Test Booklet No. \qquad
This booklet consists of $\mathbf{1 5 0}$ questions and $\mathbf{2 2}$ printed pages.
RGUPET/2024/ \qquad
RGUPET 2024
Common Entrance Test, 2024 DOCTOR OF PHILOSOPHY IN PHYSICS

Full Marks: 150
Time: 3
Hours

Roll No.

Day and Date of Examination: \qquad
Signature of Invigilator(s)
Signature of Candidate \qquad
General Instructions:

PLEASE READ ALL THE INSTRUCTIONS CAREFULLY BEFORE MAKING ANY ENTRY.

1. DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE TOLD TO DO SO.
2. Candidate must write his/her Roll Number on the space provided.
3. This Test Booklet contains 150 Multiple Choice Questions (MCQs) from the concerned subject. Each question carries 1 mark.
4. Please check the Test Booklet to verify that the total pages and total number of questions contained in the test booklet are the same as those printed on the top of the first page. Also check whether the questions are in sequential order or not.
5. Candidates are not permitted to enter into the examination hall after the commencement of the entrance test or leave the examination hall within two hour.
6. Making any identification mark in the OMR Answer Sheet or writing Roll Number anywhere other than the specified places will lead to disqualification of the candidate.
7. Candidates shall maintain silence inside and outside the examination hall. If candidates are found violating the instructions mentioned herein or announced in the examination hall, they will be summarily disqualified from the entrance test.
8. In case of any dispute, the decision of the Entrance Test Committee shall be final and binding.
9. The OMR Answer Sheet consists of two copies, the Original copy and the Student's copy.

1	Name the organization who will manage all Indian Remote Sensing satellite data and products from May 1, 2024?				b)
	a) Indian Space Research Organisation (ISRO)	b) New Space India Limited (NSIL)	c) Indian Remote Sensing Corporation(IRSC)	d) India n Earth Observation System (IEOS)	New Space India Limited (NSIL)
2	Which is the first Indian missile?				a)
	a) Agni	b) Sagarika	c)Prithvi	d) Dhanush	Agni
3	Green colour in Indian National Flag signifies				c)
	a) Valour	b) Sacrifice	c) Relation to soil and prosperity	d) Truth	Relation to soil and prosperity
4	In which year, the North-East Frontier Agency was renamed as Arunachal Pradesh?				b)
	a) 1970	b) 1972	c) 1976	d) 1980	1972
5	Which city hosted the South Asian Youth Table Tennis championship in 2023 ?				a)
	a) Itanaga	b) Guwahat	c) Kolkata	d) Bhub enswar	Itanagar
6	India Gaming Report 2024, recently seen in news, released by which organization?				a
	a) Interactive Entertainment and Innovation Council and WinZO	b) All Indian Gaming Federation and Enigma Gaming	c) Indian Digital Gaming Society and BL4ZE Esports	d) All Indian Gaming Federation and Dream 11	Interactive Entertainme nt and Innovation Council and WinZO
7	What is the theme of 'World Health Day 2024'?				b
	a) Building a fairer, healthier world	b) My Health, My Right	c) Our planet, our health	d) Support nurses and midwives	My Health, My Right
8	The Indian physicist currently serving as the Principal Scientific Adviser to the Government of India is				c
	a) D. D. Sarma	b) Asutosh Sarmah	c) A. K. Sood	d) Abhay Karandikar	A. K. Sood
9	India recently collaborated with which organization to nurture startups in the EV battery recycling field?				a
	a) European Union	b) World Bank	c) United Nation Environment program	d) World Trade Organization	European Union
10	Swarved Mahamandir, which is World's Largest Meditation Centre, inaugurated recently is located which city?				b

	a) New Delhi	b) Varanasi	c) Ujjain	d) Jaipur	Varanasi
11	Which of the options is the closest in meaning to the word given below: Primeval				c
	a)modern	b)historic	c)primitive	d)antique	Primitive
12	Change the following sentence into a positive comparative form: "He is not as tall as his brother."				a
	a) He is shorter than his brother.	b) He is taller than his brother.	c) He is equally as tall as his brother.	d) He is not tall at all.	He is shorter than his brother.
13	Choose the more appropriate form of indirect speech for the given sentence. She said to me, "Where are you going for the vacation?"				a
	a) She asked me where I was going for the vacation.	b) She said that where I was going for the vacation.	c) She asked me that where I was going for the vacation.	d) She asked where I had been going for the vacation.	She asked me where I was going for the vacation.
14	"I watched the mild scolding with a \qquad frown." Complete the sentence by choosing the appropriate non-finite from the following.				c
	a) to worry	b) worry	c) worried	d) worries	worried
15	In which sentence is the adverb of degree linked to an adjective?				b
	a) They ate a lot.	b) The concert was extremely enjoyable.	c) We managed to walk far.	d) The employee barely made any effort to improve.	The concert was extremely enjoyable.
16	Identical balls are tightly arranged in the shape of an equilateral triangle with each side containing n balls. How many balls are there in the arrangement?				b
	a) $n^{\wedge} 2 / 2$	b) $\mathrm{n}(\mathrm{n}+1) / 2$	c) $\mathrm{n}(\mathrm{n}-1) / 2$	d) $(\mathrm{n}+1)^{\wedge} 2 / 2$	$\mathrm{n}(\mathrm{n}+1) / 2$
17	In a tournament with 8 teams, a win fetches 3 points and a draw, 1 . After all teams have played three matches each, total number of points earned by all teams put together must lie between				b
	a) 24 and 36	b) 24 and 32	c) 12 and 24	d) 32 and 48	24 and 32
18	A student is free to choose only Chemistry, only Biology or both. If out of 32 students, Chemistry has been chosen by 16 and Biology by 25 , then how many students have chosen Biology but not Chemistry?				b
	a) 9	b) 16	c) 25	d) 7	16

| 19 | A cylindrical road roller having a diameter of 1.5 m moves at a speed
 of $3 \mathrm{~km} / \mathrm{h}$ while levelling a road. How much length of the road will be
 leveled in 45 minutes? | b |
| :--- | :--- | :--- | :--- | :--- | :--- |

