Test Booklet No. _____ This booklet consists of 150 questions and 22 printed pages.

RGUPET/2024/__/_

RGUPET 2024 Common Entrance Test, 2024 DOCTOR OF PHILOSOPHY IN PHYSICS

Full Marks: 150 Hours

Time: 3

Roll No.				

Day and Date of Examination:

Signature of Invigilator(s)

Signature of Candidate _____

General Instructions:

PLEASE READ ALL THE INSTRUCTIONS CAREFULLY BEFORE MAKING ANY ENTRY.

- 1. DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE TOLD TO DO SO.
- 2. Candidate must write his/her Roll Number on the space provided.
- 3. This Test Booklet contains 150 Multiple Choice Questions (MCQs) from the concerned subject. Each question carries 1 mark.
- 4. Please check the Test Booklet to verify that the total pages and total number of questions contained in the test booklet are the same as those printed on the top of the first page. Also check whether the questions are in sequential order or not.
- 5. Candidates are not permitted to enter into the examination hall after the commencement of the entrance test or leave the examination hall within two hour.
- 6. Making any identification mark in the OMR Answer Sheet or writing Roll Number anywhere other than the specified places will lead to disqualification of the candidate.
- 7. Candidates shall maintain silence inside and outside the examination hall. If candidates are found violating the instructions mentioned herein or announced in the examination hall, they will be summarily disqualified from the entrance test.
- 8. In case of any dispute, the decision of the Entrance Test Committee shall be final and binding.
- 9. The OMR Answer Sheet consists of two copies, the Original copy and the Student's copy.

1		zation who will mail products from Ma	anage all Indian Rem ay 1, 2024?	ote Sensing	b)	
	a) Indian Space Research Organisation (ISRO)	b) New Space India Limited (NSIL)	 c) Indian Remote Sensing Corporation(IRSC) 	d) India n Earth Observation System (IEOS)	New Space India Limited (NSIL)	
2	Which is the firs	t Indian missile?			a)	
	a) Agni	b) Sagarika	c)Prithvi	d) Dhanush	Agni	
3	Green colour in	Indian National Fla	ag signifies		c)	
	a) Valour	b) Sacrifice	c) Relation to soil and prosperity	d) Truth	Relation to soil and prosperity	
4		In which year, the North-East Frontier Agency was renamed as Arunachal Pradesh?				
	a) 1970	b) 1972	c) 1976	d) 1980	1972	
5	Which city hoste in 2023 ?	a)				
	a) Itanaga r	b) Guwahat i	c) Kolkata	d) Bhub enswar	Itanagar	
6	India Gaming Roorganization?	а				
	a) Interactive Entertainment and Innovation Council and WinZO	b) All Indian Gaming Federation and Enigma Gaming	c) Indian Digital Gaming Society and BL4ZE Esports	d) All Indian Gaming Federation and Dream 11	Interactive Entertainme nt and Innovation Council and WinZO	
7	What is the them	ne of 'World Healt	h Day 2024'?	1	b	
	a) Building a fairer, healthier world	b) My Health, My Right	c) Our planet, our health	d) Support nurses and midwives	My Health, My Right	
8		icist currently serv overnment of India	ing as the Principal S a is	cientific	с	
	a) D. D. Sarma	b) Asutosh Sarmah	c) A. K. Sood	d) Abhay Karandikar	A. K. Sood	
9	-	ollaborated with why recycling field?	nich organization to n	urture startups	a	
	a) European Union	b) World Bank	c) United Nation Environment program	d) World Trade Organization	European Union	
10		handir, which is We ntly is located whi	orld's Largest Medita ch city?	tion Centre,	b	

	a) New Delhi	b) Varanasi	c) Ujjain	d) Jaipur	Varanasi
11	Which of the op	rd given			
	below:				с
	Primeval				
	1 mile var				
	a)modern	b)historic	c)primitive	d)antique	
		• • •			Primitive
12		owing sentence in ll as his brother."	to a positive compar	rative form:	2
	ne is not as ta	ii as iiis protiier.			a
	a) He is	b) He is taller	c)He is equally as	d)He is not	He is shorter
	shorter than	than his brother.	tall as his brother.	tall at all.	than his
	his brother.				brother.
13		e appropriate form	of indirect speech for	the given	
	sentence.	Where are you go	ing for the vacation?'	,	а
	a) She asked	b) She said that	c) She asked me	d) She asked	She asked
	me where I	where I was	that where I was	where I had	me where I
	was going for	going for the	going for the	been going	was going
	the vacation.	vacation.	vacation.	for the	for the
			C "	vacation.	vacation.
14	T watched the h	nild scolding with a	a Irown.		c
	Complete the se	ntence by choosing	g the appropriate non-	finite from the	C
	following.	2010			
		Γ	Γ	1	
	a) to worry	b) worry	c) worried	d) worries	worried
15	In which senten	ce is the adverb of	degree linked to an a	diective?	
15			degree mixed to un u	ujeenve.	b
	a) They ate a	b) The concert	c) We managed to	d) The	The concert
	lot.	was extremely	walk far.	employee	was
		enjoyable.		barely made any effort to	extremely
				improve.	enjoyable.
				improve.	
16	Identical balls an	re tightly arranged	in the shape of an equ	uilateral	
	-	-	n balls. How many ba	lls are there in	b
	the arrangement $(x) = \frac{1}{2} \frac{1}{2}$		-)	J) (1) AO /O	
	a) n^2/2	b) n(n+1)/2	c) $n(n-1)/2$	d) (n+1)^2/2	n(n+1)/2
17	In a tournament	with 8 teams a wi	n fetches 3 points and	l a draw. 1	
- '			natches each, total nu		b
		ms put together m		±	
	a) 24 and 36	b) 24 and 32	c) 12 and 24	d) 32 and 48	24 and 32
		. 1 1 ~	·	1 .1 .70	
18			emistry, only Biolog		h
		-	been chosen by 16 and hosen Biology but no		b
	a) 9	b) 16	c) 25	d) 7	16
	4) >	0,10	0) 23	4) /	10

