d be strictly avoi	ded.					
	B. Self-plagiarism s		_		a			
	C. There is no techn							
	D. Similarity in bibl	iography/referer	nce is not consider	red as				
	plagiarism. a) A, D	b) A, C	c) B, D	d) C, D	A, D			
35	Existing literature or				d d			
	a) books	b) journals	c) conference	d) all of these	all of these			
			papers					
36	A comprehensive fu				a			
	a) Thesis	b) Synopsis	c) Abstract	d) Article	Thesis			
37	Generally, research		_	d) all =£41	d all af thaga			
	a) Journals	b) Seminars	c) Symposiums	d) all of these	all of these			
38	Which of the follow	ing is not an abs		database?	c			
	a) Scopus	b) Web of	c) Google	d) Google	Google			
i		t in the second	· -	Scholar	·			

d) Emory lled d) Induction d) Census	Young d
lled d) Induction	
d) Induction	
d) Census	T., .1., .4.
d) Census	Induction
d) Census	S
	Design
	Ъ
d) Kerlinger	Pearson
	c
d) Survey	Statement of
	the problem
	a
d) Cluster	Quota
sampling	sampling
	samping
effort carried	d
/	Watson
	ь
d)	ScienceDirect
	focuses on a
	broader range
access.	of scientific
	disciplines
	1
. 1 1	
standard	a
d) Mean = 1,	Mean = 0,
d) Mean = 1, Standard	Mean = 0, Standard
d) Mean = 1,	Mean = 0, Standard deviation = 1
d) Mean = 1, Standard deviation = 1	Mean = 0, Standard deviation = 1 b
d) Mean = 1, Standard deviation = 1 d) A straight	Mean = 0, Standard deviation = 1 b A bell-shaped
d) Mean = 1, Standard deviation = 1	Mean = 0, Standard deviation = 1 b A bell-shaped curve
d) Mean = 1, Standard deviation = 1 d) A straight line	Mean = 0, Standard deviation = 1 b A bell-shaped curve a
d) Mean = 1, Standard deviation = 1 d) A straight	Mean = 0, Standard deviation = 1 b A bell-shaped curve a Asymmetry
d) Mean = 1, Standard deviation = 1 d) A straight line d) Uniformity	Mean = 0, Standard deviation = 1 b A bell-shaped curve a
d) Mean = 1, Standard deviation = 1 d) A straight line	Mean = 0, Standard deviation = 1 b A bell-shaped curve a Asymmetry
d) Mean = 1, Standard deviation = 1 d) A straight line d) Uniformity	Mean = 0, Standard deviation = 1 b A bell-shaped curve a Asymmetry c
d) Mean = 1, Standard deviation = 1 d) A straight line d) Uniformity	Mean = 0, Standard deviation = 1 b A bell-shaped curve a Asymmetry c
d) Mean = 1, Standard deviation = 1 d) A straight line d) Uniformity	Mean = 0, Standard deviation = 1 b A bell-shaped curve a Asymmetry c h-index
d) Mean = 1, Standard deviation = 1 d) A straight line d) Uniformity	Mean = 0, Standard deviation = 1 b A bell-shaped curve a Asymmetry c
d) Mean = 1, Standard deviation = 1 d) A straight line d) Uniformity	Mean = 0, Standard deviation = 1 b A bell-shaped curve a Asymmetry c h-index
d) Mean = 1, Standard deviation = 1 d) A straight line d) Uniformity	Mean = 0, Standard deviation = 1 b A bell-shaped curve a Asymmetry c h-index
d) Mean = 1, Standard deviation = 1 d) A straight line d) Uniformity d) SJR	Mean = 0, Standard deviation = 1 b A bell-shaped curve a Asymmetry c h-index
d) Mean = 1, Standard deviation = 1 d) A straight line d) Uniformity d) SJR	Mean = 0, Standard deviation = 1 b A bell-shaped curve a Asymmetry c h-index (d)
d) Mean = 1, Standard deviation = 1 d) A straight line d) Uniformity d) SJR	Mean = 0, Standard deviation = 1 b A bell-shaped curve a Asymmetry c h-index (d)
i	ethod? ethod? d) Cluster sampling effort carried d) Watson e PubMed? d) ScienceDirect s free to access.