27	(a) Experi mental design	(b) Descript ive design	(c) Qualitative design	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { (d) Expl } \\ \text { oratory } \\ \text { design } \end{array} \\ \hline \end{array}$	Descriptive design
28	What type of research design involves manipulating an independent variable to observe its effect on a dependent variable?				(c)
	(a) Descrip tive design	(b) Correlati onal design	(c) Experimen tal design	(d) Long itudinal design	Experimenta 1 design
29	What is the primary characteristic of a longitudinal research design?				(b)
	(a) It studies different groups of participants at the same time.	(b) It studies the same group of participants over an extended period.	(c) It collects data from multiple sources simultaneously.	(d) It involves manipulating variables to observe their effects.	It studies the same group of participants over an extended period.
30	Which of the following is an essential component of an experimental research design in physics?				(b)
	(a) Observ ing natural phenomena without interference	(b) Manipul ating variables and observing their effects	(c) Conductin g surveys and interviews	(d) Anal yzing existing data sets	Manipulatin g variables and observing their effects
31	What is the primary advantage of using a controlled experimental design in physics research?				(b)
	(a) It allows for the investigation of natural phenomena in real-world settings.	(b) It enables the manipulation of variables to establish causality.	(c) It provides detailed descriptions of observed phenomena.	(d) It allows for the collection of large-scale data sets.	It enables the manipulatio n of variables to establish causality.
32	What is the primary purpose of randomization in experimental research design?				(b)
	(a) To ensure that all participants have an equal chance of being selected	(b) To eliminate bias and confounding variables	(c) To increase the generalizability of the results	(d) To control for extraneous variables	To eliminate bias and confounding variables
33	Which research design is commonly used to study the behaviour of astronomical bodies over time?				(d)
	(a) Longit udinal design	(b) Experim ental design	(c) Observatio nal design	(d) Corre lational design	Correlationa 1 design
34	Which research design would be most appropriate for studying the effect of temperature on the conductivity of a material?				(c)
	(a) Descrip tive design	(b) Correlati onal design	(c) Experimen tal design	$\begin{aligned} & \text { (d) Long } \\ & \text { itudinal } \\ & \text { design } \\ & \hline \end{aligned}$	Experimenta 1 design
	What is the difference between internal and external validity?				(b)

35	(a) Internal validity refers to the degree to which the results can be generalized, while external validity refers to the degree to which the study is free from bias	(b) External validity refers to the degree to which the results can be generalized, while internal validity refers to the degree to which the study is free from bias	(c) Internal validity refers to the degree to which the study is free from bias, while external validity refers to the degree to which the results are consistent across different populations	(d) Exter nal validity refers to the degree to which the study is free from bias, while internal validity refers to the degree to which the results are consistent across different populations	External validity refers to the degree to which the results can be generalized, while internal validity refers to the degree to which the study is free from bias		
36	A research design in which either the investigator or the participant is not aware of the treatment a participant is receiving, refers to				(a)		
	(a) Single Blind Study	(b) Half Blind Study	(c) Double Blind Study	(d) Long itudinal Study	Single Blind Study		
37	Which of the following studies is used for clinical analysis				(c)		
	(a) Correla tional Study	(b) Survey Study	(c) Case Study	(d) Tren d Study	Case Study		
38	If the mean and median of the data: $\{2,1, a, 6,20,10, b, 8\}$ are $67 / 8$ and 7 respectively, the values of a and b are respectively				a)		
	a) $(4,16)$	b) $(7,14)$	c) $(4,7)$	d) $(6,4)$	$(4,16)$		
39	The variance of the first five natural number is				b)		
	a) 2	b) 2.5	c) 3	d) 3.5	2.5		
40	The relationship between two variables telling how one variable changes in response to changes in the other variable is given by				b)		
	$\begin{array}{ll} \begin{array}{l} \text { a) } \\ \text { tion } \end{array} & \text { Correla } \\ \end{array}$	b) Covaria nce	c) Skewness	d) Regr	Covariance		
41	A correlation has distinct values of				c)		
	a) $0,2,1$	b) $1,0,1$	c) $1,0,-1$	2,0, -2	1,0,-1		
42	Match the column-I and column-II and choose the correct one from the alternatives:				b)		
	Column-I c		column-II				
	A. skewness 1 B. kurtosis 2 		1. Indicates perfect symmetry 2. Measures the degree of asymmetry of distribution				
	C. zero skewness 3				3. Indicates perfect normality		
	D. zero kurtosis		4. Measures the degree of peakedness of a distribution				
	$\begin{array}{\|l\|} \hline \text { a) } \quad \mathrm{A}-3, \mathrm{~B}-1 \\ \mathrm{C}-4, \mathrm{D}-2 \end{array}$	$\begin{aligned} & \hline \text { b) } \text { A-2, B } \\ & 4, \mathrm{C}-1, \mathrm{D}-3 \\ & \hline \end{aligned}$	$\begin{array}{lc} \hline \text { c) } \quad \text { A-1, } \\ \text { B-4, } & \text { C-2, D-3 } \end{array}$	$\begin{aligned} & \text { d) } \quad \mathrm{A}-4, \mathrm{~B}- \\ & 1, \mathrm{C}-2, \mathrm{D}-3 \end{aligned}$	$\begin{array}{\|l} \hline \text { A-2, B-4, C- } \\ 1, \mathrm{D}-3 \\ \hline \end{array}$		
43	Match the column-I and column-II and choose the correct one from the alternatives:				d)		