19	of 3 km/h while	iameter of 1.5m move ow much length of th	-	b	
	leveled in 45 min a) 2.25 km	b) 0.375*pi km	c) 0 75*ni km	d) 1.5 km	2.25 km
20	A tourist drives drives drives 6km towa	20km towards east ards west. He then t	, turns right and drive urns to his left and dr . Where is he from hi	s 6km , then ives 4km and	d
	a)6km towards east	b)20km towards west	c)14km towards north	d)10km towards south	10km towards south
21	Which of the fol an experimental		ary aim of using a co	ontrol group in	(b)
	(a) To ensure that the sample size is large enough	1	(c) To increase the internal validity of the study	(d) To speed up the data collection process	To provide a baseline for comparison with the treatment group
22		research design is relationship betwe	most appropriate for en variables? (c) Experimen	r studying the (d) Histo	(c) Correlationa
	tive research design	onal research design	tal research design	rical research design	l research design
23	In a research stu by the researches		m for a variable that i	is manipulated	(b)
	(a) Depend ent variable	(b) Indepen dent variable	(c) Confoundi ng variable	(d) Medi ating variable	Independent variable
24	Which of the f design?	following is a cha	aracteristic of qualit	ative research	(c)
		(b) Structur ed data collection methods	(c) Emphasis on understanding and interpretation	(d) Focu s on numerical data	Emphasis on understandin g and interpretatio n
25	What is the main research design?	1 1	om assignment in an	n experimental	(b)
	(a) To ensure that the sample is representative of the population		(c) To maximize the sample size for better accuracy	(d) To speed up the experimental process	To minimize potential biases and confounding variables
26	1 1	ary purpose of a re	search design?	L	(c)
	(a) To collect data	(b) To analyse data	(c) To provide a roadmap for conducting research	(d) To publish research findings	To provide a roadmap for conducting research
	Which of the fol	lowing is NOT a ty	pe of research desigr	n?	(b)

27	(a) Experi mental design	(b) Descript ive design	(c) Qualitative design	(d) Expl oratory design	Descriptive design
28			olves manipulating a ependent variable?	n independent	(c)
	(a) Descrip tive design	(b) Correlati onal design	(c) Experimen tal design	(d) Long itudinal design	Experimenta 1 design
29	What is the prim	ary characteristic of	of a longitudinal resea	urch design?	(b)
	(a) It studies different groups of participants at the same time.	(b) It studies the same group of participants over an extended period.	(c) It collects data from multiple sources simultaneously.	(d) It involves manipulating variables to observe their effects.	It studies the same group of participants over an extended period.
30	Which of the fo	llowing is an esser	ntial component of an	n experimental	(b)
	research design i (a) Observ ing natural phenomena without interference		(c) Conductin g surveys and interviews	(d) Anal yzing existing data sets	Manipulatin g variables and observing their effects
31			f using a controlled	experimental	(b)
	design in physics (a) It allows for the investigation of natural phenomena in real-world settings.	(b) It enables the manipulation of variables to establish causality.	(c) It provides detailed descriptions of observed phenomena.	(d) It allows for the collection of large-scale data sets.	It enables the manipulatio n of variables to establish causality.
32	What is the prim design?	ary purpose of rand	domization in experin	nental research	(b)
	(a) To ensure that all participants have an equal chance of being selected	(b) To eliminate bias and confounding variables	(c) To increase the generalizability of the results	(d) To control for extraneous variables	To eliminate bias and confounding variables
33	Which research	U	nly used to study the	e behaviour of	(d)
	astronomical boo (a) Longit udinal design	dies over time? (b) Experim ental design	(c) Observatio nal design	(d) Corre lational design	Correlationa 1 design
34		6	most appropriate for ctivity of a material?	r studying the	(c)
	(a) Descrip tive design	(b) Correlati onal design	(c) Experimen tal design	(d) Long itudinal design	Experimenta 1 design
	What is the diffe	erence between inte	rnal and external vali	dity?	(b)

