Test Booklet No. _____ This booklet consists of 150 questions and 17 printed pages.

RGUPET/2024/__/_

RGUPET 2024 Common Entrance Test, 2024 DOCTOR OF PHILOSOPHY IN MATHEMATICS

Full Marks: 150 Hours

Time: 3

Roll No.				

Day and Date of Examination:

Signature of Invigilator(s)

Signature of Candidate _____

General Instructions:

PLEASE READ ALL THE INSTRUCTIONS CAREFULLY BEFORE MAKING ANY ENTRY.

- 1. DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE TOLD TO DO SO.
- 2. Candidate must write his/her Roll Number on the space provided.
- 3. This Test Booklet contains 150 Multiple Choice Questions (MCQs) from the concerned subject. Each question carries 1 mark.
- 4. Please check the Test Booklet to verify that the total pages and total number of questions contained in the test booklet are the same as those printed on the top of the first page. Also check whether the questions are in sequential order or not.
- 5. Candidates are not permitted to enter into the examination hall after the commencement of the entrance test or leave the examination hall within two hour.
- 6. Making any identification mark in the OMR Answer Sheet or writing Roll Number anywhere other than the specified places will lead to disqualification of the candidate.
- 7. Candidates shall maintain silence inside and outside the examination hall. If candidates are found violating the instructions mentioned herein or announced in the examination hall, they will be summarily disqualified from the entrance test.
- 8. In case of any dispute, the decision of the Entrance Test Committee shall be final and binding.
- 9. The OMR Answer Sheet consists of two copies, the Original copy and the Student's copy.

If youa	a piece of string in	front of a kitten, it	t will play with it.	<u>Answer</u>
a) sway	b) dangle	c) tangle	d) dip	b
The Jasmine give	es its f	ragrance at night.		
a) up	b)out	c)off	d) in	c
A decision on wh		back is called		
a)invulnerable	b)incorrigible	c)irrevocable	d)infrangible	c
A disease which	spreads by contact	t is called		
a) infectious		c) contiguous	d) contagious	d
The idiom "To r	ead between the li	nes" means	-	
a) to suspect.	b) to read carefully	c) to understand the hidden meaning of writer.	d) to do useless things.	с
A person who ha	s no money to pay	off debts is called	1	
a) insolvent	b) beggar	c) debtor	d) pauper	a
The United Natio	/ 00	ituated in		
a) United States of	b) Japan	c) Russia	d)France	b
	llowing sector is	not covered in th	e Make in India	
1 0	b) Defense	c)Media and	d) Education	d
	-) =	/	.)	•
	_	ch state under Ek	Bharat Shrestha	
a) Assam	b) Himachal	c) Uttar	d) Punjab	c
		Pradesh		
•			1) TT ''	
a) Greenland	b) Majuli	c)Andaman and Nicobar	d) Hawaii	a
The name of first	t Indian satellite la	unched in space is		
a) Rohini	b)Aryabhatta	c) Bhaskara	d) Chandrayan- I	b
The T20 Cricket	World Cup 2024 v	vill be hosted by the	he countries-	
a) England and	b) Australia and	c) West Indies	d) New Zealand	c
The number of se is conducted-	ats for which the C	General Election of	f Lok Sabha 2024	
a) 543	b) 456	c) 562	d) 620	a
/	/	/	/	
a) Mahendra Singh Dhoni	b) Ramnath Kovind	c) Lal Krishna Advani	d) Dr. Manmohan Singh	c
The theme of Inc	ia's National Scie	nce Day 2024 is		
a) Science for Nation Building	b) Women in Science	c) Global Science for	d) Indigenous Technologies	d
	a) sway The Jasmine give a) up A decision on wh a) invulnerable A disease which a) infectious The idiom "To real a) to suspect. A person who ha a) insolvent The United Nation a) United States of America Which of the for programme? a) Automobiles Arunachal Prades Bharat programm a) Greenland The largest island a) Greenland The name of first a) Automobiles Anurica The name of first a) Assam The name of first a) Science for America The number of sec is conducted- a) 543 Which of the foll a) Science for Nation	a) swayb) dangleThe Jasmine givesits fa) upb)outA decision on which one cannot goa) invulnerableb) incorrigibleA disease which spreads by contacta) infectiousb) mortalThe idiom "To read between the linea) to suspect.b) to reada) to suspect.b) to reada) to suspect.b) to reada) insolventb) beggarThe United Nations University is states ofAmericab) JapanStates ofAmericab) DefenseWhich of the following sector isprogramme?a) Automobilesb) DefenseArunachal Pradesh is paired to whiBharat programme?a) Assamb) HimachalPradeshThe largest island in the world isa) Greenlandb) Australia andUnited States ofArunachal PradeshThe largest island in the world isa) Assamb) HimachalPradeshThe largest island in the world isa) Greenlandb) Australia andUnited States ofAmericaThe name of first Indian satellite laa) Rohinib) Australia andWhich of the following has confermeda) 543b) 456Which of the following has confermeda) Science forb) Women inNationScience	a) swayb) danglec) tangleThe Jasmine givesits fragrance at night.a) upb)outc)offA decision on which one cannot go back is calleda) invulnerableb) incorrigiblec) irrevocableA disease which spreads by contact is calleda) infectiousb) mortalc) contiguousThe idiom "To read between the lines" meansa) to suspect.b) to readc) toa) to suspect.b) to readc) toa) insolventb) beggarc) debtorThe United NationsUniversity is situated ina) Unitedb) Japanc) RussiaStates ofb) Defensec)Media andAmericab) Defensec)Media andMuch of the following sector is not covered in thprogramme?a) Automobilesb) Defensec)Media andBharat programme?a) Greenlandb) Himachalc) Uttara) Greenlandb) Aryabhattac) Bhaskaraa) Rohinib) Australia andc) West Indiesa) Rohinib) Australia andc) West Indiesa) Rohinib) Australia andc) West Indiesa) Atter of first Indian satelliteandThe number of seats for which the General Election oris conducted-a) Mahendrab) Ramnatha) Science forb) Women inc) Lal KrishnaAdutonb) Sciencec) Science for	a) swayb) danglec) tangled) dipThe Jasmine givesits fragrance at night.a) upb) outc) offd) inA decision on which one cannot go back is calleda) infectiousb) incorrigiblec) irrevocabled) infrangibleA disease which spreads by contact is calleda) infectiousb) mortalc) contiguousd) contagiousThe idiom "To read between the lines" meansa) to suspect.b) to read carefullyc) to do useless understand the hidden meaning of writer.A person who has no money to pay off debts is calleda) insolventb) beggarc) debtord) pauperThe United NationsUniversity is situated in a) University is situated in a) University is spired to whick state under Ek Bharat Shrestha Bharat programme?d) Francea) Automobilesb) Defense Pradeshc)Media and Bharat Shrestha Bharat Shrestha Bharat programme?d) Punjab Pradesha) Assam b) Himachal pradeshc) Uttar Pradeshd) Punjab Pradesha) Assam b) Aryabhattac) Bhaskara c) Uttar Pradeshd) Chandrayan- IThe range of first Indian satellite lau-red in space is a) Rohinib) Australia and b) Ayrabhattac) Mest and c) Mest and c) Mest and c) Marinicaa) Assam b) Ayrabhattac) Secore of Lok Sabha 2024a) Assam b) Ayrabhattac) Scienced) Chandrayan- Ia) Greenland b) Astralia and c) Lal Krishna c) Mamodand) New Zealand and England.b) Hamachal c) Crick