	C. Interval Scaling	ling	iii. Assigns numbers to objects with equal intervals between them, but without a true zero point.		ts with equal but without a ts with equal d a true zero	
	a) A-iii, B-iv, C- i, D-ii	$\begin{aligned} & \hline \text { b) } \\ & \text { C-ii, } \end{aligned}$	$\begin{aligned} & \text { A-iv, B-iii, } \\ & \text { i, D-i } \end{aligned}$	c) A-i, B-ii, C- iii, D-iv	d) A-ii, B-i, Civ, D-iii	$\begin{array}{\|l} \hline \text { A-iv, B-iii, } \\ \text { C-ii, D-i } \\ \hline \end{array}$
50	What does the term "scaling" refer to in the context of physical sciences research? A. The process of removing scale from chemical apparatus B. The procedure of measuring and representing physical quantities by numbers C. The technique of cleaning experimental data for analysis D. The method of increasing the size of experimental apparatus proportionally					b
	a) A only	b) B	only	c) A and B only	d) B and D only	B only
51	The spectrum of radiation emitted by a black body at temperature 1000 K peaks in the					(b)
	(a) Visible range of frequencies	$\begin{aligned} & \hline \text { (b) } \\ & \text { rang } \\ & \text { frequ } \end{aligned}$	Infrared of quencies	(c) Ultravi olet range of frequencies	(d) Microw ave rage of frequencies	Infrared range of frequencies
52	The Lande g-factor for the ${ }^{3} p_{1}$ level of an atom is					(b)
	(a) $\frac{1}{2}$	(b)	$\frac{3}{2}$	(c) $\frac{5}{2}$	(d) $\frac{7}{2}$	$\frac{3}{2}$
53	A three-level system of atoms has N_{1} atoms in lis evel E_{1}, N_{2} in level E_{2} and N_{3} in level E_{3}. Again, $N_{1}>N_{2}>N_{3}$ and $E_{1}<E_{2}<E_{3}$. Laser emission is possible between the levels					(b)
	(a) $E_{3} \rightarrow E_{1}$		$E_{2} \rightarrow E_{1}$	$\begin{array}{lll}\text { (c) } & E_{3} \rightarrow \\ E_{2} & \\ \end{array}$	(d) $E_{2} \rightarrow$ E_{3}	$E_{2} \rightarrow E_{1}$
54	The principal series of spectral lines of lithium is obtained by transitions between					
	(a) $n s$ and $2 p, n>2$	$\begin{aligned} & \text { (b) } \\ & 2 p, \end{aligned}$	$\begin{array}{r} n d \text { and } \\ , n>2 \end{array}$	$\text { (c) } \quad n p \text { and }$ $2 s, n>2$	(d) $n f$ and $3 \mathrm{~d}, n>3$	(c)
55	An atom with one outer electron having orbital angular momentum l is placed in a weak magnetic field. The number of energy levels into which the higher total angular momentum state splits is					$\begin{aligned} & \text { and } 2 s, n> \\ & 2 \end{aligned}$
	(a) $2 l+2$	(b)	$2 l+1$	(c) $2 l$	(d) $2 l-1$	(b)
56	In $\mathrm{He}-\mathrm{Ne}$ laser, the laser transition takes place in					$2 l+1$
	(a) He only		Ne only	$\begin{array}{ll} \hline \text { (c) } & N e \\ \text { first, } & \text { then in } \end{array}$ He	(d) He first and then in Ne	
57	Match the following					(d)
	$\begin{aligned} & \text { A. Franck-Hertz } \\ & \text { experiment } \end{aligned}$			Electronic excitatio	on of molecules	
	B. Hartree-Fock method		ii.	Wave function of	atoms	
	C. Stern-Gerlach experiment			pin angular mom	entum of atoms	
	$\begin{aligned} & \text { D. Franck-Condon } \\ & \text { principle } \end{aligned}$			Energy levels of a	oms	

	a) A-iv, B-i, C-ii, D-iii	b) A-iii, B-i, Cii, D-iv	$\begin{aligned} & \text { c) A-iii, B-iv, } \\ & \text { C-ii, D-i } \end{aligned}$	d) A-i, B-iv, Ciii, D-ii	$\begin{array}{\|l} \hline \begin{array}{l} \text { A-i, B-iv, C- } \\ \text { iii, D-ii } \end{array} \\ \hline \end{array}$
58	Which is correctly matched?				(c)
	A. Infra-red region	region i. ele va	i. electronic transitions involving valence electrons		
	B. Ultraviolet-visible region		ii. nuclear transitions		
	C. X-ray region		iii. vibrational transitions of molecules		
	D. γ-ray region		iv. transitions involving inner shell electrons		
	a) A-iv, B-iii, C- ii, D-i	$\begin{aligned} & \text { b) A-i, B-ii, C- } \\ & \text { iv, D-iii } \end{aligned}$	$\begin{aligned} & \text { c) A-iii, B-i, } \\ & \text { C-iv, D-ii } \end{aligned}$	$\begin{aligned} & \text { d) A-iii, B-iv, } \\ & \text { C-i, D-ii } \end{aligned}$	$\begin{aligned} & \text { A-iii, B-i, C- } \\ & \text { iv, D-ii } \end{aligned}$
59	Which of the following statements is not correct about rotational spectra? (i) Rotational spectra occur when molecules undergo transitions between rotational energy levels. (ii) Rotational spectra are only observed in solid-state materials. (iii) Rotational spectra involve transitions between electronic energy levels within a molecule. (iv) Rotational spectra are independent of the moment of inertia of the molecule.				(c)
	a) (i), (ii) and (iii)	b) (ii), (iii) only	$\begin{aligned} & \text { c) (iii), (iii) } \\ & \text { and (iv) } \\ & \hline \end{aligned}$	d) (i), and (iv)	(iii), (iii) and (iv)
60	Which of the following statements is true about magnetic moments of atoms of different elements (i) All have a magnetic moment (ii) None has a magnetic moment (iii) None of the above statements are accurate (iv) All acquire a magnetic moment under external magnetic field and in same direction as the filed.				(c)
	a) (i) and (ii)	b) (iii) and (iv) only	c) (iv) only	d) (i) only	(iii) only
61	Assertion: The Stark effect is the splitting of spectral lines observed in the presence of an electric field. Reason: The Stark effect arises from changes in the electron configuration within the atom. In the light of the above statements, choose the correct answer				(c)
	(a) Both the Assertion and the Reason are true, and the reason is the correct explanation of the assertion.	(b) Both the Assertion and the Reason are true, but the reason is not the correct explanation of the assertion.	(c) The Assertion is true, but the Reason is false.	(d) The Assertion is false, but the Reason is true.	The Assertion is true, but the Reason is false.
62	Which type of molecular spectroscopy is primarily used to study vibrations within molecules?				(a)
	(a) Microwa ve spectroscopy	(b) UV-Vis spectroscopy	(c) Raman spectroscopy	(d) Infrared spectroscopy	Microwave spectroscopy
63	Which of the following types of molecular motion does Raman spectroscopy primarily detect?				(d)