			1	()	T . 1					
35	(a) Internal	(b) Exter			Internal			xter		
	validity refers	validity refer			refers t			idity	External	
	to the degree to	the degree	to		U		efers to		validity	
	which the	which	the		the study i		legree	to	refers to the	
	results can be	results can	be		from bias	· ·	which	the	U	to
	generalized,	generalized,		while	externa		tudy is			he
	while external	while inter		2	refers t			bias,		an
	validity refers	validity refer			\mathcal{U}		while		be	_
	to the degree to	the degree	to		the result		nternal		generalized	1,
	which the	which the st	•	are	consister		alidity		while	
	study is free	is free from b	oias	across	differer		efers to		internal	
	from bias			popula	tions		legree	to	validity	
							which	the	refers to the	
							results	are	0	to
							consister	IL		he
							across lifferent		study is from bias	ee
							opulatio	na	fioni bias	
36	A research desig	m in which ei	thar t	he inve	tigator or		1			
50	not aware of the							111 15	(a)	
	(a) Single	(b) Half			Double			ong		
	Blind Study	Blind Study		Blind S			tudinal	ong	Single Blir	nd
		j			, and the second s		Study		Study	
37	Which of the fol	lowing studies	s is u	sed for c	linical ana	lysis	5		(c)	
	(a) Correla	(b) Surve		(c)	Case Stud			ren	Casa Study	
	tional Study	Study				0	l Study		Case Study	/
38	If the mean and					8} a	re 67/8 a	nd 7	a)	
	respectively, the		nd b a	_	-					
	a) (4, 16)	b) (7,14)		c) (4,7)		(d) (6,4)		(4, 16)	
39	The variance of		atura		r is				b)	
	a) 2	b) 2.5		c)3			l) 3.5		2.5	
40	The relationship				-			able	b)	
	changes in respo						•		<u> </u>	
	a) Correla	b) Cova	rıa	c)	Skewness		,	egr	Covariance	•
	tion	nce	C			6	ession			
41	A correlation has 0.21				101	(1)	2.0	2	c)	
	a) 0, 2,1	b) 1,0		c)	1,0, -1	d)	2,0,		1,0, -1	
42	Match the colum alternatives:	in-I and colum	nn-II	and choo	ose the cor	rect	one fron	n the	b)	
	alternatives:									
	Column-I		coli	ımn-II						
	A. skewne	\$\$	1.		cates perfe	ct sv	mmetry			
	B. kurtosis		2.		sures the		gree of			
					of distribut		0 0			
	C. zero ske	ewness	3.	*	cates perfe		ormality			
	D. zero ku	rtosis	4.	Mea	sures the	de	gree of	f		
			peal	kedness	of a distrib	outio	n			
	a) A-3, B-1	, b) A-2	2, B-	- c)	A-1,	d)	A-4	, B-	A-2, B-4, 0	C-
	C-4, D-2	4, C-1, D-3			C-2, D-3				1, D-3	
		n I and a lun	nn-II	and choo	nee the cor	rect	ono fron	1 the	d)	1
43	Match the colum	m-1 and colum				icci	one non	1 1110	u)	
43	Match the colum alternatives:	III-I and colum				icci			u)	

	Column-I		Col	umn-II				
	A. Mean is p	referred	1.	when data inc	lude outliers			
	B. Median is		2.	when using r	atio level data			
		•	unle	ess distribution in	cludes outliers			
	C. Mode is p	referred	ferred 3. when using ordinal data					
	D. Median is	preferred	4.	when using no	ominal data			
	a) A-1, B-3,	, , ,		c) A-3,	d) A-2, B-	A-2, B-3, C-		
	C-4, D-2	3, C-1, D-4		B-2, C-4, D-1		4, D-1		
44	Identify the true/f			of the following	and choose the	b)		
	correct one from th							
	A. The variance i			1	uared deviations			
	between each obse				1			
	B. Data measured	i on a nomi	nai s	cale can only b	e classified into			
	categories. C. A frequency dis	tribution for	بالويين	tative data has cla	ee limite			
	D. In a bar chart,		-					
	each class.	the heights o	i uic	buis represent ti	le nequeneres m			
	a) A-True, B-	b) A-False.	B-	c)A-False, B-	d)A-True, B-	A-False, B-		
	True, C-False,	True, C-Fa			· · · · · · · · · · · · · · · · · · ·	True, C-		
	D-True	D-True		D-True	D-False	False, D-		
						True		
45	A physicist wants							
	particles in variou					b		
	sampling method							
	combinations of ter	mperature and	d pres	ssure are adequate	ely represented in			
	the sample? a)Convenience	b) Strati	fied	c) Factorial	d) Random	Stratified		
	sampling	sampling	neu	sampling	sampling	sampling		
46	In a study measur	1 0	oeratu					
10	which data type					d		
	temperature values				U			
	a) Nominal	b) Ordinal		c) Interval	d) Ratio	Ratio		
47	What type of data i	s used to repr	resent	t the exact numbe	r of protons in an	b		
	atom?	-		1				
	-	b)Quantitati	ve	c) Categorical	d) Ordinal data	Quantitative		
	data	data		data		data		
48	Which among the	following d	oes r	not constitute a s	step in a sample			
	design?	1				,		
	A. Size of sam	-				d		
	B. ParametersC. Budgetary							
	C. Budgetary D. None of the							
	a) A only	b) A and C (nlv	c) B and C	d) D only			
	<i>u)</i> / Y Only		<i>J</i> 111 y	only	G D Only	D only		
49	Choose the correct	ct option that	t ma	~	ng type with its			
	corresponding desc							
	A. Nominal	i. Ass	signs	numbers to	objects to			
	Scaling	-		t the rank ord	ler of their	b		
1		attr	ibute	s.				
			ii Assigns numbers to objects for					
	B. Ordinal		-		E 5			
	B. Ordinal Scaling	ide	ntific	numbers to ation or categoriz g any order.	objects for ation without			