52	The absolute configuration molecule are:						
		(b)					
	(a)5R 6R	(a) $5R$, $6R$ (b) $5R$, $6S$ (c) $5S$, $6R$ (d) $5S$, $6S$					
53	Klyne-Prelog confor	rmational termin	ology of the follo		5R,6S		
		но	+₃ H +₃		(b)		
	$(a) \pm ap$	(b) + sc	(c) - sc	(d) – ac	+ sc		
54	The IUPAC name of	Et	NO_2		(a)		
	(a) 4-ethyl-1-	(b) 5-ethyl-2-	(c) 1-ethyl-5-	(d) 4-ethyl-1-	4-ethyl-1-		
	fluoro-2-nitro	fluoro-1-nitro	fluoro-4-nitro	fluoro-6-nitro	fluoro-2-nitro		
	benzene	benzene	benzene	benzene	benzene		
55	The correct relations	н	CI H	inpoditus is.	(c)		
	(a) enantiomers	(b) diastereoisom ers	(c) homomers	(d) constitutional isomers	homomers		
56	The correct statemen	nt about the follo	wing molecule is	:	(a)		
	(a) Molecule is chiral and possesses a chiral plane	(b) Molecule is chiral and possesses a chiral axis	(c) Molecule is achiral as it possesses a plane of symmetry	(d) Molecule is achiral as it possesses a center of symmetry	Molecule is chiral and possesses a chiral plane		
57	II. DissymmetryIII. All chiral cer	ric molecules ar is a special kin atres are stereog	e dissymmetric	s	(d)		

	T O TIT
wrong are correct while	I & III are
	correct while II
while II is II & IV are	& IV are
wrong wrong	wrong
58 In the following molecule, the asterisked C is:	
CI.	(d)
CI, >—OH	()
* HO OH	
(a) chiral, (b) achiral, (c) achiral, (d) achiral,	
stereogenic and non- stereogenic stereogenic	achiral,
chirotopic stereogenic and selection and	stereogenic
and achirotopic chirotopic	and chirotopic
achirotopic achirotopic	and enhotopic
59 Among the carbocations given below	
Among the carbocations given below	
	(a)
A B C	
	A is
(a) A is (b) A is (c) A is (d) A is	
	homoaromatic,
is antiaromatic and antiaromatic B is aromatic c, B is	B is
C is aromatic and C is aromatic and	antiaromatic
homoaromati harmoaromatic C is	and C is
c antiaromatic	aromatic
60 Which of the following is anti-aromatic?	(a)
	· · · · · · · · · · · · · · · · · · ·
(c) (u)	
61 cis-1,2-dimethylcyclohexane is:	(b)
	(a) chiral and
exists as resolvable exists as non- exists as exists as non-	exists as
	resolvable
mixture racemic enantiomeric racemic	enantiomeric
	mixture
62 Correct statement for the compounds I & II is:	
	(b)
	(~)
1 11	т :
	I is anti-
	aromatic:
II is non-aromatic aromatic; aromatic; aromatic;	aromatic;
II is non-aromatic aromatic; aromatic; aromatic; II is non- II is anti- II is aromatic	II is non-
II is non-aromatic aromatic; aromatic; aromatic;	_
II is non-aromatic aromatic; aromatic; II is non-aromatic aromatic aromatic II is anti-aromatic	II is non-
II is non-aromatic aromatic; aromatic; aromatic; II is non- II is anti- II is aromatic	II is non-

	(a) Perkin reaction	(b) Stobbe	(c) Diels-	(d) Hoffm	Hoffmann
	. ,	reaction	Alder reaction	ann reaction	reaction
64	An enolate ion is a r	(c)			
	(a) Reimer-	(b) Grignard	(c) Aldol	(d) Fries	Aldol
	Tiemann reaction	reaction	condenstation	rearrangemen	condenstation
			reaction	t	reaction
<i></i>	G .:				
65	Curtius rearrangeme		1	(1)	(d)
	(a) carbocation	(b) carbanion	(c) carbene	(d) nitrene	nitrene
66	The intermediate in	valvad in the man	ation airran halarr	l .	
00	The intermediate inv	orved in the read		∕is: ∕⁄le	
	ļ ²		Wie	VIC	
		hν	_		(a)
		Me !	Me \	′ 🦒	()
		ivie .			
		н	Ή		
	(a) free radical	(b)	(c) carbanion	(d) carbene	free radical
		carbocation			nec radicar
67	The most preferable		the following read	ction is:	(1.)
	MeOへ	CN⁻_ CI	→ MeO へ	`CN	(b)
	(a) SN2	(b)S _N 1	(c) S _N i	(d)	
	(a) 2112	(8)2111	(0) 2111	Elimination	S_N1
68	Retention of configu	ration at the read	ction center can b	e expected in:	(d)
	(a) S _N 2 mechanism	(b)S _N 1	(c) Addition-	(d)	g :
		mechanism	elimination	S _N imechanis	S _N i mechanism
			mechanism	m	mechanism
69	The major product f	ormed in the foll	lowing reaction is	:	
		•			(1)
		Br ₂ , M	leOH ➤ ?		(d)
		`O	- :		
	(a)	(b)	(c)	(d)	
	Br	OMe	OMe	Br	,Br
					OMe
	OBr	O´´′′OMe	OBr	OOMe	O Oivie
70	Major product of the	e following react	ion is:		
		Cor	nc. H ₂ SO ₄		(1)
		OH OH		?	(d)
			heat		
	(a)	(b)	(c)	(d)	
	(=)		//		$\mid [\ \ \ \] \mid$
					O
		Ŏ	,,		

71	The intermediate A a	and the major pro	oducts B in the fol	lowing reaction	
	are:	J 1		S	
	O				(d)
		N_3 heat			(u)
	NH	>	Α	→ B	
	(a)	(b)	(c)	d)	
	A is acyl cation;	A is acyl	A is acyl	A is acyl	A is acyl
	, O	carbene;	nitrene;	nitrene;	nitrene;
		B is:	B is:		B is:
	B is:	H N	0	B is:	H
				H	$N \rightarrow N$
		N H	NH		N N
				H	Н
72	The major product f	ormed in the foll	owing reaction is	:	
		0	Me ₂ CuLi		(d)
			Et ₂ O	- ?	(-)
	(-)			(1)	1
	(a)	(b)	(c)	(d)	
		0	0		
) =
73	Product of the follow	ving reaction is:		=	
	COOMe	9	· ~10/)		
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$Pd(OAc)_2$ (5 m	101%) 		(b)
		PPh ₃ , Et ₃ N	1		()
		CH ₃ CN, 23	°C		
	(a)	(b)	(c)	(d) None of	COOMe
	COOMe	N COOMe	N COOMe	the above	
					-
74	1. The major pr		owing reaction is	:	
	a	9-BBN/THF	~ ?		(a)
	Br b	= ,			(3)
		NaOMe	(-)	(1) NT C	
	(a)	(b)	(c)	(d) None of the above	
				me above	
75	Substrates for Peters	l son olefination re	Br eactions are:		(b)
13	(a) carbonyl	(b) carbonyl	(c) aromatic	(d) none of	carbonyl
	compounds and	compounds	acids and \square -	the above	compounds
	□-silyl carbanion	and □-silyl	silyl carbanion		and □-silyl
		carbanion	-		carbanion
76	Which of the follow			e as	(c)
	phosphorous ylides			(1) D 1 .	