	(d) A device that changes its output immediately on the basis of applied input				
	a) A-iv, B-i, C-ii, D-iii	$\begin{aligned} & \text { b) A-iii, B-ii, C- } \\ & \text { i, D-iv } \end{aligned}$	c) A-ii, B-i, Civ, D-iii	d) A-i, B-iv, Ciii, D-ii	$\begin{aligned} & \text { A-ii, B-i, C- } \\ & \text { iv, D-iii } \end{aligned}$
70	Convert (E5B) ${ }_{16}$ to binary equivalent number.				a)
	a) $\begin{aligned} & (1110010110 \\ & 11)_{2}\end{aligned}$	$\text { b) } \begin{aligned} & (101101011 \\ & 110)_{2} \end{aligned}$	c) $\begin{aligned} & (11011010 \\ & 0111)_{2}\end{aligned}$	d) $\begin{aligned} & (10100101 \\ & 1001)_{2}\end{aligned}$	$\begin{aligned} & (111001011 \\ & 011)_{2} \end{aligned}$
71	In a half adder circuit.				a)
	a) XOR gate gives the sum and AND gate gives the carry.	b) OR gate gives the sum and AND gate gives the carry.	c) $\quad \mathrm{OR}$ gate gives the carry and AND gate gives the sum.	d) XOR gate gives the carry and AND gate gives the sum.	XOR gate gives the sum and AND gate gives the carry
72	If the input of a comparator is a sine wave, the output will be(A)				c)
	a) Ramp voltage	b) Sine	c) Rectan gular wave	d) Saw tooth wave.	Rectangular wave
73	Which of the following file extension that is loaded in a microcontroller for executing any instruction?				c)
	a) .c	b) .txt	c) .hex	d) .doc	.hex
74	A PIN diode is frequently used as				a)
	a) Switchin g diode for frequencies up to GHz range	b) Peak clipper	c) Voltag e regulator	d) Harmo nic generator	Switching diode for frequencies up to GHz
75	If $f(z)$ is analytic throughout a simply connected bounded domain, then for every counter integral in the domain is zero. This is the statement of				c)
	a) Taylor's theorem	b) Laurent s's theorem	c) Cauch y's integral theorem	d) Cauchy's integral formula	Cauchy's integral theorem
76	The Stoke's theorem is				c)
	$\iint_{s}^{\text {a) }} \vec{A} \sqcap d \vec{s}=\prod_{c} \vec{A} \sqcap d \vec{r}$	$\iint_{s}^{\mathrm{b})} \vec{\nabla} \times \vec{A} \sqcap \vec{s}=\llbracket \rrbracket \vec{A} \square$	c) $d \vec{r} \iint_{s} \vec{A} \sqcap d \vec{s}=\prod_{v} \vec{\nabla} \square \vec{A} c$	d) $V \iint \vec{A} \sqcap d \vec{s}=\iint \vec{\nabla} \vec{A} d V$	$\iint \vec{A} \sqcap d \vec{s}=\lceil\vec{\nabla}$
77	The line integral per unit area along the boundary of small area around a point in a vector field \vec{A} is known as				c)
	a) $\quad \operatorname{Grad} \vec{A}$	b) $\quad \operatorname{Div} \vec{A}$	c) Curl \vec{A}	d) Line integral \vec{A}	Curl \vec{A}
78	Identify the true/false statements of the following and choose the correct one from the alternatives: 1. Hermite polynomials appear in harmonic oscillator problems. 2. Legendre polynomials appear in electrostatics. 3. Laguerre polynomials appear in hydrogen problems. Bessel polynomials appear in circular membrane problems.				a)

	a) True- True True $\quad-$ True	b) True-False-TrueFalse	c) True- True-TrueFalse	d) True- False -True- True	True-True-True-True
79	Identify the true/false statements of the following and choose the correct one from the alternatives: 1. Eigen values are the diagonal elements of the given matrices. 2. Sum of the eigen values of the given matrix equals to the sum of the diagonal elements of the matrix. 3. Determinant of the matrix equals to the product of the eigen values of the matrix. 4. The inverse of the eigen values of a matrix is not equal to the eigen values of the inverse matrix.				d)
	a) True-True-True-True	b) True-False-TrueFalse	c) True-True-TrueFalse	d) False- True -True- False	False-True - True-False
80	Identify the true/false statements of the following and choose the correct one from the alternatives: 1. Newton-Raphson method is used for root finding. 2. Runge-Kutta method is applied for finding the solution of ordinary differential equation. 3. Gauss-Seidel method is used for finding numerical integration. 4. Simpson's-Rule is used for finding the solution of system of linear equations.				b)
	a) False-True-False-False	b) True-True-False-False	c) True-False-False-False	d) True-True-True-False	True-True-False-False
81	The complex variable function $f(z)=\|z\|^{2}$ is differentiable at				a)
	a) $z=0$	b) $z \neq 0$	c)	d) any point of z .	$z=0$
82	If $f(s)$ is the Laplace transform of $F(t)$, then the Laplace transform of $e^{a t} F(t)$ will be				b)
	a) $f(s+a)$	b) $f(s-a)$	c) $\frac{f(s)}{a}$	d) $a f(s)$	$f(s-a)$
83	If A is a Skew-symmetric matrix of odd order, then the determinant of A is				c)
	a) -1	b) 1	c) 0	d) a real number	0
84	The continuous random variable X lies only inside the interval $(0,2)$ and its density function is $f(x)=k x(2-x)$. The expected value is				a)
	a) 1	b) 1.5	c) 0.5	d) 0	1
85	Assertion (A): A periodic function defined over a regular interval can be expressed as the sum of sine and cosine series over the same interval. Reason (R): The limit of the Fourier transform of a function is from zero to infinity only.				c)
	a) Assertion is correct, reason is correct; reason is a correct explanation for assertion.	b) Assertion is correct, reason is correct; reason is not a correct explanation for assertion.	c) Assertion is correct, reason is incorrect.	d) Assertion is incorrect, reason is correct.	Assertion is correct, reason is incorrect.
86	Identify the true /false statements and choose the correct alternatives.				b)