	C. Interval	iii A	ssigns	numbers	to object	ts with	equal	
1	Scaling		-	betweer			-	
				point.	, .			
	D. Ratio Sca			numbers	to objec	ts with	equal	
		-	-	between	-		-	
		p	oint.					
	a) A-iii, B-iv, C-	b) A-iv,	B-iii,	c) A-i, 1	B-ii, C-	d) A-i	i, B-i, C-	A-iv, B-iii,
	i, D-ii	C-ii, D-i		iii, D-iv		iv, D-i		C-ii, D-i
50	What does the term	n "scaling" 1	refer to	in the co	ntext of j	physical	sciences	
	research?							
	-	s of removi	-					
		edure of	measur	ing and	repres	enting	physical	b
	quantities by numb C. The technic		inaar	norimont	al data fe	n analy	aio.	
		que of clean d of increa				-		
	proportionally	u or merca	sing u	ic size o	i experii	incintai a	apparatus	
	a) A only	b) B only		c) A	and B	d) B ai	nd D only	
	u) II only	o) b only		only		u) D ui	la D'omy	B only
51	The spectrum of	radiation e	mitted		ack body	y at ter	nperature	(b)
	1000K peaks in th			J 1			1	
	(a) Visible		rared	(c)	Ultravi	(d)	Microw	Infrared
	range of	range	of	olet ra	nge of	ave	rage of	range of
	frequencies	frequencie	S	frequen	cies	freque	ncies	frequencies
52	The Lande g-facto	r for the ^{3}p	1 level	of an ato	om is			(b)
	(a) $\frac{1}{2}$	(b) $\frac{3}{2}$		(c)	5 2	(d)	7 2	$\frac{3}{2}$
53	A three-level syste	m of atoms	has N	1 atoms i	n lis eve	$1 E_1$, N	in level	4
	emission is possible		K_3 . Again, $N_1 > N_2 > N_3$ and $E_1 < E_2 < E_3$. Laser between the levels					
				eis				
		(b) E_2			$E_3 \rightarrow$	(d)	$E_2 \rightarrow$	$E_2 \rightarrow E_1$
	(a) $E_3 \rightarrow E_1$	(b) <i>E</i> ₂	$\rightarrow E_1$	(c) <i>E</i> ₂	5	E_3	-	$E_2 \rightarrow E_1$
54	(a) $E_3 \rightarrow E_1$ The principal serie	(b) <i>E</i> ₂	$\rightarrow E_1$	(c) <i>E</i> ₂	5	E_3	-	$E_2 \rightarrow E_1$
54	(a) $E_3 \rightarrow E_1$ The principal serie between	(b) E_2 s of spectral	$\rightarrow E_1$	(c) E_2 of lithium	is obtair	E_3 ned by tr	ansitions	
54	(a) $E_3 \rightarrow E_1$ The principal serie between (a) <i>ns</i> and	(b) E_2 s of spectral (b) nd	$\rightarrow E_1$ lines cand	(c) E_2 of lithium (c)	is obtain np and	E_3 ned by tr (d)	cansitions nf and	$E_2 \rightarrow E_1$ (c)
54	(a) $E_3 \rightarrow E_1$ The principal serie between (a) <i>ns</i> and 2p, $n > 2$	(b) E_2 s of spectral (b) nd 2p, $n > 2$	$\rightarrow E_1$ l lines of and	(c) E_2 of lithium (c) 2s, n >	is obtair np and > 2	E_3 ned by tr (d) 3d, n	$\frac{1}{ransitions}$ $\frac{nf}{2} \text{ and } \frac{1}{2}$	(c)
	(a) $E_3 \rightarrow E_1$ The principal serie between (a) <i>ns</i> and	(b) E_2 s of spectral (b) nd 2p, $n > 2outer electr$	$\rightarrow E_1$ l lines c and on have	(c) E_2 of lithium (c) $2s, n \ge 1$ ing orbita	is obtain np and > 2 al angula	E_3 ned by tr (d) 3d, n r mome	$\frac{1}{ransitions}$ $\frac{nf}{rand}$ $\frac{1}{rand}$ $\frac{1}{rand}$	
	(a) $E_3 \rightarrow E_1$ The principal serie between (a) <i>ns</i> and 2p, $n > 2An atom with one$	(b) E_2 s of spectral (b) nd 2p, $n > 2outer electrmagnetic f$	$\rightarrow E_1$ l lines of and on have ield. T	(c) E_2 of lithium (c) $2s, n \ge 1$ ing orbita 'he numb	is obtain np and > 2 al angula per of er	E_3 ned by tr (d) 3d, n r mome nergy le	$\frac{1}{ransitions}$ $\frac{nf}{rand}$ $\frac{1}{rand}$ $\frac{1}{rand}$	(c) and 2s, n >
	(a) $E_3 \rightarrow E_1$ The principal serie between (a) <i>ns</i> and 2p, $n > 2An atom with oneplaced in a weak$	(b) E_2 s of spectral (b) nd 2p, $n > 2outer electrmagnetic fotal angular$	$\rightarrow E_1$ l lines of and on have ield. T	(c) E_2 of lithium (c) 2s, n > 2s ing orbita The numbre numbr	is obtain np and > 2 al angula per of er	E_3 ned by tr (d) 3d, n r mome nergy le	$\frac{1}{ransitions}$ $\frac{nf}{rand}$ $\frac{1}{rand}$ $\frac{1}{rand}$	(c) and 2s, n >
	(a) $E_3 \rightarrow E_1$ The principal serie between (a) <i>ns</i> and 2p, $n > 2An atom with oneplaced in a weakwhich the higher to$	(b) E_2 s of spectral (b) nd 2p, $n > 2outer electrmagnetic ftal angular(b) 2l$	$\rightarrow E_1$ I lines c and on have ield. T mome + 1	(c) E_2 of lithium (c) $2s, n \ge 1$ ing orbita the numbrish ntum station (c)	n is obtain np and > 2 al angula per of er te splits i 2l	E_3 ed by tr (d) 3d, n r momenergy le	$\frac{nf}{2} \text{ and}$ $\frac{nf}{2} \text{ and}$ $\frac{2}{3} \text{ entum } l \text{ is evels into}$	(c) and $2s$, $n > 2$
55	(a) $E_3 \rightarrow E_1$ The principal serie between (a) <i>ns</i> and 2p, $n > 2An atom with oneplaced in a weakwhich the higher to(a) 2l + 2$	(b) E_2 s of spectral (b) nd 2p, n > 2 outer electr magnetic f total angular (b) $2l$ the laser tra	$\rightarrow E_1$ I lines c and on have ield. T mome + 1	(c) E_2 of lithium (c) $2s, n \ge$ ing orbita The numbre ntum station (c) takes plate	n is obtain np and > 2 al angula per of er te splits i 2l	E_3 ed by tr (d) 3d, n r momenergy le	$\frac{nf}{2} \text{ and}$ $\frac{nf}{2} \text{ and}$ $\frac{2}{3} \text{ entum } l \text{ is evels into}$	(c) and $2s$, $n > 2$ (b)
55	(a) $E_3 \rightarrow E_1$ The principal serie between (a) <i>ns</i> and 2p, $n > 2An atom with oneplaced in a weakwhich the higher to(a) 2l + 2In He - Ne laser,$	(b) E_2 s of spectral (b) nd 2p, n > 2 outer electr magnetic f total angular (b) $2l$ the laser tra	$\rightarrow E_1$ l lines of and on have field. T mome + 1 insition	(c) E_2 of lithium (c) $2s, n \ge 1$ ing orbitation the number ntum state (c) takes plate (c) first, t	is obtain np and > 2 al angula ber of er te splits is 2l ace in	E_3 ed by tr (d) 3d, n r mome hergy le is (d) (d)	$\frac{nf}{2l-1}$ and $\frac{nf}{2l-1}$	(c) and $2s$, $n > 2$ (b)
55	(a) $E_3 \rightarrow E_1$ The principal serie between (a) <i>ns</i> and 2p, n > 2 An atom with one placed in a weak which the higher to (a) $2l + 2$ In <i>He</i> – <i>Ne</i> laser, (a) <i>He</i> only	(b) E_2 s of spectral (b) nd 2p, $n > 2outer electrmagnetic fthat angular(b) 2lthe laser trat(b) Ne$	$\rightarrow E_1$ l lines of and on have field. T mome + 1 insition	(c) E_2 of lithium (c) 2s, n > 2 ing orbita he numb ntum stata (c) takes pla (c)	is obtain np and > 2 al angula per of er te splits is 2l ace in Ne	E_3 ed by tr (d) 3d, n r mome hergy le is (d) (d)	$\frac{nf}{ransitions}$ $\frac{nf}{rand}$ $\frac{nf}{rand}$ $\frac{nd}{rand}$ $\frac{nf}{rand}$ $\frac{nf}{ra$	(c) and $2s, n > 2$ (b) 2l + 1