			Global	for Viksit	
			Wellbeing	Bharat	
16	Coordinate geom	etry is invented by	0		
	a) Archimedes	b) Rene	c) Leonhard	d) Galileo	b
	,	Descartes	Euler	Galilei	
17	Among the clust	ers of letters, three	of them are simil	lar in certain way	
		ent. Which is the o		5	
	a) GEL	b) CAH	c) OMR	d) KIP	с
18	/	anguage, 'PEARL		/	
-		RT'. How will 'BI			
	a) PIRU	b) WIRY	c) WIRU	d)DIRE	b
19	/	<i>B</i> , <i>C</i> , <i>D</i> , <i>E</i> , <i>F</i> , <i>G</i> and	/	/	
		g between F and C			
		the left of B . G is a			
		o A. Then, who is	-		
	a) E	b) D	c) F	d) H	b
20		from the followin	/	u) 11	0
20	a) 3762	b) 6282	c) 5462	d) 4752	с
21	/	andom assignment	/	/	U
<u> </u>	is	andoni assignment	in an experimente	di researen design	
	a) To ensure	b) To minimize	c) To increase	d) To simplify	
	/	the effects of		the data	
	is	bias and	of obtaining	analysis	
	representative	confounding	statistically	process.	b
	-	variables.	significant	p1000035.	
	population.	variables.	results.		
22		lowing is NOT a ty		sion?	
	a)	b) Descriptive.	c) Qualitative.	d) Predictive.	
	Experimental.	o) Descriptive.	e) Quantative.	a) i realettive.	d
23		hary purpose of a	research proposal	in the context of	
	research design?	ing purpose of u	proposal		
	•	e the budget for th	e research project.		
		be the research me			
		arize the findings		-	
		le a list of reference			
	a) A	b) B	c) C	d) D	b
24	/	owing is an examp	/	/	
	a) Survey	b) Experiment	c) Case study	d) Correlational	
	, ,			study	с
25	Which research d	lesign involves sele	ecting participants	~	
		paring them on var		1	
	a) Experimental	b) Quasi-	c) Correlational	d) Matched-	
	design.	experimental	design.	pairs design.	d
		design.	8	r 88	
26	Which research a	design involves ob	serving and record	ding behaviour in	
		nment without ma		8 iii iii	
	a) Experimental	b) Survey	c)	d) Correlational	
	design	design	Observational	design	с
	3		design		
	XX/1 · 1 C · 1 C	llowing is/oro NC	U	ntitative research	
27	Which of the fo	mowing is/are in			
27	design?	mowing is/are inc	or a type or qua		

	B. Correlation	onal design.			
		theory design.			
		perimental design.			
	a) A and B	b)B and C	c) B only	d) C only	d
28	/	/	g a longitudinal de	/ /	
			c) It requires		
			less time and		
		variables	resources	in the selection	b
	groups at one	change over	compared to	of participants.	
29			other designs. is commonly the commonly the commonly the common set of the common se		
			c) Longitudinal		
	design	design	design	design	b
30	6		uasi-experimental	0	
			c) To generalize		
	cause-and-		findings to a		
	effect	between	larger	cannot be	d
	relationships	variables	nonulation	manipulated	
31	1		$\begin{cases} \frac{\lambda}{\sqrt{t}}, \ 0 < t < 4\\ 0, otherwise \end{cases}$		
	If the function d	lefined by $f(t) =$	$\{\sqrt{t}, 0, 1, 1\}$	is a probability	
	1	.1 .1 1 /	(0, otherwise		
	density function,	then the values of	λ and P(t>1) are:		
	a) 0.25 and 0	b) 0.5 and 1	c) 0.25 and 0.5	d)1 and 0.2	с
32	Match the items	1 st column with th	ne items of 2 nd col	umn and indicate	
	the code of corre	ct matching:			
	List-I		List-II		
		ers of the distributi		ypergeometric	
	are n and p		distribution	ypergeometric	
	-	and variance of t		istribution	
	distribution coin			istribution	
		and S.D. of t	he iii. Poisson di	stribution	
		termine the cent		stribution	
	location and spr				
		d n approaches	to iv.Normal dis	tribution	
		andard norm			
	<u> </u>	limiting case of			
		U	I		
	a)A→(iv),	b)A→(ii),	c)A→(iii),	d) None of the	
	B→(iii),	$B \rightarrow (iii),$	$B \rightarrow (ii),$	above	
	$C \rightarrow (i), D \rightarrow (ii)$	$C \rightarrow (iv).$	$C \rightarrow (iv),$		b
			$D \rightarrow (i)$		
33		owing statements:			
		-	bility distribution	is tested by γ^2 –	
	test.	prosu	-,		
		a sufficient estin	nator of the mean	n u of a normal	
		the known varianc			
			ticular case of χ^2 -	distribution	
			nma distribution a		
	Choose the corre		u u u u u u u u u u u u u u u u u		
		1(-/*			1

	a) B and D are true	b) A,B,C and D are true	c) Only A is true	d) A, C and D are true	d
34	Consider the Ma	rkov chain { X _n : ion probability ma	$n \ge 0$ of finite s atrix. If the chain i	tate space S and	
	a) admits infinitely many stationary distributions	b) admits unique stationary distribution	c) may not admit stationary distribution	d) cannot admit exactly two stationary distributions	a
35	If A and B are t	wo independent e	vents such that P($(A^{c} \cap B) = \frac{2}{15}$ and	
	$P(A \cap B^c) = \frac{1}{6}$, then			15	
	A. $P(A) = \frac{2}{5}a$	$P(B) = \frac{1}{5}$			
	B. $P(A) = \frac{1}{5}a$	nd P(B)= $\frac{1}{6}$			
	C. $P(A) = \frac{5}{6}a$	nd P(B) = $\frac{4}{\pi}$			
	D. $P(A) = \frac{1}{7}a$	nd $P(R) = \frac{5}{4}$			
			a) A D and C	d) only D is true	
	a) A and B are true	b) B and C are true	c) A, B and C are true	a) only D is true	b
36			certain manufactu	rer lasted on the	
	the null hypothes μ < 22000 miles a A. Null hypo B. Null hypo C. Z=1.40 D. Z= -1.40 Select the correct	is $\mu = 22000$ mile at the 0.05 level of othesis can be reject othesis cannot be r t alternative. (b) A and C are	cted	hative hypothesis d) None of the	(c)
37			tion coefficient w		
	to be 0.60 from a	sample of size 28	is	-	
			c) 0.45782 and		(a)
20	0.7951	0.8896	0. 5578	0.4951	
38	 A. Fabrication B. Misrepression C. Deceive g D. Self Plaga 	sent Data granting agencies, arism.	or the public		
	a) Only A and B	b) Only A and C	c) Only A, B and D	d) All of A, B, C, and D	d
39	The act of publish	ning the same data	and results in more		
	-	•	e following profes	•	
	a) Partial	b) Duplicate	c) Full	d) Common	b
	publication	publication	publication	publication.	U
40			volve guidelines fo		
	a) Thesis	b) Copyright	c) Patenting	d) Data sharing	а
41	format		policy	policies	
41		out from the follo			1
	a) iThunticate	b) Urkund	c) Turnitin	d) Cmap Tools	d

42	Copying the wor	k of other authors	in whole pieces is	called as	
	a) Self	b) Indirect		d) Patch	1
	plagiarism	/	plagiarism	writing	d
43			alidity of an inves		
	A. History			e	
	B. Instrumer	ntation			
	C. Maturatio	n			
	Choose the corre	ct answer from the	e options given bel	low:	
			c) A and C only		d
44		been set up for pr			
	A. Quality resear		C		
	B. Academic inte				
	C. Publication et	e .			
	D. Inclusion and	access			
	E. International c	collaborative resea	rch		
	Choose the corre	ct option from tho	se given below:		
			c) Only B, C	d) Only A, B	1
	and E	and D	and E	and C	d
45	Research ethics d	loes not include	1		
-	a) Honesty	b) Integrity	c) Subjectivity	d) Objectivity	с
46	, <u> </u>		used for checking p		
	a) Turnitin	b)Urkund	c)drillbit	d. Latex	d
47	/	/	associated with a		
• /	consent?	, most commonly			
	a) Qualitative	b) In-depth	c) Covert	d) Structured	
	content analysis		observation	interviewing	с
48			ke the compliance		
10	difficult?	owing fuotors mar	te the compliance	or research ethes	
		b) Respect for	c) Lack of	d) Self-check	
	norms	confidentiality		u) Sen eneek	с
49			an open-source so	oftware for data	
.,	analysis?		un open source s		
	a)MATLAB	b)MATHEMA	c)SPSS	d)R	
	ujitin n Er i E	TICA	0,51.55	ujit	(d)
50	Which of the foll		thod of collecting	primary data?	(b)
20	a)Indirect	b)	c)Questionnair	d)Direct	(0)
	Interview	Nationa	e method	Interview	
		1 Publications	emethou		
51	The matrix $\begin{bmatrix} 2 + \\ i \end{bmatrix}$	3i 1 1.	1	l	
01	The matrix $\begin{bmatrix} -i \\ i \end{bmatrix}$	$\begin{bmatrix} 3i & 1 \\ 1+2i \end{bmatrix}$ is			
	a) Hermitian	b) Normal	c) Skew-	d) Unitary	b
			Hermitian	· ·	
52	The rank and r	ullity of a linea	ar operator T on	\mathbb{R}^3 defined by	
			(-z) are, respectiv		
	a) 2 and 1	b) 1 and 2	c) 0 and 3	d) 3 and 0	d
53	/	owing is linearly o	/		
		and $v = (3, -5)$.	*		
		-3) and $v = (4,5)$. –6).		
		3) and $v = (-2,6)$			
		5), $v = (2,5,1)$ and			
		b) B and D.	c) C only	d) D only	с
54		wo similar matrice		, <u>,</u>	
			,		