	1. Force between two charges is dependent on the product of the charges. 2. Coulomb law is valid for moving charges. 3. Coulomb law is applied for regular shapes. 4. Coulomb law is valid for point charge only.				
	a) True- True $-\quad$ True- True 	b) True- False-True- True	c) False- True-False- True	d) False- False-True- True	True-False-True- True
87	Identify the true /false statements and choose the correct alternatives. 1. The temperature at which conductivity of a material becomes infinite is called critical temperature. 2. In superconductors, the Fermi energy level is midway between the ground state and first excited state. 3. The superconducting state is perfectly diamagnetic in nature. 4. The shifting of electrons in super conductors is prevented by classical effect.				c)
	a) True-True-True-False	b) True- False-True- False	c) True- True-TrueFalse	d) False- False-True- True	True-True-True-False
88	Identify the true /false statements and choose the correct alternatives. 1. Magnetic susceptibility χ equals magnetisation per unit magnetic field intensity. 2. Magnetic susceptibility has the dimensions of Amp/metre. 3. In a solid, the sum of the magnetic moment in unit volume constitutes the field strength. 4. Bohr magneton is defined as magnetic moment of an electron spin.				d)
	a) \quad True- True-True-False	b) True- False-True- False	c) True- True-True- False	d) True- False -True- True	True-False True-True
89	Assertion (A): Twinkling of stars is due to the fact that refractive index of the earth's atmosphere fluctuates. Reason (R): Dispersion is due to Tyndall effect.				c)
	a) Assertion is correct, reason is correct; reason is a correct explanation for assertion.	b) Assertion is correct, reason is correct; reason is not a correct explanation for assertion.	c) Assertion is correct, reason is incorrect.	d) Assertion is incorrect, reason is correct.	Assertion is correct, reason is incorrect
90	In a Lorentz frame of reference, the electric field vector is given by $\vec{E}=\hat{i}+\hat{k}$ whereas the magnetic field vector is given by $\vec{B}=2 \hat{i}+\hat{j}$. If in another Lorentz frame of reference, the transformed electric field vector is parallel to the magnetic field vector, then their magnitudes will be				c)
	a) $\quad\|\vec{E}\|=2$ and $\|\vec{B}\|=1$	$\begin{aligned} & \text { b) }\|\vec{E}\|=\sqrt{5} \text { and } \\ & \|\vec{B}\|=\sqrt{2} \end{aligned}$	c) $\|\vec{E}\|=1$ and $\|\vec{B}\|=2$	$\begin{aligned} & \text { d) }\|\vec{E}\|=\sqrt{2} \text { and } \\ & \|\vec{B}\|=\sqrt{5} \end{aligned}$	$\begin{array}{ll} \|\vec{E}\|=1 & \text { and } \\ \|\vec{B}\|=2 & \end{array}$
91	The Poynting vectors for velocity and acceleration fields are given by				a)

	a) $\quad S_{v} \alpha \frac{1}{R^{4}}$ and $S_{a} \alpha \frac{1}{R^{2}}$	b) $\quad S_{v} \alpha \frac{1}{R^{2}}$ and $S_{v} \alpha \frac{1}{R^{4}}$	c) $S_{v} \alpha \frac{1}{R} \quad$ and $S_{a} \alpha \frac{1}{R^{2}}$	d) $S_{v} \alpha \frac{1}{R^{4}}$ and $S_{a} \alpha \frac{1}{R}$	$S_{v} \alpha \frac{1}{R^{4}}$ and $S_{a} \alpha \frac{1}{R^{2}}$
92	The orientational polarizability per molecule in a polyatomic gas is proportional to temperature (T) as				c)
	a) T	b) T^{2}	c) $\frac{1}{T}$	d) $\frac{1}{T}$	$\frac{1}{T}$
93	The electric field of a plane wave is given by $\vec{E}=E_{0} \hat{j} \sin (k x+\omega t)$. The magnetic field is given by				c)
	a) $\vec{B}=\hat{i} B_{0} \sin (k z$	b) $\omega \vec{B})=-\hat{i} B_{0} \sin (k z$	$\begin{aligned} & \text { c) } \\ & z+\vec{B} \theta \nexists) \hat{k} B_{0} \sin (k: \end{aligned}$	d) $+\vec{B} C \not \subset) \hat{k} B_{0} \sin (k z$	$\begin{aligned} & \vec{B}=\hat{k} B_{0} \sin (k z \\ & +\omega t) \end{aligned}$
94	If the electric field of an electromagnetic wave is given by $\vec{E}=\left(\hat{i} E_{1}+\hat{j} E_{2}\right) e^{i(\vec{k} \vec{r} \vec{r}-o t)}$, where \hat{i} and \hat{j} are mutually unit vectors both being perpendicular to \hat{k} and E_{1} and E_{2} are two real numbers, then the electromagnetic wave is				a)
	a) Plane polarised	b) Circular ly polarised	c) Elliptic ally polarised	d) unpolar ised	Plane polarised
95	X-rays are electromagnetic radiations which can be deflected by				a)
	$\begin{array}{ll}\text { a) } & \text { Electric } \\ \text { and } & \text { magnetic }\end{array}$ fields together	b) Electric fields only	c) Magne tic fields only	d) Neither electric nor magnetic fields	Electric and magnetic fields together
96	The statement that the time rate of change of electromagnetic energy within a certain volume plus time rate of the energy flowing out through the boundary surface is equal to the power transferred into the electromagnetic fields is				a)
	a) Poynting theorem	b) Ampere 's circuital law	c) Conser vation of momentum in electrodynami cs	d) Larmor 's radiation	Poynting theorem
97	The surface integral of an electric field over a closed surface enclosing a charge in free space equals $\frac{1}{\varepsilon_{0}}$ times the total charge enclosed by the surface. This is the statement of				b)
		$\begin{array}{\|ll} \hline \text { b) } & \text { Gauss's } \\ \text { law } \end{array}$	$\begin{aligned} & \text { c) Amper } \\ & \text { e's law } \\ & \hline \end{aligned}$	$\begin{array}{ll} \mathrm{d}) & \text { Faraday } \end{array}$	Gauss's law
98	Match the column-I and column-II and choose the correct one from the alternatives:				a)
	column-I		column-II		
	A. Linear ch	arge density	1. Charge vo	lume	
	B. Surface c	harge density	2. Charge le	ngth	
	C. Volume c	harge density	3. Charge ar		
	D. Discrete	harge	4. System distribution ulti charges	consisting of nate individual	