55	(a) $E_3 \rightarrow E_1$ The principal serie between (a) <i>ns</i> and 2p, <i>n</i> > 2 An atom with one placed in a weak which the higher to (a) $2l + 2$ In <i>He</i> – <i>Ne</i> laser, (a) <i>He</i> only Match the followin	(b) E_2 s of spectral (b) nd 2p, $n > 2outer electrmagnetic fotal angular(b) 2lthe laser tra(b) Ne$	$\rightarrow E_1$ lines c and on have ield. T mome + 1 insition only	(c) E_2 of lithium (c) $2s, n \ge 2$ ing orbita he numb ntum stata (c) takes plata (c) first, t He	is obtain np and > 2 al angula per of er te splits is 2l ace in Ne hen in	E_3 ed by tr (d) 3d, n r mome hergy le is (d) (d) and the	cansitions nf and > 3 ntum l is vels into 2l - 1 He first en in Ne	(c) and $2s$, $n > 2$ (b)
55	(a) $E_3 \rightarrow E_1$ The principal serie between (a) <i>ns</i> and 2p, <i>n</i> > 2 An atom with one placed in a weak which the higher to (a) $2l + 2$ In <i>He</i> – <i>Ne</i> laser, (a) <i>He</i> only Match the followin A. Franck-He	(b) E_2 s of spectral (b) nd 2p, $n > 2outer electrmagnetic fotal angular(b) 2lthe laser tra(b) Ne$	$\rightarrow E_1$ lines c and on have ield. T mome + 1 insition only	(c) E_2 of lithium (c) $2s, n \ge 1$ ing orbitation the number ntum state (c) takes plate (c) first, t	is obtain np and > 2 al angula per of er te splits is 2l ace in Ne hen in	E_3 ed by tr (d) 3d, n r mome hergy le is (d) (d) and the	cansitions nf and > 3 ntum l is vels into 2l - 1 He first en in Ne	(c) and $2s, n > 2$ (b) 2l + 1
55	(a) $E_3 \rightarrow E_1$ The principal serie between (a) <i>ns</i> and 2p, <i>n</i> > 2 An atom with one placed in a weak which the higher to (a) $2l + 2$ In <i>He</i> – <i>Ne</i> laser, (a) <i>He</i> only Match the followin A. Franck-He experiment	(b) E_2 s of spectral (b) nd 2p, $n > 2outer electrmagnetic fotal angular(b) 2lthe laser tra(b) Nengertz$	$\rightarrow E_1$ I lines c and on have ield. T imome + 1 insition only i. E	(c) E_2 of lithium (c) 2s, n > 2 ing orbita the numb ntum stat (c) takes platic (c) first, t He Electronic	is obtain np and > 2 al angula per of er te splits is 2l ace in Ne hen in c excitati	E_3 ned by tr (d) 3d, n r mome nergy let is (d) (d) and the on of m	cansitions nf and > 3 ntum l is vels into 2l - 1 He first en in Ne	(c) and $2s, n > 2$ (b) 2l + 1
55	(a) $E_3 \rightarrow E_1$ The principal serie between (a) <i>ns</i> and 2p, <i>n</i> > 2 An atom with one placed in a weak which the higher to (a) $2l + 2$ In <i>He</i> – <i>Ne</i> laser, (a) <i>He</i> only Match the followin A. Franck-He experiment B. Hartree-F	(b) E_2 s of spectral (b) nd 2p, $n > 2outer electrmagnetic fotal angular(b) 2lthe laser tra(b) Nengertz$	$\rightarrow E_1$ I lines c and on have ield. T imome + 1 insition only i. E	(c) E_2 of lithium (c) $2s, n \ge 2$ ing orbita he numb ntum stata (c) takes plata (c) first, t He	is obtain np and > 2 al angula per of er te splits is 2l ace in Ne hen in c excitati	E_3 ned by tr (d) 3d, n r mome nergy let is (d) (d) and the on of m	cansitions nf and > 3 ntum l is vels into 2l - 1 He first en in Ne	(c) and $2s, n > 2$ (b) 2l + 1
55	(a) $E_3 \rightarrow E_1$ The principal serie between (a) <i>ns</i> and 2p, <i>n</i> > 2 An atom with one placed in a weak which the higher to (a) $2l + 2$ In <i>He</i> – <i>Ne</i> laser, (a) <i>He</i> only Match the followin A. Franck-He experiment B. Hartree-Fe method	(b) E_2 s of spectral (b) nd 2p, $n > 2outer electrmagnetic ftotal angular(b) 2lthe laser tra(b) Nengertz$	$\rightarrow E_1$ I lines c and on have ield. T mome + 1 nsition only i. E ii. V	(c) E_2 of lithium (c) $2s, n \ge$ ing orbita the numbre ntum stan (c) takes pla (c) first, t He Electronic	is obtain np and > 2 al angula per of er te splits in 2l ace in Ne hen in c excitation	E_3 ned by tr (d) 3d, n r mome nergy level (d) (d) and the on of m atoms	$\frac{l}{l}$ cansitions $\frac{nf}{nf} \text{ and} \\ > 3$ entum <i>l</i> is evels into $\frac{2l-1}{He} \text{ first}$ en in <i>Ne</i> olecules	(c) and $2s, n > 2$ (b) 2l + 1
55	(a) $E_3 \rightarrow E_1$ The principal serie between (a) <i>ns</i> and 2p, <i>n</i> > 2 An atom with one placed in a weak which the higher to (a) $2l + 2$ In <i>He</i> – <i>Ne</i> laser, (a) <i>He</i> only Match the followin A. Franck-He experiment B. Hartree-F method C. Stern-Ger	(b) E_2 s of spectral (b) nd 2p, $n > 2outer electrmagnetic ftotal angular(b) 2lthe laser tra(b) Nengertz$	$\rightarrow E_1$ I lines c and on have ield. T mome + 1 nsition only i. E ii. V	(c) E_2 of lithium (c) 2s, n > 2 ing orbita the numb ntum stat (c) takes platic (c) first, t He Electronic	is obtain np and > 2 al angula per of er te splits in 2l ace in Ne hen in c excitation	E_3 ned by tr (d) 3d, n r mome nergy level (d) (d) and the on of m atoms	$\frac{l}{l}$ cansitions $\frac{nf}{nf} \text{ and} \\ > 3$ entum <i>l</i> is evels into $\frac{2l-1}{He} \text{ first}$ en in <i>Ne</i> olecules	(c) and $2s$, $n > 2$ (b) 2l + 1
55	(a) $E_3 \rightarrow E_1$ The principal serie between (a) <i>ns</i> and 2p, <i>n</i> > 2 An atom with one placed in a weak which the higher to (a) $2l + 2$ In <i>He</i> – <i>Ne</i> laser, (a) <i>He</i> only Match the followin A. Franck-He experiment B. Hartree-F method C. Stern-Ger experiment	(b) E_2 s of spectral (b) nd 2p, $n > 2outer electrmagnetic ftotal angular(b) 2lthe laser tra(b) Nengertzocklach$	$\rightarrow E_1$ I lines c and on have ield. T imome + 1 insition only i. E ii. V iii. V	(c) E_2 of lithium (c) 2s, n > ing orbita the numbrication (c) takes platication (c) takes platication (c) first, t He Electronication Vave fun	is obtain np and > 2 al angula per of er te splits is 2l ace in Ne hen in c excitati ction of a ilar mom	E_3 ned by trees (d) (d) (d) (d) (d) (d) and the on of m atoms entum of	$\frac{l}{l}$ cansitions $\frac{nf}{nf} \text{ and} \\ > 3$ entum <i>l</i> is evels into $\frac{2l-1}{He} \text{ first}$ en in <i>Ne</i> olecules	(c) and $2s$, $n > 2$ (b) 2l + 1
55	(a) $E_3 \rightarrow E_1$ The principal serie between (a) <i>ns</i> and 2p, <i>n</i> > 2 An atom with one placed in a weak which the higher to (a) $2l + 2$ In <i>He</i> – <i>Ne</i> laser, (a) <i>He</i> only Match the followin A. Franck-He experiment B. Hartree-F method C. Stern-Ger	(b) E_2 s of spectral (b) nd 2p, $n > 2outer electrmagnetic ftotal angular(b) 2lthe laser tra(b) Nengertzocklach$	$\rightarrow E_1$ I lines c and on have ield. T imome + 1 insition only i. E ii. V iii. V	(c) E_2 of lithium (c) $2s, n \ge$ ing orbita the numbre ntum stan (c) takes pla (c) first, t He Electronic	is obtain np and > 2 al angula per of er te splits is 2l ace in Ne hen in c excitati ction of a ilar mom	E_3 ned by trees (d) (d) (d) (d) (d) (d) and the on of m atoms entum of	$\frac{l}{l}$ cansitions $\frac{nf}{nf} \text{ and} \\ > 3$ entum <i>l</i> is evels into $\frac{2l-1}{He} \text{ first}$ en in <i>Ne</i> olecules	(c) and $2s$, $n > 2$ (b) 2l + 1