	(a)Gilman's	(b)Fetizon's	(c) Tebbe	(d) Baker's	Tebbe reagent
	reagent	reagent	reagent	yeast	

77	Sharpless asymmetr	(b)			
/ /	(a) reagent	(b) catalyst	(c) substrate	(d) none of	Catalyst
	controlled	controlled	controlled	the above	controlled
				the above	
70	reactions	reaction	reaction		reaction
78	Cram's model can p			Las	(b)
	(a) some	(b) some	(c) any chiral	(d) none of	some
	enantioselective	diastereoselec	synthesis	the above	diastereoselect
	syntheses	tive syntheses			ive syntheses
79	The following reacti	on will result:			
		EtONo.			(a)
		EtONa → ?			(4)
	Cl´		T	Γ	
	(a) a trans-	(b) a cis-	(c) a mixture	(d) a	a trans-
	cyclohexene as an	cyclohexene	of cis- and	substitution	cyclohexene
	exclusive product	as an	trans-	product	as an exclusive
	-	exclusive	cyclohexenes		product
		product	as product		1
80	The product of the f			1	
	$\frac{hv}{}$	→ ?			(a)
	Me Me				(a)
	\				
	Me	(1-)	(a)	(4)	
	(a)	(b)	(c)	(d) Me	<i>→</i> ••
	Me	Me	Me	Ivie	Me Me
	<u> </u>				<u> </u>
	∕ ™ Me	/ "Me	Me	Me	/ Me
		2.1 2.11			
81	The major products		reaction are:		
	Me ₂	Me .N. ↓ ∠COO⊦	H		
	-	- L H + J -	<u> </u>		
		Me Me			
		Wie			
	Me	Me I Ma	Me	Me V 000H	
	Me ₂ N Me Me	- Yı)'	(2)	Λe ₂ N ,COOH	(a)
	(A) COOH &	соон	(B) % Me	Me	()
	М́е	Me	М̄е	Мe	
	Me	Me	<u>М</u> е	Me Me₂N、 — COOH	
	(C) Me_2N Me Me	₂ N Me	(D) Me ₂ N Me &	Me ₂ N COOH	
	СООН	СООН	, , , соон	/Me	
	М̄е	Me	М̄е	М́е	
			T	T	
	(a) (A)	(b) (B)	(c) (C)	(d) (D)	(A)
82	For the following re	actions, which of	ne of the statemen	nts is correct?	
		Ph /		Ph /	
			heat		
	Reaction 1:	[<u></u>			
		/ Н			(b)
		DL-		Ph	
		Ph			
	Reaction 2:	Н	heat		
	Neaction 2.				
	(a) Reaction 1 is	(b) Reaction 1	(c) Both the	(d) Can't be	Reaction 1 is
	\ /	` '	` '	` /	
	faster than	is slower than	reactions will	predicted for	slower than
Ì	Reaction 2	Reaction 2			Reaction 2