	G. Principle Detailed Balance H. Blackbod Radiation and Distribution Law	G. Principle of Detailed Balance	.Fundame equilibriu reversible i.Describes that obey	ntal principle in syste processes. Fermi-Dirac station	ensuring of particles with istics.	
	a) A-ii, B-iii, C-i, D-iv	$\begin{aligned} & \text { b) A- } \\ & \text { iii, D } \end{aligned}$	$\overline{B-i, C-}$	c) A-i, B-iv, C- ii, D-iii	d) A-iii, C-iv, D-i	$\begin{aligned} & \text { A-ii, B-iii, } \\ & \text { C-i, D-iv } \end{aligned}$
10 5	Which of the following statement (s) is (are) correct? A. Random walk is a mathematical model describing the trajectory of a particle undergoing a series of independent steps. B. In a random walk, the displacement of the particle after each step is correlated with its previous displacements. C. Brownian motion results from the random collisions of particles with a solvent, leading to erratic movement. D. Brownian motion is a deterministic process governed by Newton's laws of motion.					b
	a) A and B only	b) A and	Cd C only	c) B and D only	d) C and D	A and C
10	Which one of the following statement(s) is/are correct? A. In diamagnetic materials, the magnetic moments of individual atoms or ions align in the direction of an applied magnetic field. B. Paramagnetic materials exhibit permanent magnetization even in the absence of an external magnetic field. C. Ferromagnetic materials have a positive magnetic susceptibility. D. Diamagnetic materials experience attraction toward regions of stronger magnetic field.					c
	a) A, B and C	b) A, B	B and D	c) A, C and D	d) B, C and	A, C and D
	Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R): A. The principle of detailed balance ensures that a system in equilibrium has equal probabilities for all possible transitions between states. R. Detailed balance ensures that the rates of forward and backward processes in a reversible reaction are equal, maintaining equilibrium. In the light of the above statements, choose the correct answer from the options given below:					b
	a) A is true, but the R is false.	b) Both are true R is th explan the A .	A and R , and the e correct ation for	c) Both A and R are true, but the R is not the correct explanation for the A	d) Both A R are false.	Both A and R are true, and the R is the correct
	Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R): A. Classical statistics adequately describe the behavior of particles at low temperatures and high densities. R. At such conditions, the quantum effects become negligible, and classical statistics provide accurate predictions of the system's behavior.					a

	In the light of the above statements, choose the correct answer from the options given below:				
	a) A is true, but the R is false.	b) Both A and R are true, and the R is the correct explanation for the A .	c) Both A and R are true, but the R is not the correct explanation for the A	d) Both A and R are false.	A is true, but the R is false.
$\begin{aligned} & \hline 10 \\ & 9 \end{aligned}$	Consider an ideal chemical potential particle energy lev	rmi gas in a gr The variance of with mean oc	d canonical ense he occupation nu pation number \bar{n}	ble at a constant ber of the single is	b
	a) $\sqrt{\bar{n}}$	b) $\bar{n}(1-\bar{n})$	c) \bar{n}	d) $\frac{1}{\sqrt{\bar{n}}}$	b) $\bar{n}(1-\bar{n})$
$\begin{array}{\|l\|} \hline 11 \\ 0 \end{array}$	The vibrational m that of a simple of these molecul randomly picked	tion of a diatom rmonic oscillato is at temperat molecule will be	molecule may be with angular freq T, what is the und in its lowest	considered to be uency ω. If a gas probability that a vibrational state?	a
	a) $1-e^{-\frac{\hbar \omega}{k_{B} T}}$	b) $e^{-\frac{\hbar \omega}{2 k_{B} T}}$	c) $\tanh \frac{\hbar \omega}{k_{B} T}$	d) $\operatorname{cosech} \frac{\hbar \omega}{2 k_{B} T}$	a) $1-e^{-\frac{\hbar \omega}{k_{B} T}}$
$\begin{array}{\|l\|} \hline 11 \\ 1 \end{array}$	A cavity contains The specific heat the form $C_{V}=\gamma T^{3}$, its original volum temperature T. Th	blackbody radiatio per unit volume of where γ is a consta ne and then allo new internal ene	n in equilibrium the photon gas nt. The cavity is wed to equilibr gy per unit volum	at temperature T. the cavity is of xpanded to twice te at the same ne is	d
	a) $4 \gamma T^{4}$	b) $2 \gamma T^{4}$	c) γT^{4}	d) $\frac{\gamma T^{4}}{4}$	d) $\frac{\gamma T^{4}}{4}$
$\begin{array}{\|l\|} \hline 11 \\ 2 \end{array}$	The relation betw pressure P, volum of a thermodynam exact differential	en the internal V, chemical po ic system is $d U$ mplies that	ergy U, entropy ntial μ and num $T d S-P d V+\mu$	temperature T, er of particles N $N N$. That U is an	a
	a) $\quad-\left.\frac{\partial P}{\partial S}\right\|_{V, N}=$ $\left.\frac{\partial T}{\partial V}\right\|_{S, N}$	$\begin{aligned} & \text { b) }\left.P \frac{\partial U}{\partial T}\right\|_{V, N}= \\ & -\left.S \frac{\partial U}{\partial V}\right\|_{S, \mu} \end{aligned}$	$\begin{aligned} & \text { c) }\left.P \frac{\partial U}{\partial T}\right\|_{V, N}= \\ & -\left.\frac{1}{T} \frac{\partial U}{\partial V}\right\|_{S, \mu} \end{aligned}$	$\begin{aligned} & \text { d) }\left.\quad \frac{\partial P}{\partial S}\right\|_{V, N}= \\ & \left.\frac{\partial T}{\partial V}\right\|_{S, N} \end{aligned}$	a) $\begin{aligned} & -\left.\frac{\partial P}{\partial S}\right\|_{V, N}= \\ & \left.\frac{\partial T}{\partial V}\right\|_{S, N} \\ & \hline \end{aligned}$
$\begin{array}{\|l\|} \hline 11 \\ 3 \end{array}$	The Hamiltonian is $H=J S_{0}\left(S_{1}+S_{2}\right)$ the average energy	or three Ising spi If the system of the system, in	S_{0}, S_{1} and S_{2}, in equilibrium erms of $\beta=(k$	king values ± 1, temperature T, $T)^{-1}$, is	d
	a) $-\frac{1+\cosh (2 \beta J)}{2 \beta \sinh (2 \beta J)}$	$\begin{aligned} & \text { b) } \quad-2 J[1+ \\ & \cosh (2 \beta J)] \end{aligned}$	c) $-2 / \beta$	d) $-2 J \frac{\sinh (2 \beta J)}{1+\cosh (2 \beta J)}$	d) $-2 J \frac{\sinh (2 \beta J)}{1+\cosh (2 \beta}$
11	The type of crystal	having lowest coh	esive energy in		d
4	a) Ionic crystal	b) Covalent crystal	c) Metals	d) Molecular crystal	Molecular crystal
$\begin{aligned} & \hline 11 \\ & 5 \end{aligned}$	A two dimensiona value of n is	square lattice h	n -fold rotation	symmetry. The	d
	a) 1	b) 2	c) 3	d) 4	4
11	In Debye's theory,	the energy distrib	ution of atomic o	scillators follow	a
6	a) MaxwellBoltzmann distribution	b) Bose-Einstein distribution	c) Fermi-Dirac distribution	d) Kelvin- Stokes distribution	MaxwellBoltzmann distribution
	Which is correctly	matched?			b