D-iii ii, D-iv C-ii, D-i iii, D-ii iii, 58 Which is correctly matched? (c) A. Infra-red region i. electronic transitions involving valence electrons (c) B. Ultraviolet-visible ii. nuclear transitions involving electrons B. Ultraviolet-visible ii. nuclear transitions of molecules (c) C. X-ray region iii. vibrational transitions of molecules (c) D. γ-ray region iv. transitions involving inner shell electrons (c) a) A-iv, B-iii, C- b) A-i, B-ii, C- c) A-iii, B-i, d) A-iii, B-iv, A-iii, D-ii (c) ii, D-i iv, D-iii C-iv, D-ii (c-i, D-ii) (v, f)	i, B-iv, C- D-ii
58 Which is correctly matched? (c) A. Infra-red region i. electronic transitions involving valence electrons B. Ultraviolet-visible ii. nuclear transitions region C. X-ray region iii. vibrational transitions of molecules D. γ-ray region iv. transitions involving inner shell electrons a) A-iv, B-iii, C- b) A-i, B-ii, C- c) A-iii, B-i, d) A-iii, B-iv, A-iii, D-iii	
A. Infra-red region i. electronic transitions involving valence electrons B. Ultraviolet-visible ii. nuclear transitions region iii. vibrational transitions of molecules D. γ-ray region iii. vibrations involving inner shell electrons a) A-iv, B-iii, C- b) A-i, B-ii, C- c) A-iii, B-ii, d) A-iii, B-iv, A-iii, D-iii iv, D-iii C-iv, D-ii c-i, D-ii	
a) A-iv, B-iii, C- b) A-i, B-ii, C- c) A-iii, B-ii, C- c) A-iii, B-ii, C- c) A-iii, B-ii, C-	
B. Ultraviolet-visible ii. nuclear transitions region C. X-ray region iii. vibrational transitions of molecules D. γ-ray region iv. transitions involving inner shell electrons a) A-iv, B-iii, C- b) A-i, B-ii, C- c) A-iii, B-i, d) A-iii, B-iv, A-i ii, D-i iv, D-iii C-iv, D-ii c-i, D-ii	
region iii. vibrational transitions of molecules C. X-ray region iii. vibrational transitions of molecules D. γ-ray region iv. transitions involving inner shell electrons a) A-iv, B-iii, C- b) A-i, B-ii, C- c) A-iii, B-i, d) A-iii, B-iv, A-i ii, D-i iv, D-iii C-iv, D-ii c-i, D-ii	
C. X-ray region iii. vibrational transitions of molecules D. γ-ray region iv. transitions involving inner shell electrons a) A-iv, B-iii, C- b) A-i, B-ii, C- c) A-iii, B-i, d) A-iii, B-iv, A-iii, D-ii ii, D-i iv, D-iii C-iv, D-ii c-i, D-ii	
D.γ-ray regioniv. transitions involving inner shell electronsa) A-iv, B-iii, C-b) A-i, B-ii, C-c) A-iii, B-i, d) A-iii, B-iv, A-iii, D-iiv, D-iiiC-iv, D-iic-iv, D-iiC-i, D-ii	
a) A-iv, B-iii, C-b) A-i, B-ii, C-c) A-iii, B-i, d) A-iii, B-iv, A-iii, D-iiii, D-iiv, D-iiiC-iv, D-iiC-i, D-ii	
ii, D-i iv, D-iii C-iv, D-ii C-i, D-ii iv,	
ii, D-i iv, D-iii C-iv, D-ii C-i, D-ii iv, 1	iii, B-i, C-
FO Which of the following statements is not connect shout matching (1)	D-ii
59 Which of the following statements is not correct about rotational (c))
spectra?	
(i) Rotational spectra occur when molecules undergo transitions	
between rotational energy levels.	
(ii) Rotational spectra are only observed in solid-state materials.	
(iii) Rotational spectra involve transitions between electronic energy	
levels within a molecule.	
(iv) Rotational spectra are independent of the moment of inertia of	
the molecule.	
	i), (iii) and
and (iv) (iv)	
60 Which of the following statements is true about magnetic moments of (c)	1
atoms of different elements	
(i) All have a magnetic moment	
(ii) None has a magnetic moment	
(iii) None of the above statements are accurate	
(iv) All acquire a magnetic moment under external magnetic field and in same direction as the filed.	
	i) only
only	i) Only
61 Assertion: The Stark effect is the splitting of spectral lines observed in	
the presence of an electric field.	
Reason: The Stark effect arises from changes in the electron (c)	,
configuration within the atom.	
In the light of the above statements, choose the correct answer	
(a) Both the (b) Both the (c) The (d) The The	e
Assertion and Assertion and Assertion is Assertion is Ass	sertion is
the Reason are the Reason are true, but the false, but the true	e, but the
true, and the true, but the Reason is Reason is true. Reason	eason is
reason is the reason is not the false. false.	se.
correct correct	
explanation of explanation of	
the assertion. the assertion.	
62 Which type of molecular spectroscopy is primarily used to study (a)	1
vibrations within molecules?	
	icrowave
	ectroscopy
63 Which of the following types of molecular motion does Raman (d))
spectroscopy primarily detect?	