1					
	· · · ·	· ·		d) Trace of A	c
	represent	invertible.	same	may not be	
	different linear		characteristic	equal to trace of	
	transformations		polynomial.	В.	
55	Consider the sta	ndard inner produ	Let on \mathbb{R}^2 . If $< a$,	$c \ge -1$ and $<$	
55	$b, c \ge 3$ where	a = (1,2), b = (-1,1), then <i>c</i> is		
	a) $(-\frac{7}{3},\frac{2}{3})$	b) $(\frac{7}{3}, \frac{2}{3})$	c) $(-\frac{9}{3},\frac{2}{3})$	d) $(\frac{9}{3}, \frac{2}{3})$	а
56	with $char(K) \neq$	2. Then $E + F$ is	on a vector space a projection <i>iff</i>		
	a) $EF \neq FE =$	b) $EF = \hat{0} \neq$	c) $EF = FE = \hat{0}$	d) $EF = FE \neq$	с
57				0	
57	(2x, 4x - y, 2x - y)	+3v-z) is	T on \mathbb{R}^3 defined		
	a)	b)	c)	d) does not	b
	$T^{-1}(x,y,z) =$	$T^{-1}(x, y, z) =$	$T^{-1}(x, y, z) =$	exist.	
	(x, 2x - y, x - y)	$(\frac{1}{2}x, 2x -$	$(\frac{1}{2}x, 2x -$		
	y-z)	y, 7x - 3y -	c) $T^{-1}(x, y, z) =$ $(\frac{1}{2}x, 2x - \frac{1}{2}y, x + \frac{3}{2}y - \frac{1}{2}z)$		
		<i>Z</i>)	$\left(\frac{1}{2}\right)^{2}$		
58			or a nilpotent oper		
20	index k?		i u impotont oper		
	A. T has a	block matrix rep	presentation with	Jordan nilpotent	
	blocks as diagon	al entries.		-	
	B. At least o	ne Jordan Nilpote	nt block is of orde	r k.	
			Nilpotent block o		
		-	ocks must be of or		
	a) A, B, C and D	b) A, B and D	c) A, C and D	d) A only.	с
59	-	(-v r) with $(-v r)$	h respect to stand	ard inner product	
0)	space is		in respect to stand	ara miler product	
	1	b) Continuous	c) Orthonormal	d) Orthogonal	d
		·	and continuous	, ,	
60	Quadratic form a only if	$q(x,y) = ax^2 + b$	$xy + cy^2$ is positi	ve definite if and	
				d) $a < 0$ and	А
	$b^2 - 4ac < 0.$	$b^2 - 4ac > 0.$	$b^2 - 4ac > 0.$	$b^2 - 4ac < 0.$	
61			vector spaces with		
			the vector space a	$\lim L(U,V)$ of all	
		tions from U to V		1	1
()	a) $n + m$	b) n/m	c) $n - m$	d) <i>nm</i>	d
62		_	and choose the con	_	
			f f is continuous in	n (<i>a</i> , <i>b</i>) only.	
	B) $f'(x) \neq a$, for		a) A is time last	d) A is false hard	
	· ·	b) Both A and B are true and B is	C) A is true but B is false.	d) A is false but B is true.	а
		not a correct	D IS TAISE.		
		explanation for			
	A.	A.			
1	4 1 •	± 14	1		1

63	Which of the	following state	ement is true	for the series	
	$\sum \left(\frac{n+1}{n+2}\right)^n x^n, x$	> 0?			
	A. converges	s if $x > 1$ and dive	erges for $x \leq 1$.		
	-	s for every $x > 0$.			
	-	s if $x < 1$ and dive	erges for $x \ge 1$.		
		for every $x > 0$.		1) D	
61	a) A	b) B	c) C	d D	c
64		of the point at wh e chord joining th			
	interval [0,1]?	chord joining u	ic extremities of	the curve in the	
	a) <i>ln</i> 1/ <i>e</i>	b) <i>ln</i> (<i>e</i> − 1)	c) 1/ <i>e</i>	d) 1/2	b
65	For the given	sequence $< (-1)$			
	following statem		$(1 n)^{r}$		
		b) Neither limit	c) Limit	d) Limit	d
	superior = limit	/	superior $= 1$ and	/	
	inferior.		limit inferior =		
		exists.	0.	1.	
66		llowing sequences	s is uniformly cor	envergent in $[0, k]$	
	where $k < \infty$ and				
	A. $f_n(x) = \frac{1}{2}$	$\frac{x}{1+nx^2}$.			
	B. $f_n(x) = \frac{1}{n}$	$\frac{x}{x+x}$.			
	C. $f_n(x) = n$				
	D. $f_n(x) = e$	e^{-nx}			
	a) D only	e^{-nx} b) C and D.	c) C only.	d) B, C and D	a
67		following is tr	rue for the fun	f(x,y) =	
		$(x,y) \neq (0,0)$?			
	(0, for	(x,y) = (0,0)			
	a) $f_{xy} = f_{yx}$ at	b) $f_{xy} \neq f_{yx}$ at	c) $f_{xy} > f_{yx}$ at	d) $f_{xy} < f_{yx}$ at	b
60	origin.	origin.	origin.	origin.	
68		atisfies Bolzano-W			
	a) X is not	b) X is not	c) Every infinite	/	с
	compact.	sequentially compact.	sequence in X	sequence in X may not have	
		compact.	has at least one	any cluster	
			cluster point.	point.	
69	If f is a uniform	ly continuous map	·	1	
	space Y, then wh	ich of the statemer	nt(s) is/are correct	?	
		Cauchy sequence	in X implies (fx_n) is Cauchy	
	sequence in Y.				
		equence in X impli			
	C. (x_n) is C sequence in Y.	auchy sequence in	A does not imply	$(f x_n)$ is Cauchy	
	1	convergent sequer	nce in X imply ($(f_{x_{n}})$ is Cauchy	
	sequence in Y.	sonvergent seque	iee in zi impiy ((π_n) is caucily	
	a) A only	b) B only	c) A and B	d) A and D.	d
70	/ 2	owing statement i			a
		ann integrable ove		X	
	-	Liemann integrable			
				10.	