117	A Schottky defect		i hole trapped in positive ion vacancy		
	B Frankel defect		ii electron trapped in negative ion vacancy		
	C F-centre		iii vacancy and interstitial		
	D V-centre		iv pair of ionic vacancies of opposite charge		
	a) A-iii, B-iv, C- ii, D-i	$\begin{aligned} & \hline \text { b) A-iv, B-iii, } \\ & \text { C-ii, D-i } \end{aligned}$	$\begin{aligned} & \hline \text { c) A-ii, B-iv, } \\ & \text { C-i, D-iii } \\ & \hline \end{aligned}$	d) A-iv, B-i, C- ii, D-iii	$\begin{aligned} & \text { A-iv, B-iii, } \\ & \text { C-ii, D-i } \end{aligned}$
11 8	In band theory of solids, the extent of freedom of depends on (i) the effective mass (ii) the gravitational mass (iii) curvature of the band (iv) the band gap of the material The true option/s is/are				a
	a) (i) and (iii)	b) (i) only	c) (ii) only	d) (ii) and (iv)	(i) and (iii)
$\begin{aligned} & 11 \\ & 9 \end{aligned}$	5-fold rotational symmetry is (i) not possible in any crystal system (ii) possible in C_{60} (iii) possible in a hexagonal crystal system (iv) possible in Si The true option/s is/are				b
	a) (i) only	b) (ii) only	c) (ii) and (iv)	d) (iii) only	(ii) only
12 0	Hall effect can be used to find (i) carrier concentration (ii) carrier type (iii) mobility (iv) magnetic flux density The true option/s is/are				d
	a) (i) and (ii)	b) (i), (iii) and (iv)	c) (i), (ii) and (iv)	d) (i), (ii), (iii) and (iv)	$\begin{aligned} & \hline \text { (i), (ii), (iii) } \\ & \text { and (iv) } \end{aligned}$
12 1	Assertion (A): One dimensional array of identical atoms behaves as continuous string for all frequency regime. Reason (R): Angular frequency is proportional to wavevector only when wavelength is much smaller than interatomic spacing. In the light of the above statements, choose the correct answer				d
	a) Both A and R are true	b) A is false but R is true	c) A is true but R is false	d) Both A and R are false	Both A and R are false
$\begin{aligned} & 12 \\ & 2 \end{aligned}$	Assertion (A): Electron mobility decreases with increase in temperature. Reason (R): Relaxation time increases with increase in temperature.				c
	a) Both A and R are true	b) A is false but R is true	c) A is true but R is false	d) Both A and R are false	A is true but R is false
12 3	If energy required to create a vacancy in the crystal is 1 eV at temperature 1000 K , then the ratio of vacancies to total atoms is				c
	a) 0.1	b) 0.01	c) 0.001	d) 0.0001	0.001
12	An n-type Ge strip, 1 mm wide and 1 mm thick, has a Hall coefficient of $10^{-2} \mathrm{~m}^{3} /$ coulomb. If for a current of 1 mA the Hall voltage produced inside the strip is 1 mV , the strength of the magnetic field is				b
	a) 1 T	b) 0.1 T	c) 0.001 T	d) 0.0001 T	0.1 T
12	The velocities of longitudinal and transverse waves in aluminium are 6374 and $3111 \mathrm{~ms}^{-1}$, respectively. The Debye temperature for aluminium is				a

	a) 407.6 K	b) 706.4 K	c) 606.4 K	d) 340 K	407.6 K
$\begin{aligned} & \hline 12 \\ & 6 \end{aligned}$	For lead, the critical field at 0 K is $6.39 \times 10^{4} \mathrm{~A} / \mathrm{m}$ and the critical temperature for zero magnetic field is 7.18 K . The critical field for lead at 4 K is				c
	a) $2 \times 10^{-2} \mathrm{~A} / \mathrm{m}$	b) $20 \mathrm{~A} / \mathrm{m}$	c) $4 \times 10^{4} \mathrm{~A} / \mathrm{m}$	d) $40 \mathrm{~A} / \mathrm{m}$	$4 \times 10^{4} \mathrm{~A} / \mathrm{m}$
	Cs metal (atomic weight 130) has a cubic unit cell of side $6 \AA$. If the density of Cs is $2 \mathrm{~g} / \mathrm{cm}^{3}$, the number of atoms per unit volume is				b
	a) 1	b) 2	c) 4	d) 6	2
	Choose the correct statement for magnitude of threshold energy of an endoergic nuclear reaction between stationary nucleus and a moving projectile.				a
	a) It is greater than $\|\mathrm{Q}\|$ of nuclear reaction.	b) It has to be more than kinetic energy of a projectile.	c) It is less than $\|\mathrm{Q}\|$ of nuclear reaction.	d) It has to be equal to kinetic energy of a projectile.	It is greater than $\|\mathrm{Q}\|$ of nuclear reaction.
12	The quarks are supposed to exist in following number of flavours:				c
9	a) Two	b) Four	c) Six	d) Sixteen	Six
13	According to shell model of the nucleus which is incorrect?				b
0	$\begin{array}{lr}\text { a) } & \text { Magic } \\ \text { numbers } & \text { exist }\end{array}$	b) Nucleons interact with their nearest neighbours only	c) Nucleons in a nucleus interact with a general force field	d) Large electronic quadrupole moment exists for certain nuclei	Nucleons interact with their nearest neighbours only
$\begin{aligned} & 13 \\ & 1 \end{aligned}$	In the semi-empirical formulae the observed parity of odd Z and odd N nuclei in nature is taken care of by the				c
	a) Surface energy term	b) Coulombs energy term	c) δ - term	d) Asymmetry term	δ - term
	Consider Fermi theory of β-decay. The number of final states of electrons corresponding to momenta between p and $p+d p$ is				c
	a) Independent of $\quad \mathrm{p}$	b) Proportional to pdp	c) Proportional to $\quad p^{2} d p$	d) Proportional to $p^{3} d p$	$\begin{aligned} & \text { Proportional } \\ & \text { to } \quad \mathrm{p}^{2} \mathrm{dp} \end{aligned}$
	If a U-238 nucleus splits into two identical parts, the two nuclei so produced will be				b
	a) radioactive	b) stable	c) isotope	d) isobar	Answer stable
$\begin{aligned} & 13 \\ & 4 \end{aligned}$	Which is correct from the following statements:A. Neutron interacts through electromagnetic interaction.B. Electron does not interact through weak interaction.C. Neutrino interacts through weak and electromagneticinteraction.D. Quark interacts through strong interaction but not through weakinteraction.				d)
	a) A and C	b) B and C	c) A and D	d) only A	only A