		(1) 17'1 ('		T 1		X7'1 (* 1
	(a) Rotationa	(b) Vibratio	· ·	Transl	(d) Electro	Vibrational
	1 motion	nal motion		al motion	nic motion	motion
64	Vibrational spectro	oscopy involves t	he trans	itions falli	ng in the spectral	(c)
	(a) $100-1000$	(b) 300-	(c)	400-	(d) 500-	400-4000
	cm	3000 cm	4000		5000 cm	cm
65	In an open circui					
00	junction is generat	ed due to-	<u> </u>			c)
	a) Minority	b) Majorit	c)		d) Immobi	Immobile
	carrier in the p	y carrier in the p		negative	le positive	U
	and n side.	and n side		e in the p		
			side	and		1
			positi		negative charge	
			0	e in the n	in the n side.	charge in the
			side.			n side.
66	The semiconducto	r material not use	d in LE	D is-		d)
	a) Silicon	b) GaAsP	c)	GaAs	d) Si	Si
	Carbide					
67	Identify the correc					c)
	a) I/O read,	b) Opcode	c)	Opcod	d) I/O	Opcode
	Opcode fetch,	fetch, memory		fetch,	read, Opcode	fetch,
	memory write,	write, memory		ory read,	-	memory
	memory read,	read, I/O read,		ory write,		
	I/O write.	I/O write.		read, I/O		memory
			write.		write.	write, I/O
						read, I/O write.
						write.
68	Identify the correc	t matching from	Column	-I and Col	umn-II using the	b)
	codes given below	_			_	
	Column-I (Inventor)	Colum	n-II (Inven	tion)	
	(a) Joh			LED		
	Fleming					
	(b) Nic	k Holonyak	(ii)	Transistor		
	(c) Wil	liam Shockley	(iii)	Thermion	ic diode	
	(d) Cla	rence Melvin	(iv)	Zener dio	de	
	Zener		-			
	a) A-iv, B-i, C-ii,	b) A-iii, B-ii, C-	· ·	iii, B-iv,		A-iii, B-ii,
	D-iii	i, D-iv	C-ii, l		iii, D-ii	C-i, D-iv
69	Identify the correc	-	Column	-1 and Col	umn-II using the	c)
	codes given below				TT	4
	Column-I		•	Column-		4
	. ,	mporary storage	e unit	(i) C	Counter	
	inside a co	device that stor	on the		agistar	-
	× /			(ii) R	lesister	
		times a particula to a clock signal.				
	(c) An	*	ecision	(iii) L	atch	-
	< <i>/</i>	cuit that use a high			/utv11	
	OPAMP	cont that use a my	511 Sulli			
	017100			I		