	C fistate				
		sgue integrable ov			
		ebesgue integrable			-
71	a)A only.	b) A and C.		d) C only	а
/ 1		owing is true for t		$= x^{-2}$	
	,	ormly continuous c		×+	
		niformly continuo		ζ'.	
		ormly continuous o		1 (* '. ' . 1	
		rmly continuous c			1
70	a) A only	b) C only.	c) A and C.	d) D only	d
72		owing statements		f' is horizontal and	
		ounded variation of	on [a, b] implies	is bounded on	
	[a, b].			lad maniation	
		us functions are no			
		monotonic function			
		n of bounded varia			
72	a) A and C	b) A, B and C	c) A, B and D	d) A, C and D	С
73		owing statements			
		orel sets are measu			
		ncountable sets are		unala la	
		set containing one		irable.	
		antor sets are meas $(h) \land D$ and C		d) A. C. and D	d
74	a) A only.	b) A, B and C.		d) A, C and D. (K,T)	a
74	separated, then	y subsets A and B	of a topological	space (X, I) are	Answer
	a) $A \cap \overline{B} = \phi$	b) $A \cap \overline{B} \neq \phi$	c) $A \cap \overline{B} \neq \phi$	d) $B \cap \overline{A} = \phi$	a
	and $B \cap \overline{A} = \phi$, ,	and $A \cap \overline{B} \neq \phi$	
75		and $T = \{X, \phi, \{c\}\}$	<i>a</i> }, { <i>a</i> , <i>b</i> }}. Then (<i>X</i>)	•	
	a) Nat a	h) commont	a) Housdorff	d) not compost	
	/	b) compact	c) Hausdorff	d) not compact but Hausdorff	b
	topological				
76	space	a topological space	a such that over	u subspace of the	
70	space has that pro		ce such that every	subspace of the	
	*	b) topological	c) relative	d) isometry	a
	-	. – –		d) isometry property	a
77	property	property profine property or ff apace, then $\prod \lambda$	property	1 1 7	
11					
		b) in product topology but	and product		
	not in product		topologies	product	c
	topogy	topology.	lopologics	topologies	
78		otained when 16 ²⁰)16 is divided by 0		
70	a) 7			d) 1	d
79	1	b) 5	c) 3	/	d
17		two topologies de Thop T is said to		_	
		Then T_1 is said to			
	a) $B_1 = B_2$	b) every	· ·	· ·	
	always.	_	member of B_2	_	
		can be	can be	can be	
				expressed as a	C
		union of			
		members of B_2 .	members of $B_{1.}$	members of B_2	
				and vice-versa.	

80	Topological spac	e is a T_3 -space if			
	a) it is normal		c) it is regular	d) it is regular	
	,	and T_1 -space		and T_1 -space	d
81	Tychonoff's theo	rem is related to v	which of the follow	ving properties of	
	topological space	??			
	a) completeness	b)connectednes	c) embedding	d) compactness	d
		S			u
82			ultiplicities, of the	e equation $2z^5$ –	
		in the region $1 \leq$		Γ	
	a) 5	b) 4	c) 3	d) 1	c
83		and C is the circ	le $ z = \pi$, then the	e value of	
	$\int_C \left(\frac{f'(z)}{f(z)}\right) dz$ is				
	S () (2) /	b) <i>-πi</i>	c) -2 <i>πi</i>	d) 2 <i>πi</i>	d
84	/	tion of the form w		<i>a) Litt</i>	<u>u</u>
	*	b) conformal	c) both isogonal	d) neither	
	, 8)	, U	conformal nor	a
				isogonal	
85	The Jacobian of t	he transformation	$f(z) = \sqrt{3} e^{\frac{i\pi}{4}} z$ c) -1/4 ralue of $\int_C \frac{z^2 + 1}{z(2z+1)} dz$	+2-i is	
	$\frac{1}{2}\sqrt{3}/4$	b) $\sqrt{3}$	$f(2) = \sqrt{3} c \cdot 2$	d) 3	d
86		0) \ 3	$\frac{c}{1}$	u) 5	u
00	If C is the circle	z = 1, then the v	alue of $\int_C \frac{1}{z(2z+1)} dz$	dz is	
	a) $-\pi i$	b) – <i>πi</i> /2	c) 2πi	d) $-2\pi i/3$	b
87		ction $f, g: \mathbb{C} \to \mathbb{C}$ b	e defined by $f(z)$	$= e^z$ and $g(z) =$	
		$\mathbb{C}: Re(z) \in [-\pi]$		1	
			c) both f and g		
	on D.	on <i>D</i> .	are bounded on	are unbounded	a
0.0			D.	on D.	
88	Let $f(z) = f(z)$	$(x) = \begin{cases} (\sin z)/z \\ 1 \end{cases}$	$z \neq 0$ z = 0. Then N	Iaclaurin series	
	expansion of $f(z)$	() is			
		b)	c) $\sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!}$ eries $\sum_{n=0}^{\infty} (n!) z^n$	d)	
	$\sum_{n=1}^{\infty} (-1)^n z^{2n}$	$(-1)^n z^{2n+1}$	c) $\sum_{n=0}^{\infty} \frac{1}{(2n+1)!}$		a
	$\sum_{n=0}^{\infty} \frac{1}{(2n+1)!}$	$\sum_{n=0}^{\infty} \frac{1}{(2n+1)!}$		$\sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!}$	
89	The region of con	hvergence of the set b) $ z = 1$	eries $\sum_{n=0}^{\infty} (n!) z^n$	1	
	a) $0 < z < 1$	b) $ z = 1$	c) $ z > 0$	d) converges	d
0.0		、 ·	• •	only at $z = 0$	
90		-	a simply connected	ed domain D and	
	U	r every closed cor			
			c) $f(z)$ is not		b
01	constant.	analytic in D.	analytic in <i>D</i> .	entire fucntion.	
91	A bilinear transfo	formation $f(z) = z$	/(2-Z) 1S	d)hath	
	a) elliptic	b)hyperbolic	c)parabolic	d)both parabolic and	h
				parabolic and hyperbolic	b
92	Let < z > and	$< w_{\rm c} > he two sets$	equences of compl	V 1	
<i>, </i>			b. Then $\lim_{n \to \infty} (z_1 w)$		
			$n \to \infty$	1 22 1 1	
	$(z_n w_n)/n$ is equal	b) $ab - a - b$	a) ah	d) a l b ab	
93	a) $a + b$ Which of the fall		c) ab re analytic everyw	d) $a + b - ab$	c
73		owing functions a	ie anarytie everyw		

	a) <i>ze^z</i>	b) $(\overline{7} \pm 2i)^2$ -	<u>∖</u> z+1	d) $(z + i)/(\overline{z} - $	
	a) 20	b) $(\overline{z} + 2i)^2 - 1$	c) $\frac{1}{z+4}$	i) (2 + t)/(2	a
94	The radius of con	nvergence of the p	ower series $\sum_{n=0}^{\infty} 2^{n}$	$2^{\sqrt{n}}z^n$ is	
	a) ∞	b) 1	c) $1/\sqrt{2}$	d) 0	b
0.5				1	
95	If the power series $\sum_{n=1}^{n} \frac{1}{n}$	es $\sum a_n z^n$ converg	es for $z = z_0 \neq 0$, c) $\sum a_n z^n$	then $\sum r - n$	
	a) $\sum a_n z^n$	b) $\sum a_n z^n$	c) $\sum a_n z^n$	d) $\sum a_n z^n$	
	uniformly for	uniformly for	converges absolutely for	absolutely for	d
	$ z > z_0 $	$ z < z_0 $	$ z > z_0 .$	$ z < z_0 $	
96		f order 49, then			
			c) G is non-	d) G is cyclic	
	,	, ,	abelian	but non-	a
				abelian.	
97			n-singular matrices	s over reals. Then	
	the centre of G is				
			c) a diagonal		
				matrix of order	c
09	2×2 .	2×2 .	2×2 .	2 × 2.	
98			p H of a group G	p is a $p - Sylow$	
		for some positive p_{n}^{n} divides	c) both p^n and	d) n^n does not	
			p^{n+1} does not		
	G.	n^{n+1} does not	divide order of	G but p^{n+1}	b
	u .	divide order of		divides order of	~
		<i>G</i> .		<i>G</i> .	
99	The ring $R = \{a$	$+b\sqrt{2}:a,b$ are i	ntegers} is		
	a) an integral	b) not an	c) both integral	d) niether field	
		integral domian		not integral	a
		but a field.		domain.	
100			element x in G be	n. Then for any	
	positive integer <i>l</i>				
101	a) n^k	b) <i>nk</i>	/ / 0	d) $n/\text{lcm}(n,k)$	c
101	Let G be a cyclic are	group of order 8.	Then the number of	of generators of G	
	a) 1	b) 2	c) 3	d) 4	d
102	,	rime ideal of \mathbb{Z}_{10^5}	is	· ·	
	a) 2	b) 5	c) 10	d) 50	a
103			sm from \mathbb{Z}_{10} to \mathbb{Z}_2		
	a) 0	b) 1	c) 5	d) 10	d
104	The order and de	area of the differen	ntial equation $\frac{d^2}{dx^2}$	$\left(\frac{d^2y}{d^2y}\right)^{-\frac{3}{2}} = 0$ is	
					1
105	a) 1, 4	b) 4, 1	c) 4, 4	d) 1, 1	b
105		wing statements:	rential equation of	forder n have m	
	arbitrary function		ichtiai equation 0	i oluci <i>il</i> llave <i>l</i> l	
		10.			
	B: The Solution	of partial different	ential equation of	order <i>n</i> have <i>n</i>	
	arbitrary function	-	1		