$\begin{aligned} & 13 \\ & 5 \end{aligned}$	With reference to nuclear forces which of the following statements is not true? The nuclear forces are A. Short range B. Charge independent C. Velocity dependent D. Spin independent				C
	a) A and D	b) B and D	c) Only D	d) Only C	Only D
13 6	In case of a Geiger - Muller (GM) counter, which is correct from the following statements: A. Multiplication factor of the detector is of the order of 10^{10} B. Type of the particles detected can be identified C. Energy of the particles detected can be distinguished D. Operating voltage of the detector is few tens of Volts				a
	a) Only A	b) A and B	c) Only D	d) B and D	Only A
13 7	Given below are two statements: one labelled as Assertion (A) and other labelled as Reason (R): Assertion (A) : The binding energy of the nucleus increases with the increase in atomic number. Reason (R): Heavier elements have a greater number of non-radioactive isotopes than radioactive isotopes. Select your answer:				c
	a) Both Assertion and Reason are correct and Reason is the correct explanation for Assertion.	b) Both Assertion and Reason are correct and Assertion is the correct explanation for Reason.	c) Assertion is correct but Reason is incorrect.	d)Both Assertion and Reason are incorrect	Assertion is correct but Reason is incorrect.
$\begin{aligned} & 13 \\ & 8 \end{aligned}$	A one-dimensional rigid rod is constrained to move inside a sphere such that its two ends are always in contact with the surface. The number of constraints on the Cartesian coordinates of the endpoints of the rod is				a)
	a)3	b) 5	c) 2	d)4	a)3
$\begin{array}{\|l\|} \hline 13 \\ 9 \end{array}$	Match List-I with List-II:				
	A Poisson brack B Quantum harm C Hydrogen atom D Wave functi and momentum	onic oscillator i ii ii	Motion in a centr Fourier Transfor Commutator Uniform energy	potential m level spacing	a)
	$\begin{aligned} & \text { a) A - iii, B - iv, } \\ & \text { C - i, D -- ii } \end{aligned}$	$\begin{aligned} & \text { b) A - ii, B - iv, } \\ & \text { C - i, D -- iii } \end{aligned}$	c) A - iii , B i, C -iv, D -- ii	$\begin{aligned} & \text { d) a) } \mathrm{A}-\mathrm{iv}, \mathrm{~B} \\ & \text { - iii, } \mathrm{C}-\mathrm{ii}, \mathrm{D}- \\ & \text { - i } \end{aligned}$	$\begin{aligned} & \text { a) } \mathrm{A}-\mathrm{iii}, \mathrm{~B} \\ & \text {-iv, } \mathrm{C}-\mathrm{i}, \mathrm{D} \\ & \text {-- ii } \end{aligned}$

146	Match List-I with List-II					b
	A Continuous symmetry		i least Action			
	B Hamilton's principle		ii conserved quantity			
	C Hamiltonian mechanics		iii configuration space			
	D Lagrangian mechanics		iv phase space			
	$\begin{aligned} & \text { a) } \mathrm{A}-\mathrm{i}, \mathrm{~B}-\mathrm{ii}, \mathrm{C} \\ & \text { - iii, D -- iv } \end{aligned}$	$\begin{aligned} & \text { b) } \mathrm{A}-\mathrm{i} \\ & \mathrm{C}-\mathrm{iv}, \mathrm{D} \end{aligned}$		c) A - iii, B - i, C-iv, D -- ii	$\begin{aligned} & \text { d) A - ii, B - i, } \\ & \text { C - iii, D -- iv } \end{aligned}$	$\begin{aligned} & \text { b) A - ii, B - } \\ & \text { i, C - iv, D - } \\ & \text { - iii } \end{aligned}$
$\begin{aligned} & 14 \\ & 7 \end{aligned}$	A particle, thrown with a speed v from the earth's surface, attains a maximum height h (measured from the surface of the earth). If v is half the escape velocity and R denotes the radius of earth, then h / R is					b
	a) $2 / 3$	b) $1 / 3$		c) $1 / 4$	d) $1 / 2$	b)1/3
$\begin{aligned} & 14 \\ & 8 \end{aligned}$	Consider a Hamiltonian $H=A I+B \sigma_{x}+C \sigma_{y}$, where A , B and C are positive constants, I is the 2×2 identity matrix and σ_{x}, σ_{y} are Pauli matrices. If the normalized eigenvector corresponding to its largest energy eigenvalue is $\frac{1}{\sqrt{2}}(1 y)$ then y is					Answer option (a,b,c or d)
	a) $\frac{B+i C}{\sqrt{B^{2}+C^{2}}}$	b) $\frac{A-i B}{\sqrt{A^{2}+B^{2}}}$		c) $\frac{A-i C}{\sqrt{A^{2}+C^{2}}}$	d) $\frac{B-i C}{\sqrt{B^{2}+C^{2}}}$	a) $\frac{B+i C}{\sqrt{B^{2}+C^{2}}}$
$\begin{aligned} & 14 \\ & 9 \end{aligned}$	If the expectation value of the momentum of a particle in one dimension is zero, then its (box-normalizable) wave function may be of the form					Answer option (a,b,c or d)
	a) $\sin \mathrm{kx}$	b) $e^{i k x}$ sin		c) $e^{i k x} \cos \mathrm{kx}$	d) $\sin \mathrm{kx}+e^{i k x}$ cos kx	a) $\sin \mathrm{kx}$
$\begin{aligned} & 15 \\ & 0 \end{aligned}$	If the Lagrangian of a particle moving in one dimensions is given by $L=\frac{x^{2}}{2 x}-V(x)$ the Hamiltonian is					a)
	a) $\frac{1}{2} x p^{2}+V(x)$	b) $\frac{x^{2}}{2 x}+V$		c) $\frac{1}{2} \dot{x}^{2}+V(x)$	d) $\frac{p^{2}}{2 x}+V(x)$	$\begin{aligned} & \text { a) } \frac{1}{2} x p^{2}+ \\ & V(x) \end{aligned}$