			1	41	
			have same	the given	
83	In the following tree	 	reaction rate	reactions	
0.5	In the following transbeing observed?				
	being observed:	hν			(a)
					(a)
	(a) [1 5]	 (1 ₂) [1 7]	(a) [2 5]	(4) [2 2]	[1 7]
84	(a) [1,5] Which of the follow	(b) [1,7]	(c) [3,5]	(d) [3,3]	[1,7] d
04	the linear operator, a	•	n eigen function v	with respect to	a
	a) $\cos(ax)$	b) $\sin(ax)$	$c) r^2$	d) e ^{2x}	e^{2x}
85	The quantum number			/	a
05	Schrodinger wave ed			ution of	a
				d) l , m_l , m_s	n, l, m_l
86	a) n , l , m_l The normalized ψ_{1s}	orbital of hydrog	gen-like atoms is		
	a) $1/t_{1.5} =$	$b)_{1}l_{1} =$	$\frac{1}{1}$	d) $y_{12} =$	1/1/4 -
	$\frac{1}{r}$ ovn $\left(\frac{r}{r}\right)$	$\frac{1}{2r}$ ovn $(\frac{2r}{2})$	$\frac{1}{2}$ ovn $\left(\frac{r}{r}\right)$	$\frac{1}{r}$ ovp $\left(\frac{r}{r}\right)$	$\frac{\varphi_{1s}}{1}$
	The normalized ψ_{1s} $a) \psi_{1s} = \frac{1}{\sqrt{\pi a_o^3}} \exp(-\frac{r}{a_o})$	$\sqrt{\pi a_o^3} \exp(-\frac{1}{a_o})$	$\sqrt{\pi a_o} \exp(-\frac{1}{a_o})$	$\sqrt{3\pi a_o} \exp(-\frac{1}{a_o})$	$=\frac{1}{\sqrt{\pi a^3}} \exp(-\frac{1}{a^3})$
97	The grantum meets	misslamanatan fa	u the american	of a montial a	$\sqrt{\pi u_0}$
87	The quantum mecha moving in one dime			or a particle	Ü
				$h^2 d^2$	h d
	a) $i \frac{h}{2\pi} \frac{d}{dx}$	b) $\frac{1}{2\pi i} \frac{dx}{dx}$	c) $i \frac{h}{2\pi} \frac{d}{dt}$	$d - \frac{n}{2m} \frac{d}{dx^2}$	$\frac{n}{2\pi i}\frac{d}{dx}$
88	In linear variation n				d
	two roots obtained a				
	with exact ground				
	respectively, is	T	T		
	a) $\epsilon_0 \ge E_0$ and $\epsilon_1 \le E_1$			· ·	$\epsilon_0 \ge E_0$ and $\epsilon_1 \ge$
00	mi .	$\epsilon_1 \geq E_1$		$\epsilon_1 \geq E_1$	E_1
89	The zero-point energ				C 1
	a) 0	b) <i>hν</i>	c) $\frac{1}{2}hv$	$d) \frac{3}{2} hv$	$\frac{1}{2}hv$
90	Hydrogen bonding of	causes the $\pi \to \pi$	* transition to shi	ft to	b
	a) shorter	b) longer	c) no shifting	d)	longer
	wavelength	wavelength	at all	unpredictable	wavelength
91	The ground state of				ь
	a) $^{1}\Sigma_{u}^{+}$	b) $^{1}\Sigma_{g}^{+}$	c) $^{1}\Pi_{\mathrm{u}}$	d) $^3\Sigma_u^+$	$^1\Sigma_g^+$
92	Which of the follow	ing transition is	allowed		b
	a) $^{1}\Sigma_{q}^{+} \rightarrow ^{1}\Sigma_{q}^{+}$	b) $^{1}\Sigma_{a}^{+}\rightarrow$	c) $^{1}\Sigma_{g}^{+} \rightarrow$	d) $^{1}\Sigma_{g}^{+} \rightarrow$	$^{1}\Sigma_{g}^{+} \rightarrow ^{1}\Pi_{u}$
	y g		$^{1}\Delta_{g}$	$^{3}\Sigma_{u}^{+}$	g a
93	Among the followin	g species, the on			ь
	strength is	is species, and on	ie naving me mgn	est cond	Ü
	a) O ₂	b) O ₂ ⁺	c) O ₂ -	d) O ₂ ²⁻	${\rm O_2}^+$
94	Simple Hückel mole			ı / ~	c
	a)considers	b)	c)	d) has	distinguishes
	electron-electron	distinguishes	distinguishes	different	cyclobutadiene
	repulsion	cis-butadiene	cyclobutadiene	coulomb	and cis-
	explicitly	and trans	and cis-	integrals for	butadiene
		butadiene	butadiene	non-	
				equivalent	
				carbons	

95	BF ₃ has				a
	a) three C_2 axis	b) 6-fold <i>C</i> ₆	c) one two-	d) one three-	three C_2 axis
	and one C_3 axis	axis	fold C_2 axis	fold C_3 axis	and one C_3
		Will be			axis
96	In which of the follo	wing point grou	p centre of invers	sion is absent	С
	a) <i>D</i> _{2<i>h</i>}	b) <i>D</i> _{4h}	c) <i>T</i> _d	d) <i>D</i> _{6h}	T_d
97	The vibrational degr	ree of freedom o	f a non-linear pol	yatomic	c
	molecule containing	g n atoms is		-	
	a) 3 <i>n</i> –4	b) 3 <i>n</i> –5	c) 3 <i>n</i> –6	d) 3 <i>n</i>	3 <i>n</i> –6
98	The rotational const				С
	a) $J(J+1)\frac{h^2}{8\pi^2 I}$	b) $J(J+1)\frac{h}{2\pi}$	c) $\frac{h}{8\pi^2 Ic}$	$d)\frac{h^2}{8\pi^2I}$	$\frac{h}{8\pi^2 Ic}$
99	Which part of the IF			nt region"?	d
	a) 3000-2000 cm ⁻¹		c) 2000-1000	d) 1000-600	$1000-600 \ cm^{-1}$
	,	cm^{-1}	cm^{-1}	cm^{-1}	
10	The free energy char	nge of mixing of	fideal gases is give	ven by	a
0	$\Delta G_{\rm m} = nRT\Sigma x_{\rm i} \ln x_{\rm i}$. H				
	a) spontaneous	b) non-	c) reversible	d)	spontaneous
	process	spontaneous process	process	unpredictable	process
10	1 mol of CO ₂ , 1 mol	1 1	l d of Oa are mived	at 300 K. The	a
1	entropy of mixing is		n or oz are illized	at 500 K. The	a
1	a) 6Rln2		c) 8 <i>Rln2</i> /300	d) 16 <i>Rln</i> 2	6Rln2
10	For which one of the				c
2	$K_{\rm c}$	o romo wing equi	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, rip will equal	
	a) $PCl_5 \rightleftharpoons PCl_3 +$	b) $COCl_2 \rightleftharpoons$	c) $H_2 + I_2 \rightleftharpoons$	d)3H ₂ +	$H_2 + I_2$
	Cl_2	$CO + Cl_2$	2HI	$N_2 \rightleftharpoons 2NH_3$	$\rightleftharpoons 2HI$
	- 12			2 . 3	
10	At a triple point	•		1	a
3	a) both the	b) only the	c) only the	d) sometimes	both the
	temperature and	temperature	pressure is	pressure and	temperature
	pressure are fixed	is fixed	fixed	sometimes	and pressure
				temperature	are fixed
				is fixed	
10	Acetaldehyde (CH ₃ 0				a
4	a rate constant of 0.3				
	80% of the acetaldel		ose in a sample th	at has an initial	
	concentration of 0.0		T	T = .	