	a) A in trave D in	$ \mathbf{h}\rangle \wedge \mathbf{h} = \mathbf{f}_{0} 1_{0} \mathbf{p}$	a) Dath A and D	d) Deth A and D	1.
		b) A is false, B		d) Both A and B	b
	false	is true	are true	are false	
106	For the differen	tial equation rv'	-y = 0 which	of the following	
100		n integrating factor		or the ronowing	
	a) $\frac{1}{x^2}$	$b)\frac{1}{y^2}$		$d)^{-1}$	d
107		$\frac{0}{y^2}$	$\frac{(x)}{xy}$	d) $\frac{1}{x+y}$	u
107		E 4xyz = pq + 2q		·/ 11	
	A) It can by transformation.	be reduced to C	Clairaut form by	some suitable	
		hu I ah is comp	lata integral		
	(b) $z = ux + C$ (c) $z = -x^{2}$	- <i>by + ab</i> is comp y ² is singular solu	tion		
	Choose the corre		tion.		
			c) A and C are	d) A. B and C	
		are correct.	correct.	are correct.	с
108			$=\frac{2}{t}y+t^2e^t, 1 \leq$		
	has:	y(t)		z = 2, y(1) = 0	
	a) unique	h) Infinita	c) No solution	d) 2 solutions	
	solution	number of		$a_j \ge 5010000000$	а
	Solution	solutions			u
109	The solution of "				
		$\frac{dy}{dx} = \frac{(1-x)}{y}$ represent		Γ	
				a) a family of	
			circle centre at		а
	(1,0)	(0,0)	(-1,0)	with slope -1	
110				-	
110				-	Answer
110	The set of real nu	The second seco	the boundary value on trivial solution	ue problem $\frac{d^2y}{dx^2}$ +	option
110	The set of real nu $\lambda y = 0, y(0) = 0$	The second seco	the boundary value on trivial solution	ue problem $\frac{d^2y}{dx^2}$ +	
110	The set of real nu $\lambda y = 0, y(0) = 0$	The second seco	the boundary value on trivial solution for the boundary value of	ue problem $\frac{d^2y}{dx^2}$ +	option
110	The set of real nu $\lambda y = 0, y(0) = 0$ a) $(-\infty, 0)$	The second seco	the boundary value on-trivial solution c) $\{n^2 n \text{ is apositive }$	ue problem $\frac{d^2y}{dx^2}$ + is d) \mathbb{R}	option
	The set of real nu $\lambda y = 0, y(0) = 0$ a) $(-\infty, 0)$	The second seco	the boundary value on-trivial solution c) $\{n^2 n \text{ is } a \text{positive} \}$	ue problem $\frac{d^2y}{dx^2}$ + is d) \mathbb{R}	option
110	The set of real nu $\lambda y = 0, y(0) = 0$ a) $(-\infty, 0)$ The general solution	The second state is a formula of the second state is a formula of the second state is a second state	the boundary value on-trivial solution $(n^2 n)$ is apositive integer} = 0 is of the form	ue problem $\frac{d^2y}{dx^2}$ + is d) \mathbb{R}	option
	The set of real nu $\lambda y = 0, y(0) = 0$ a) $(-\infty, 0)$ The general solution	The second state is a formula of the second state is a formula of the second state is a second state	the boundary value on-trivial solution $(n^2 n)$ is apositive integer} = 0 is of the form	ue problem $\frac{d^2y}{dx^2}$ + is d) \mathbb{R}	option
	The set of real nu $\lambda y = 0, y(0) = 0$ a) $(-\infty, 0)$ The general solution a) $u = f(x + iy) + g(x - y)$	The second state is a formula of the second state is a formula of the second state is a second state	the boundary value on-trivial solution $(n^2 n)$ is apositive integer} = 0 is of the form	ue problem $\frac{d^2y}{dx^2}$ + is d) \mathbb{R}	option
111	The set of real nu $\lambda y = 0, y(0) = 0$ a) $(-\infty, 0)$ The general solution a) $u = f(x + iy) + g(x - iy)$	imbers λ for which $0, y(\pi) = 0$ has not b) $\{\sqrt{n} n \text{ is } a \text{ positive } n \text{ teger} \}$ tion of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$ b) $u = f(x + iy) + g(x - y)$	the boundary value on-trivial solution c) $\{n^2 n \text{ is } a \text{positive} \}$	ue problem $\frac{d^2y}{dx^2}$ + is d) \mathbb{R}	option (c)
	The set of real nu $\lambda y = 0, y(0) = 0$ a) $(-\infty, 0)$ The general solution a) $u = f(x + iy) + g(x - y)$	Sumbers λ for which $0, y(\pi) = 0$ has not b) $\{\sqrt{n} n \text{ is } a \text{ positive } \text{ nteger}\}$ tion of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$ b) $u = f(x + iy) + g(x - y)$	the boundary value on-trivial solution x^{2} (c) $\{n^{2} n \text{ is a positive integer}\}$ = 0 is of the form (c) $u = cf(x - iy)$	ue problem $\frac{d^2y}{dx^2}$ + is d) \mathbb{R}	option (c)
111	The set of real nu $\lambda y = 0, y(0) = 0$ a) $(-\infty, 0)$ The general solution a) $u = f(x + iy) + g(x - iy)$ Classify the PDE	Sumbers λ for which $0, y(\pi) = 0$ has not b) $\{\sqrt{n} n \text{ is } a \text{ positive } \text{ nteger}\}$ tion of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$ b) $u = f(x + iy) + g(x - y)$ $2u_{xx} + 4u_{xy}$	the boundary value on-trivial solution is apositive integer} = 0 is of the form c) $u = cf(x - iy)$ u = 2	ue problem $\frac{d^2y}{dx^2}$ + is d) \mathbb{R} d) \mathbb{R} d) $u = g(x + y)$	option (c)
111	The set of real nu $\lambda y = 0, y(0) = 0$ a) $(-\infty, 0)$ The general solution a) $u = f(x + iy) + g(x - iy)$ Classify the PDE a) elliptic at all	imbers λ for which $0, y(\pi) = 0$ has not b) $\{\sqrt{n} n \text{ is a positive nteger}\}$ tion of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$ b) $u = f(x + iy) + g(x - y)$ E: $2u_{xx} + 4u_{xy}$ b) elliptic at	the boundary value on-trivial solution is apositive integer} = 0 is of the form c) $u = cf(x - iy)$ $x + 3u_{yy} = 2$ c) hyperbolic at	d) $u = g(x + y)$ d) hyperbolic at	option (c) a
111	The set of real nu $\lambda y = 0, y(0) = 0$ a) $(-\infty, 0)$ The general solution a) $u = f(x + iy) + g(x - iy)$ Classify the PDE	imbers λ for which $0, y(\pi) = 0$ has not b) $\{\sqrt{n} n \text{ is a positive nteger}\}$ tion of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$ b) $u = f(x + iy) + g(x - y)$ E: $2u_{xx} + 4u_{xy}$ b) elliptic at finite points	the boundary value on-trivial solution is apositive integer} = 0 is of the form c) $u = cf(x - iy)$ $x + 3u_{yy} = 2$ c) hyperbolic at	d) $u = g(x + y)$ d) hyperbolic at finite points	option (c)
111	The set of real nu $\lambda y = 0, y(0) = 0$ a) $(-\infty, 0)$ The general solution a) $u = f(x + iy) + g(x - iy)$ Classify the PDE a) elliptic at all points	imbers λ for which $0, y(\pi) = 0$ has not b) $\{\sqrt{n} n \text{ is a } positive nteger}\}$ tion of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$ b) $u = f(x + iy) + g(x - y)$ E: $2u_{xx} + 4u_{xy}$ b) elliptic at finite points only	the boundary value on-trivial solution is apositive integer} = 0 is of the form c) $u = cf(x - iy)$ $x + 3u_{yy} = 2$ c) hyperbolic at all points	d) $u = g(x + y)$ d) hyperbolic at	option (c) a
111	The set of real nu $\lambda y = 0, y(0) = 0$ a) $(-\infty, 0)$ The general solution a) $u = f(x + iy) + g(x - iy)$ Classify the PDE a) elliptic at all points Consider the IVE	imbers λ for which $0, y(\pi) = 0$ has not b) $\{\sqrt{n} n \text{ is a } positive \\ nteger \}$ tion of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$ b) $u = f(x + iy) + g(x - y)$ E: $2u_{xx} + 4u_{xy}$ b) elliptic at finite points only P: $\frac{\partial u}{\partial x} + 2 \frac{\partial u}{\partial x} = 0, u$	the boundary value on-trivial solution is apositive integer} = 0 is of the form c) $u = cf(x - iy)$ $x + 3u_{yy} = 2$ c) hyperbolic at all points $u(0, y) = 4e^{-2y}$.	d) $u = g(x + y)$ d) hyperbolic at finite points	option (c) a
111	The set of real nu $\lambda y = 0, y(0) = 0$ a) $(-\infty, 0)$ The general solution a) $u = f(x + iy) + g(x - iy)$ Classify the PDE a) elliptic at all points Consider the IVE	imbers λ for which $0, y(\pi) = 0$ has not b) $\{\sqrt{n} n \text{ is a } positive \\ nteger \}$ tion of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$ b) $u = f(x + iy) + g(x - y)$ E: $2u_{xx} + 4u_{xy}$ b) elliptic at finite points only P: $\frac{\partial u}{\partial x} + 2 \frac{\partial u}{\partial x} = 0, u$	the boundary value on-trivial solution is apositive integer} = 0 is of the form c) $u = cf(x - iy)$ $x + 3u_{yy} = 2$ c) hyperbolic at all points $u(0, y) = 4e^{-2y}$.	d) $u = g(x + y)$ d) hyperbolic at finite points only	option (c) a
111 112 113	The set of real nu $\lambda y = 0, y(0) = 0$ a) $(-\infty, 0)$ The general solution a) $u = f(x + iy) + g(x - iy)$ Classify the PDE a) elliptic at all points Consider the IVE Then the value of a) $4e^{-2}$	imbers λ for which $0, y(\pi) = 0$ has not b) $\{\sqrt{n} n \text{ is a } positive nteger}\}$ tion of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$ b) $u = f(x + iy) + g(x - y)$ E: $2u_{xx} + 4u_{xy}$ b) elliptic at finite points only P: $\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 0, u$ f $u(1,1)$ is: b) $4e^2$	the boundary value on-trivial solution is apositive integer} = 0 is of the form c) $u = cf(x - iy)$ $x + 3u_{yy} = 2$ c) hyperbolic at all points $u(0, y) = 4e^{-2y}$.	d) $u = g(x + y)$ d) hyperbolic at finite points	option (c) a
111	The set of real nu $\lambda y = 0, y(0) = 0$ a) $(-\infty, 0)$ The general solut a) $u = f(x + iy) + g(x - iy)$ Classify the PDE a) elliptic at all points Consider the IVI Then the value of a) $4e^{-2}$ Let $u(x, t)$ be the	imbers λ for which $0, y(\pi) = 0$ has not b) $\{\sqrt{n} n \text{ is a } positive nteger}\}$ tion of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$ b) $u = f(x + iy) + g(x - y)$ E: $2u_{xx} + 4u_{xy}$ b) elliptic at finite points only P: $\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 0, u$ f $u(1,1)$ is: b) $4e^2$ isolution of the IV	the boundary value on-trivial solution is apositive integer} = 0 is of the form c) $u = cf(x - iy)$ $x + 3u_{yy} = 2$ c) hyperbolic at all points $u(0, y) = 4e^{-2y}$. c) $2e^{-4}$ P: $u_{tt} - u_{xx} = 0$	d) $u = g(x + y)$ d) hyperbolic at finite points only	option (c) a a b Answer
111 112 113	The set of real nu $\lambda y = 0, y(0) = 0$ a) $(-\infty, 0)$ The general solut a) $u = f(x + iy) + g(x - iy)$ Classify the PDE a) elliptic at all points Consider the IVI Then the value of a) $4e^{-2}$ Let $u(x, t)$ be the Subject to: $u(x, 0)$	imbers λ for which $0, y(\pi) = 0$ has not b) $\{\sqrt{n} n \text{ is a } positive nteger}\}$ tion of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$ b) $u = f(x + iy) + g(x - y)$ E: $2u_{xx} + 4u_{xy}$ b) elliptic at finite points only P: $\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 0, u$ f $u(1,1)$ is: b) $4e^2$	the boundary value on-trivial solution is apositive integer} = 0 is of the form c) $u = cf(x - iy)$ $x + 3u_{yy} = 2$ c) hyperbolic at all points $u(0, y) = 4e^{-2y}$. c) $2e^{-4}$ P: $u_{tt} - u_{xx} = 0$	d) $u = g(x + y)$ d) hyperbolic at finite points only	option (c) a a b Answer option
111 112 113	The set of real nu $\lambda y = 0, y(0) = 0$ a) $(-\infty, 0)$ The general solut a) $u = f(x + iy) + g(x - iy)$ Classify the PDE a) elliptic at all points Consider the IVI Then the value of a) $4e^{-2}$ Let $u(x, t)$ be the Subject to: $u(x, 0)$ Then $u(\pi, \pi)$ is	imbers λ for which $0, y(\pi) = 0$ has not b) $\{\sqrt{n} n \text{ is a positive nteger}\}$ tion of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$ b) $u = f(x + iy) + g(x - y)$ E: $2u_{xx} + 4u_{xy}$ b) elliptic at finite points only P: $\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 0, u$ f $u(1,1)$ is: b) $4e^2$ is solution of the IV D) = $x^3, u_t(x, 0) = 0$	the boundary value on-trivial solution is apositive integer} = 0 is of the form c) $u = cf(x - iy)$ (x - iy) (x - iy)	d) $u = g(x + y)$ d) $u = g(x + y)$ d) hyperbolic at finite points only d) $4e^4$	option (c) a a b Answer option (a)
111 112 113	The set of real nu $\lambda y = 0, y(0) = 0$ a) $(-\infty, 0)$ The general solut a) $u = f(x + iy) + g(x - iy)$ Classify the PDE a) elliptic at all points Consider the IVI Then the value of a) $4e^{-2}$ Let $u(x, t)$ be the Subject to: $u(x, 0)$	imbers λ for which $0, y(\pi) = 0$ has not b) $\{\sqrt{n} n \text{ is a } positive nteger}\}$ tion of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$ b) $u = f(x + iy) + g(x - y)$ E: $2u_{xx} + 4u_{xy}$ b) elliptic at finite points only P: $\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 0, u$ f $u(1,1)$ is: b) $4e^2$ isolution of the IV	the boundary value on-trivial solution is apositive integer} = 0 is of the form c) $u = cf(x - iy)$ $x + 3u_{yy} = 2$ c) hyperbolic at all points $u(0, y) = 4e^{-2y}$. c) $2e^{-4}$ P: $u_{tt} - u_{xx} = 0$	d) $u = g(x + y)$ d) hyperbolic at finite points only	option (c) a a b Answer option (a) Answer:
111 112 113	The set of real nu $\lambda y = 0, y(0) = 0$ a) $(-\infty, 0)$ The general solut a) $u = f(x + iy) + g(x - iy)$ Classify the PDE a) elliptic at all points Consider the IVI Then the value of a) $4e^{-2}$ Let $u(x, t)$ be the Subject to: $u(x, 0)$ Then $u(\pi, \pi)$ is	imbers λ for which $0, y(\pi) = 0$ has not b) $\{\sqrt{n} n \text{ is a positive nteger}\}$ tion of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$ b) $u = f(x + iy) + g(x - y)$ E: $2u_{xx} + 4u_{xy}$ b) elliptic at finite points only P: $\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 0, u$ f $u(1,1)$ is: b) $4e^2$ is solution of the IV D) = $x^3, u_t(x, 0) = 0$	the boundary value on-trivial solution is apositive integer} = 0 is of the form c) $u = cf(x - iy)$ (x - iy) (x - iy)	d) $u = g(x + y)$ d) $u = g(x + y)$ d) hyperbolic at finite points only d) $4e^4$	option (c) a a b Answer option (a)