	a) ~ 1600 s		c) ~ 1000 s	d) ~ 5100 s	~ 1600 s
10	The expression for t	ь			
5	complex theory is	1	T × •	10.1	(1 m)
	a) $k_r = \left(\frac{n}{kT}\right) k^{\#}$	$k_r = $	c) $k_r =$	$d) k_r =$	$k_r = \left(\frac{kT}{h}\right) k^{\#}$
	a) $k_r = \left(\frac{h}{kT}\right) k^{\#}$	$\left(\frac{\kappa T}{h}\right) k^{\#}$	$\left(\frac{kT}{h}\right)k^{\#}\exp\left\{-\frac{E}{h}\right\}$	$\left(\frac{kT}{h}\right)k^{\#}\exp\{-\frac{kT}{h}\right)$	(
10	E 41 2 4	, D C 41	1 \ n \ /	d[A]	ь
6	For the reaction $2A$		ie of the reaction	$1s-{dt}=$	
	$k[A]^2$, the value of $k[A]^2$	t _{1/2} is	1 1	1	1
	$\left(a\right)\frac{1}{k}$	$b) \frac{1}{k[A]_o}$	$c)\frac{1}{k[A]_0^2}$	$d) \frac{1}{k[A]_o^3}$	$\frac{1}{k[A]_o}$
<u> </u>	r.	7 L 1 1 0	, L ¹¹ J0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	"[A]0

10	The effective rate	d			
7	$A \rightarrow P$ following the				
	$10^{-3} \text{ s}^{-1} \text{ and } 2.2 \times 1$				
	mol dm ⁻³ , respectiv				
	mechanism is appro				
	a) 12.3	b) 49.4	c) 6.1	d) 24.7	24.7
10	One of the methods	of purifying a co	olloidal solution i	S	С
8	a) coagulation	b) protection	c) dialysis	d) electro-	dialysis
	, ,	7 1	, ,	osmosis	Ĵ
10	The aggregation of	surfactant molec	ules is known as	•	a
9	a) micelles	b) clusters	c) gels	d) colloid	micelles
	,	,	78	,	
11	The scattering of li	ght by the dispers	ed phase is called	1	Ъ
0	a) Brownian	b) Tyndall	c) adsorption	d)	Tyndall effect
	movement	effect)	electrophores	- J
				is	
11	Adsorption of a gas	s is described by t	he Langmuir isot		ь
1	$0.75 \text{ kPa}^{-1} \text{ at } 25 ^{\circ}\text{C}$				Ü
1	surface coverage be		in a, at willou th		
	a) 0.158		c) 0.265	d) 0.33	0.44
11	A plot of $\log x/m$ ve				b
$\frac{1}{2}$	gives a straight line			gas on a sond	U
2	a) n ; $(n>1)$	b) $1/n$; $(n>1)$		d) –log <i>k</i>	$1/n \cdot (n \setminus 1)$
11	Consider ammonia				1/n; $(n>1)$
3		a			
3	occupying an effect		on Bar ₂ surface.	. The adsorption	
	follows the following				
	$\frac{p}{v(p_0 - p)} = \frac{1}{v_m c} + \frac{c - r}{v_m}$				
	meaning. The plot				
	meaning. The prot	$v(p_0-p)$	p_0 gives the inter-	e d	
	10^{-4} cm ⁻³ and slope	$e as 0.0761 cm^{-3}$.	the surface area of	of adsorption	
	(in m ²) is close to	14522	T > 22 2		
				d) 1.9	24.5
11	Which miller index	plane is shown b	oelow		c
4					
	1/2				
	⁷² y				
	, , , , , , , , , , , , , , , , , , ,				
	a) (0 2 1)	b) (0 4 1)	c) (0 1 2)	d) (0 0 0)	(0 1 2)
11	Which method is th				a
5	average molecular				
1	a) osmometry	b) viscometry	c) light	d)	osmometry
	method	method	scattering	sedimentation	method
			method	method	111011104
11	The weight average	molecular mass			a
6	the number average	a			
	a) greater than	greater than			
	a) greater than	b) lesser than	c) equal to	d) none of these	greater than

11 7	In osmosis pressure of polymers, a plot of intercept 0.249. The approximately-	С			
	a) 20000	b) 15000	c) 10000	d) 5000	10000
11 8	The character table reducible representa	_		n an additional	
		E	$2C_3$ $3\sigma_v$		
	_	A ₁ 1	1 1		0
		A ₂ 1	1 _1		a
		E 2	_1 0		
		Г 6	0 2		
		1 0	0 2		
	Γ is given by	1) 04 05	\ <u> </u>		
	a) $2A_1 + 2E$	b) 2A ₂ + 2E	c) $2A_1 + A_2 + E$	$(d) A_1 + 2A_2 + E$	$2A_1 + 2E$
11	Among the following	ig species, those	that obey 18 elect	ron rule are:	
9					
	 	 Mn		Cr.	