115	The IVP $\frac{dy}{dx} = y^{\frac{1}{3}}$ a) unique					
	a) unique	b) Infinitely	c) 2	d) 0		
	solution	many solutions	,	,	а	
116		ergence of Secant	method is			
	a) 1	b) 1.6	c) 2	d) None	b	
117	Iterative formula	to find $\sqrt[k]{N}$ is				
	a) $x_{n+1} =$	b) $x_{n+1} =$	c) $\frac{1}{k}\left[(k-1)x_n + \frac{N}{x_n^{k-1}}\right]$	d) $\frac{1}{(k-1)}$		
	$\frac{1}{\left(r + \frac{k}{k}\right)}$	$\frac{1}{2}\left(r + \frac{kN}{k}\right)$	$\frac{1}{k} \begin{bmatrix} n \\ k \end{bmatrix}$	$\frac{d}{k}$	с	
	$2 \begin{pmatrix} x_n & y_{Nx_n} \end{pmatrix}$	$2 \begin{pmatrix} x_n & x_n \end{pmatrix}$	$1)x_n + \frac{N}{x_n^{k-1}}$	$1)x_n - \frac{N}{x_n^{k-1}}$		
118		which the system of				
		-	$-3y^{1} + 3z = 0$,			
			(8)y + 3z = 0,			
		3x + 3y + 0	(3k-8)=0			
	has a non-trivial	solution.				
		1	1	1		
	a) 2/3 only	b) 11/3 only	c) 4/3 and 2/3			
			only	3	d	
				only		
119	An iterative sche		10,			
		$x_{n+1} = \frac{1}{2} (16 - 1)$	$\left(\frac{12}{r}\right), n \in \mathbb{N} \cup \{0\}$			
		5 (λ_n			
	such a scheme, with suitable x_0 , willa) not convergeb) converge toc) converge tod) converge to 2					
	a) not converge		c) converge to	d) converge to 2	d	
120	.	1.6	1.0			
120		solving initial va	llue problem $\frac{dy}{dx} = \int$	$f(x, y), y(x_0) =$		
	0 is	Γ	1	I		
	a) $y_{n+1} = y_n + y_n$	b) $y_{n+1} = y_n + y_n$	c) $y_{n+1} =$	d) $y_{n+1} = (1 + 1)^{n+1}$		
	$hf(x_n, y_n)$	$hf(x_{n+1}, y_{n+1})$	c) $y_{n+1} = y_{n+1} = y_{n+1}$	$h)f(x_{n+1}, y_{n+1})$	а	
101			$2hf(x_n, y_n)$			
121	Match the following:MethodNumber of subinterval to be					
	Method		taken	erval to be		
	A. Simpson one		i. multiple of 6			
	B. Simpson three		ii. even			
	C. Weddle's rul	e eightii Tuic	iii. multiple of 3			
	D. Boole's rule	•	iv. multiple of 4			
			c) A-iii, B-ii, C-	d) A-ji, B-jij, C-	b	
	iii, D-iv	i, D-iv	i, D-iv	iv, D-i	-	
122			rve $y = f(x)$ is ass			
	a) circle	b) parabola	c) hyperbola	d) ellipse	b	
123	/	/ 1	inant matrix, the J	/ 1		
	scheme					
				d) con't cou	а	
	a) converges for	b) converges	c) converges for	u) can t say	a	
	any initial	for any non-	certain initial	u) can t say	a	
	· –	for any non- negative initial	certain initial	d) can't say	a	
	any initial starting vector	for any non- negative initial starting vector	certain initial starting vector		a	
124	any initial starting vector If Δ and ∇ are	for any non- negative initial starting vector the forward and	certain initial starting vector the backward diff		a	
124	any initial starting vector If Δ and ∇ are	for any non- negative initial starting vector	certain initial starting vector the backward diff		c	

125	The value of $f(3)$ from the following table using the Lagrange's formula is						
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	2	4	5	6	
	f(x) = 1	14	15	5	6	9	
	a) 10	b) 10.5	c) 11		d) 11.5		a
126	The extremal of the functional $\int_0^1 (y^2 + x^2y')dx$, $y(0) = 0$, $y(1) = 1$ is given by						
	a) $y(x) = x$	b) $y = x^{-1}$				y(x) =	(a)
127	sinh x/sinh 1x sinh x/sinh 1The Euler's equation for the extremals of the functional $\int_a^b (y^2 - yy' + y'^2) dx$ is given bya) $y'' = 0$ b) $y'' - y = 0$ c) $y'' + y = 0$ d) $y' + y = 0$					(b)	
	a) $y'' = 0$	b) $y'' - y = 0$	c) <i>y''</i>	+y=0	d) y' +	y = 0	
128	The extremal of						(d)
	a) circle	b) ellipse	c) hy	perbola	d) cater	nary	
129	D' Alembert's pr	rinciple can be w	ritten (w	ith standar	d notation	ns) as	
	$\begin{vmatrix} a \\ \sum_{i} (\vec{F}_{i}^{a} \\ -\vec{P}_{i}). \ \delta\vec{r}_{i} = 0 \end{vmatrix}$	h)	c)		(b		(a)
130	The Hamiltonian						
	using the formul				8	8	
	a) $H(p_i, q_i, t) = \sum_i p_i q_i$	b) $H(p_i, q_i, t) = \sum_i p_i \dot{q}_i$	c) $H(p_i, L + \frac{d}{d})$	$q_i, t) = \frac{1}{t} \sum_i p_i \dot{q}_i$	d) $H(p_i, q)$ $\sum_i p_i \dot{q}_i$	_i ,t) = − L	(d)
131	The Hamiltonian of a rotating body is given by $H = (p_{\theta}^2/2I) + (1/2)I\theta^2$, where θ is angle of rotation, p_{θ} is conjugate momentum and I is the moment of inertia. The required equation of motion is given by					ntum and	
	a) $\ddot{\theta} - \theta = 0$	b) $\ddot{\theta} + \theta = 0$	c) <i>\beta</i> -	$-m\theta = 0$	$\mathrm{d})\ddot{\theta}=0$)	(b)
132	The <i>c</i> –discriminant of the family of curve $y(c - x) - c^2 = 0$ is given by						
	a)y(y-4x) = 0	b)y(y+4x) = 0	$\begin{vmatrix} c \\ 2x \end{vmatrix} =$	y(y - 0) = 0	$\begin{array}{c c} d \end{pmatrix} y(y) \\ 0 \end{array}$	+2x) =	(a)
133	0y $a)y(y-4x) =$ $b)y(y+4x) =$ $c)$ $y(y d)y(y+2x) =$ 0 0 $2x) = 0$ 0 Th curve of given length which minimizes the curved surface area or						
	solid generated b						
124	a) Ellipse	b) Circle	c)	cone	d) Cate		(d)
134	The solution of the integral equation $y(x) - \sin x - 2 \int_0^x \cos(x - x) dx$						
	$\frac{t) y(t) dt = 0 \text{ is}}{a) y = xe^x}$	b) $y = xe^{-x}$	c) y =	$= x^2 e^x$	d) <i>y</i> =	x^2e^{-x}	(a)
135	The solution of t where $K(x, t) =$	he integral equations $\begin{cases} x(2-t)/2, & 0\\ t(2-x)/2, & t \end{cases}$	$f(x) = x \le 1$ $f(x) \le x \le 1$	$-\frac{\pi^2}{4}\int_0^1 \mathbf{K}$	X(x,t) y(t)	$dt = \frac{x}{2},$	