	OC CO		COC CO OC	CO	c
	co	CO	oc co	ČO	
	A	В	C	D	
		T	T .	T	
10	a) D and C	b) A and B	c) B and C	d) B and D	B and C
12	According to Wade'				b
0	a) arachno-	b) closo-	c) nido-	d) hypo-	closo-structure
10	structure	structure	structure	structure	
12	In the following read CH ₃ Mn(CO) ₅	* *	$\frac{\text{Vin}(CO)_5 \text{ is forme}}{\text{CH}_3C(O)}$	_	d
	a) Reductive	b) Oxidative	c) Substitution	d) Migratory	Migratory
	elimination	addition	reaction	, -	_
			reaction	insertion	insertion
——				reaction	insertion reaction
12 2	The electronic absorption band at 2 transition:	prption spectrum 20,400 cm ⁻¹ of co	of [Ti(H ₂ O) ₆] ³⁺ rystal field origin	reaction consists of one assigned to the	
	absorption band at 2 transition:	prption spectrum 20,400 cm ⁻¹ of co	of [Ti(H ₂ O) ₆] ³⁺ rystal field origin	reaction consists of one assigned to the	reaction
	absorption band at 2 transition:	prption spectrum 20,400 cm ⁻¹ of co	of [Ti(H ₂ O) ₆] ³⁺ rystal field origin	reaction consists of one assigned to the	reaction a
2	absorption band at 2 transition: a) ${}^2T_{2g} \longrightarrow {}^2E_g$ [Mn(H ₂ O) ₆] ²⁺ shows are.	orption spectrum 20,400 cm ⁻¹ of cr b) ${}^{5}T_{2g} \longrightarrow {}^{5}E_{g}$ is a faint pink color	of $[\text{Ti}(\text{H}_2\text{O})_6]^{3+}$ rystal field origin c) $^2E_g \longrightarrow {}^2T_{2g}$ our. This is because	reaction consists of one assigned to the	reaction a ${}^{2}T_{2g} \longrightarrow {}^{2}E_{g}$ c
12	absorption band at 2 transition: a) ² T _{2g} → ² E _g [Mn(H ₂ O) ₆] ²⁺ shows are. a) Laporte allowed	orption spectrum $20,400 \text{ cm}^{-1} \text{ of cr}$ b) ${}^{5}T_{2g} \longrightarrow {}^{5}E_{g}$ s a faint pink color b) Laporte	of $[\text{Ti}(\text{H}_2\text{O})_6]^{3+}$ rystal field origin c) ${}^2E_g \longrightarrow {}^2T_{2g}$ our. This is because	reaction consists of one assigned to the d) ${}^{5}E_{g} \longrightarrow {}^{5}T_{2g}$ se the transition d) Both	reaction a ${}^{2}T_{2g} \longrightarrow {}^{2}E_{g}$ c Both Laporte
12	absorption band at 2 transition: a) ${}^2T_{2g} \longrightarrow {}^2E_g$ [Mn(H ₂ O) ₆] ²⁺ shows are.	orption spectrum 20,400 cm ⁻¹ of complete $E_{\rm col}$ b) $E_{\rm col} = E_{\rm col}$ s a faint pink color by Laporte forbidden but	of $[Ti(H_2O)_6]^{3+}$ rystal field origin c) $^2E_g \longrightarrow {}^2T_{2g}$ our. This is because c) Both Laporte and	reaction consists of one assigned to the d) ${}^{5}E_{g} \longrightarrow {}^{5}T_{2g}$ se the transition d) Both Laporte and	reaction a ${}^{2}T_{2g} \longrightarrow {}^{2}E_{g}$ c Both Laporte and spin
12 3	absorption band at 2 transition: a) ${}^2T_{2g} \longrightarrow {}^2E_g$ [Mn(H ₂ O) ₆] ²⁺ shows are. a) Laporte allowed but spin forbidden	b) s a faint pink color b) Laporte forbidden but spin allowed	of $[Ti(H_2O)_6]^{3+}$ rystal field origin c) ${}^2E_g \longrightarrow {}^2T_{2g}$ our. This is because c) Both Laporte and spin forbidden	reaction consists of one assigned to the d) ${}^{5}E_{g} \longrightarrow {}^{5}T_{2g}$ se the transition d) Both	reaction a $^{2}T_{2g} \longrightarrow {}^{2}E_{g}$ c Both Laporte and spin forbidden