	a) $y(x) = \sin(\pi x/2)$	b) $y(x) = \cos(\pi x/2)$	c) $y(x) = \frac{\pi^2}{4}\sin(\pi x/2)$	$\frac{d}{\frac{\pi^2}{4}}\cos(\pi x/2)$	(a)	
136	The value of λ $4x^2)y(t)dt$ has equation	-				
	9 = 0	9 = 0	c) $\lambda^2 + 4\lambda + 9 = 0$	9 = 0	(b)	
137	a) two solutions for any value of λ	b) infinitely many solutions for two values of λ	every value of λ	d) infinitely many solutions for only one value of λ	(b)	
138	having kernel K(a) $R(x,t;\lambda) = \frac{2e^{x+t}}{2+\lambda(e^2-1)}$	$\begin{aligned} f(x,t) &= e^{x+t}, a = \\ b)R(x,t;\lambda) &= \\ \frac{2e^{x+t}}{2-\lambda(e^2-1)} \end{aligned}$	by the Fredholm 0, b = 1 is given by $c) R(x, t; \lambda) = \frac{2e^{x+t}}{\lambda(e^2-1)}$	by $\frac{d}{d} R(x,t;\lambda) = \frac{e^{x+t}}{\lambda(e^2-1)}$	(b)	
139	The resolvent kernel $R(x, t; \lambda)$ of the integral equation $y(x) = e^x - \frac{e}{2} + \frac{1}{2} + \frac{1}{2} \int_0^1 y(t) dt$ is given by a) $R(x, t; \lambda) = \begin{vmatrix} b \\ -1 \end{vmatrix} R(x, t; \lambda) = \begin{vmatrix} c \\ 2 \end{vmatrix} R(x, t; \lambda) = \begin{vmatrix} d \\ -2 \end{vmatrix} R(x, t; \lambda) = \begin{vmatrix} c \\ -2 \end{vmatrix}$					
140	$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
141	$\frac{e^{x-t} e^{x(x+t)}}{e^{x-t} e^{x(x+t)}} = \frac{e^{x-t} e^{x(x+t)}}{e^{x-t} e^{x(x+t)}}$ One coin is chosen at random from a bag containing (m+1) coins of which one is two headed and others are unbiased. Then the chosen coin was tossed once. If $\frac{7}{12}$ is the probability that the toss result is head, then which of the following will be the value of m:					
	a)10	b)15	c) 6	d) 5	d	
142	Match the items of the code of correct A. If X_1, X_1 identically distr $Y_n = X_1^4 + X_2^4 - 5n$ will conver B. Suppose follows Binom independent, the C. If X_1, X_1 from Uniform denotes the co $E(X_{(2)})$ equals t					

	D. If arriva	1 rate is 100 custo	mers per day and	iv. $\frac{1}{2}$					
	service rate is 4								
		-	ted number of						
	customers in the system at certain day is								
		b) $A \rightarrow (iv)$		d)A→(i),					
	B→(iv),	, B→(i),	$B \rightarrow (iv),$ $C \rightarrow (ii) D \rightarrow (iii)$	B→(ii),	b				
	$C \rightarrow (iii) D \rightarrow (ii)$	$C \rightarrow (iii) D \rightarrow (ii)$	$C \rightarrow (ii) D \rightarrow (iii)$	C→(iv)	0				
				D→(iii)					
143	Given below are two statements: One is labelled as Assertion (A) and								
		led as Reason/Just							
			independent rando						
			=5. If $X=U+V$, the	$n(P(X > \sigma) \leq$					
	$\frac{10}{\sigma^2}$ and Var(X)=E								
	Var(X)	: The Chebyshev'	s inequality is (P	$(X-\mu >k)\leq$					
	$\frac{k^2}{\ln the}$ light of the	above statements	choose the correct	answer from the					
	options given bel		encose the correct	answer nom the					
	· ·		c) Both A and R	d) Both A and R					
	is false	A is false	are true and R is	are false					
			the correct		c				
			explanation of						
			А.						
144		n which of the foll							
	a) $P_0'(t) =$	b) $P'_{0}(t)$	$c)P'_0(t) = P_0(t)$	$\mathrm{d})P_0'(t) = \lambda$	(b)				
	$-\frac{\lambda}{P_0(t)}$	$= -\lambda P_0(t)$	$P_0(t)$						
145		two statements: C	Dne is labelled as A	Assertion (A) and					
		led as Reason/Just							
			ve hazard function	e					
	-	<pre></pre>	I(t) is non-decreasi	ing function of 't'					
	with $\lim_{t\to\infty} H(t) =$	00			(d)				
	Justification (R): Cumulative hazard function satisfy $H(t) \ge 0$, $H(t)$ is								
	increasing or dec	reasing or constan	t and H(t) tends to	$\infty \propto as$ 't' tends to					
	∞ . In the light of the above statements choose the correct answer								
	from the options given below:								
	/	b) R is true but	c) Both A and R	d) Both A and R	Both A				
	R is false	A is false	are false	are true and R is	and R are				
				the correct					
				explanation for A.	is the correct				
				11.	explanatio				
					n for A.				
146	Which of the foll	owing statements	are true?						
	A. Uniform distribution is a special case of beta distribution of 1^{st}								
	A. Uniform	distribution is a sp	celal case of bela	kind.					
	kind.	-							
	kind. B. Moment	generating func	tion of binomial						
	kind. B. Moment $(q + pe^t)$	generating func	tion of binomial	distribution is					
	kind. B. Moment $(q + pe^t)$	generating func) ⁿ wo standard norm		distribution is					

			× × × ×				
	D. If $X \sim \gamma(\lambda, \mu)$ and $Y \sim \gamma(\lambda, \nu)$ then $\frac{\lambda}{Y} \sim \gamma(\mu, \nu)$						
	a) A and B	b) A, B and C	c) A, C and D	d) A,B,C and D	(d)		
	<i>,</i>			,			
147	Mean and variance of Uniform distribution U(a,b) are						
	a)	b)	c)	d)			
	$\frac{b+a}{2}$ and $\frac{(a-b)^2}{12}$	$\frac{b-a}{2}$ and $\frac{(a-b)^2}{12}$	$\frac{b+a}{2}$ and $\frac{(a+b)^2}{12}$	$\frac{d}{\frac{b-a}{2}} and \frac{(a+b)^2}{12}$	а		
148	The joint probabi	ility density functi	on of a bivariate ra	andom variable is			
	The joint probability density function of a bivariate random variable is defined by $f(x, y) = \begin{cases} e^{-(2x+3y)}, 0 < x < y < \infty \\ 0, otherwise \end{cases}$,						
	Then $P(3X < Y)$ equals to						
	a) $\frac{7}{10}$	b) $\frac{2}{11}$	$c)\frac{1}{33}$	d) $\frac{5}{33}$	с		
149	Necessary condition for the equation $M(x, y)dx + N(x, y)dy = 0$, to						
	be exact is						
	a) $\frac{\partial N}{\partial y} = \frac{\partial M}{\partial x}$	b) $\frac{\partial N}{\partial y} = -\frac{\partial M}{\partial x}$	c) $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$	d) $\frac{\partial M}{\partial y} = -\frac{\partial N}{\partial x}$	с		
150	Newton Raphson method is useful in cases of						
	a) smaller	b) larger values	c) for any	d) None	1		
	values of $f'(x)$	of $f'(x)$	values of $f'(x)$		b		