12 3	absorption band at 2 transition: a) ${}^2T_{2g} \longrightarrow {}^2E_g$ [Mn(H ₂ O) ₆] ²⁺ shows are. a) Laporte allowed but spin forbidden The complex that is	orption spectrum 20,400 cm ⁻¹ of c	of $[Ti(H_2O)_6]^{3+}$ rystal field origin c) ${}^2E_g \longrightarrow {}^2T_{2g}$ our. This is because c) Both Laporte and spin forbidden is:	reaction consists of one assigned to the d) ${}^5E_g \longrightarrow {}^5T_{2g}$ se the transition d) Both Laporte and spin allowed	reaction a $^{2}T_{2g} \rightarrow ^{2}E_{g}$ c Both Laporte and spin forbidden b
12 3	absorption band at 2 transition: a) ${}^2T_{2g} \longrightarrow {}^2E_g$ [Mn(H ₂ O) ₆] ²⁺ shows are. a) Laporte allowed but spin forbidden	b) s a faint pink color b) Laporte forbidden but spin allowed	of $[Ti(H_2O)_6]^{3+}$ rystal field origin c) ${}^2E_g \longrightarrow {}^2T_{2g}$ our. This is because c) Both Laporte and spin forbidden	reaction consists of one assigned to the d) ${}^{5}E_{g} \longrightarrow {}^{5}T_{2g}$ se the transition d) Both Laporte and	reaction a $^{2}T_{2g} \longrightarrow {}^{2}E_{g}$ c Both Laporte and spin forbidden
12 3	absorption band at 2 transition: a) ${}^2T_{2g} \longrightarrow {}^2E_g$ [Mn(H ₂ O) ₆] ²⁺ shows are. a) Laporte allowed but spin forbidden The complex that is	b) s a faint pink color b) Laporte forbidden but spin allowed b) $Mn(CO)_5$	of $[Ti(H_2O)_6]^{3+}$ rystal field origin c) ${}^2E_g \longrightarrow {}^2T_{2g}$ our. This is because c) Both Laporte and spin forbidden is: c) Fe(CO) ₄	reaction consists of one assigned to the d) ${}^5E_g \longrightarrow {}^5T_{2g}$ se the transition d) Both Laporte and spin allowed d) $Cr(CO)_5$	reaction a $^{2}T_{2g} \rightarrow ^{2}E_{g}$ c Both Laporte and spin forbidden b

12 5	a) cis— Pt(NH ₃) ₂ Cl ₄]	Pt(NI	H ₃) ₂ Cl ₂]	c) trans— [Pt(NH ₃) ₂ Cl ₂]	d) both <i>cis</i> — and <i>trans</i> — [Pt(NH ₃) ₂ Cl ₂]	
12 6	The complex [Cr(bit transition	The complex [Cr(bipyridyl) ₃] ³⁺ , shows red phosphorescence due to ransition				
	a) ${}^{4}A_{2g} \longleftarrow {}^{2}T_{2g}$	b) ⁴ Τ _{2σ}	← 2/2	$ \begin{array}{c} c) \\ ^{4}T_{2\sigma} & \stackrel{2}{\longleftarrow} ^{2}E \end{array} $	$\begin{array}{c} \text{d}) \\ {}^{4}\mathbf{A}_{2\sigma} & \longrightarrow \end{array}$	$^{4}A_{2g}$ $\stackrel{^{2}E_{g}}{\longleftarrow}$
12		n Al(BH ₄) ₃ , the number of 3c-2e bonds present is				
7	a) two	b) for		c) six	d) eight	c six
12 8	Upon heating, the elimination of 2 equichange in the Mo–M	valents	s of CO to	form $[(\eta^5 - C_5 H_5)]$		
	a) 1 2	b) 1 -	→ 3	$c) \sim 3$	d) 3 4	1> 3
12 9	The Brønsted acidity					d
	a) $B_2H_6 = B_4H_{10} >$ $B_5H_9 > B_{10}H_{14}$	$\dot{B_4}H_{10}$		$B_4H_{10} < B_5H_9 <$	d) B ₂ H ₆ > B ₄ H ₁₀ > B ₅ H ₉ > B ₁₀ H ₁₄	B ₂ H ₆ < B ₄ H ₁₀ < B ₅ H ₉ < B ₁₀ H ₁₄
13 0	Consider the follow I and match with col	ing me	talloenzyı	me and heme pro		
	Column I	Column II				
	i. Carboxypeptidase		1 10			
	ii. Carbonic anhydrase			b. Zn and hydrolyses peptide bonds c. Fe and oxidation of compounds by		
	iii. Catalases		H_2O_2			c
	iv. Peroxidases	1	d. Zn a	nd dehydration of	f bicarbonate	
			e. Mg a	nd hydrolyses pe	ptide bonds	
			f. Fe an	d decomposition	of H ₂ O ₂	
	iva.	iiif.;	d.; iib.; iva.	c) ib.; iid.; iiif.; ivc.	d) ib.; iid.; iiia.; ivc.	ib.; iid.; iii f.; ivc.
13	Match column I with	ı colun	nn II.			
1	Column I		Column II			
	i. Transferrin		a. Cu and O ₂ transport			
	ii. Ferredoxin iii. Hemerythri		b. Mg and electron carrier			c
	iii. Hemerythrin c. Binding and transport of Fe(III) iv. Hemocyanin d. Fe and O ₂ transport				re(III)	
	e. Fe-S protein and electron transfer					
				O_2 transport	II transier	
	a) ia.; iie.; iii d.; ivf			c) ic.; iie.; iiid.; iva	d) ic.; iia.; iiid.; ivb	ic.; iie.; iii d.; iva
13	The oxide of nitroge					d
2	a) N ₂ O	b) N ₂ (O ₃	c) N ₂ O ₄	d) N ₂ O ₅	N_2O_5

13	Among the following which is/are reducing H ₃ PO ₄	ь			
	a) H ₃ PO ₄ and H ₄ P ₂ O ₅		c) H ₃ PO ₃ and H ₄ P ₂ O ₆	d) H ₄ P ₂ O ₆ and H ₄ P ₂ O ₇	H ₃ PO ₃ and H ₄ P ₂ O ₅
13	The correct order of	reactivity of the	interhalogens is.		a
4	a) BrF ₅ > BrF ₃ >	b) BrF >		d) BrF >	BrF ₅ > BrF ₃ >
	BrF	/	BrF ₅ > BrF	/	BrF
13 5	Whing among the following borate anion is/are a spiro anion.				b
		[B ₅ O ₆ (OH) ₄]	$[B_5O_6(OH)_4]$ and $[B_3O_3(OH)_5]^{2-}$	and [B ₄ O ₅ (OH) ₄] ²⁻	[B ₅ O ₆ (OH) ₄]
13 6	The correct order of is.				d
	a) Sr > Ca > Mg > Be	Sr > Be	Be > Sr	Ca > Sr	Be > Mg > Ca > Sr
13 7	In the flame test, a metals. Match the recoloured flame observable. List I i. Li ii. Na iii. Cs	metals in List I	List II		С
	a) ib.; iic.; iiia.	b) ic.; iid.;	c) ib.; iid.;	· ·	ib.; iid.; iii
		iiie.	iiia.	iiib.	a.
13 8	The statement which is/are. A. The oxidatio B. The oxidatio C. Synthesized D. Synthesized	a			
	a) A and C	A and C			
13 9	The species ¹³¹ I and The species thus for	С			
	a) ¹³ B and ¹³¹ Xe	b) ¹³ B and ¹³¹ Te	c) ¹³ C and ¹³¹ Xe	d) ¹³ C and ¹³¹ Te	¹³ C and ¹³¹ Xe
14 0	Calculate the number $^{232}_{90}Th$ to $^{208}_{82}Pb$.	a			

	a) 6α and 4β particles	b) 6α and 2β particles	c) 3α and 4β particles	d) 3α and 2β particles	6α and 4β particles
14	The number of stere		1		b
1	a) 2	b) 3	c) 4	d) 5	3
14 2	The crystal field state $[CoF_6]^{3-}$ is.	b			
	a) 2 Dq		c) 6 Dq	d) 12 Dq	4 Dq
14 3	Among the followin K ₄ [Cr(Cl) ₆]	a			
	a) K ₄ [Cr(Cl) ₆] and K ₄ [Mn(CN) ₆]	K ₄ [Cr(Cl) ₆] and K ₄ [Fe(CN) ₆]	K ₄ [Fe(CN) ₆] and K ₄ [Mn(CN) ₆]	K ₄ [Cr(Cl) ₆] only	K ₄ [Cr(Cl) ₆] and K ₄ [Mn(CN) ₆]
14 4	In the reaction of intermediate involved	of [Fe(η ⁵ -C ₅ H ₅) ed is	(CH ₃)(CO) ₂] wi		c
	a) [Fe(η ⁵ - C ₅ H ₅)(CH ₃)(CO)(PMe ₃)]		c) [Fe(η ⁵ - C ₅ H ₅)(COCH ₃)(CO)]		[Fe(η ⁵ - C ₅ H ₅)(COCH ₃)(CO)]
14 5	Among the follow behaviour are	d			
	a) [NiCl ₄] ³⁻ and Fe(CO) ₅	and [NiCl ₄] ³⁻	$[CoF_6]^{3-}$	Fe(CO) ₅	SF ₅ and Fe(CO) ₅
14 6	The separation of lar	a			
	a) Ion exchange chromatography	b) High performance liquid chromatograp hy	c) Gas chromatograph y	1 * <u>.</u>	Ion exchange chromatograph y
14 7	Among the following solubility is	d			
	a) La(OH) ₃	b) Ga(OH) ₃	c) Yb(OH) ₃	d) Lu(OH) ₃	Lu(OH) ₃
14 8	In the cluster [Co ₃ (metal-metal bond(s)				a
	a) 1 CH and 3	b) 1 CH and 2		d) 3 CO and 2	1 CH and 3
14 9	In the cluster [Mo ₂ (number of bridging			of Mo and the	c
	a) 4 and 1	b) 6 and 2	c) 8 and 2	d) 8 and 3	8 and 2
15 0	The predicted struct [Ru ₆ (C)(CO) ₁₇] resp		metal clusters [C	$Os_3(CO)_{12}$] and	ь
	a) arachno and nido	b) arachno and closo	c) nido and closo	d) closo and nido	arachno and closo