		device that chang		Compartator	
	output imi applied in	mediately on the ba	asis of		
	a) A-iv, B-i, C-ii,		c) A-ii, B-i, C-	d) A-i, B-iv, C-	A-ii, B-i, C-
	D-iii	i, D-iv	iv, D-iii	iii, D-ii	iv, D-iii
70	Convert (E5B) ₁₆ to a) (1110010110		c) (11011010	d) (10100101	a) (111001011
	11) ₂	110) ₂	0111)2	$10010101 \\ 1001)_2$	$(111001011)_2$
71	In a half adder circ	cuit.	I	I	a)
	a) XOR	b) OR gate	c) OR	d) XOR	XOR gate
	gate gives the	gives the sum	gate gives the	gate gives the	gives the
	sum and AND	and AND gate	carry and	carry and AND	sum and
	gate gives the	gives the carry.	AND gate	gate gives the	AND gate
	carry.		gives the sum.	sum.	gives the
72	If the input of a co	mnorator is a sina	waya tha autput	will be	carry
72	(A)	-	-	1	c)
	a) Ramp	b) Sine	c) Rectan	d) Saw	Rectangular
	voltage	wave	gular wave	tooth wave.	wave
73	Which of the follo for executing any	c)			
	a) .c	b) .txt	c) .hex	d) .doc	.hex
74	A PIN diode is fre	quently used as			a)
	a) Switchin	b) Peak	c) Voltag	d) Harmo	Switching
	g diode for	clipper	e regulator	nic generator	diode for
	frequencies up to				frequencies
	GHz range				up to GHz
75	If f(z) is analytic the for every counter is				c)
	a) Taylor's	b) Laurent	c) Cauch	d) Cauchy's	Cauchy's
	theorem	s's theorem	y's integral	integral	integral
			theorem	formula	theorem
76	The Stoke's theore			1	
	a) $\iint_{s} \vec{A} \Box d\vec{s} = \iint_{c} \vec{A} \Box d\vec{r}$ The line integral p	b) $\iint_{s} \vec{\nabla} \times \vec{A} \square d\vec{s} = \iint_{c} \vec{A} \square d\vec{s}$	c) $d\vec{r} \iint_{s} \vec{A} \square d\vec{s} = \iint_{v} \vec{\nabla} \square \vec{A} \vec{a}$	d) $V \iint_{s} \vec{A} \Box d\vec{s} = \iint_{s} \vec{\nabla} \vec{A} dV$	$\iint_{s} \vec{A} \Box d\vec{s} = \iint_{v} \vec{\nabla} \Box \vec{A} d$
77	The line integral p	er unit area along	the boundary of s	mall area around	c)
	a point in a vector	field \vec{A} is known	as		
	a) Grad \vec{A}	b) Div \vec{A}	c) Curl \vec{A}	d) Line integral \vec{A}	Curl \vec{A}
78	Identify the true/	false statements of	of the following		a)
	correct one from the		-		
		olynomials appear			
	2. Legendre p	polynomials appear	r in electrostatics.		
		olynomials appear			
1	Bessel polynomial	ls appear in circula	r membrane prob	lems.	

	a) True-	b) True-	c) True-	d) True-	True-True-
	True - True -	False-True-	True-True-	False -True-	True-True
	True	False	False	True	
79	Identify the true/	false statements of			d)
	correct one from t		8		
	1. Eigen valu	es are the diagonal	elements of the	given matrices.	
	-	e eigen values of the			
	of the diagonal ele			1	
		nt of the matrix e		luct of the eigen	
	values of the matri	ix.		-	
	4. The invers	e of the eigen valu	ues of a matrix is	not equal to the	
	eigen values of the	e inverse matrix.			
	a) True-	b) True-	c) True-	d) False-	False-True -
	True-True-True	False-True-	True-True-	True -True-	True-False
		False	False	False	
80	Identify the true/	false statements of	of the following	and choose the	b)
	correct one from the				
		aphson method is u		-	
	-	tta method is app	olied for finding	the solution of	
	ordinary differenti		a a		
	3. Gauss-Seid				
	4. Simpson's				
	linear equations.				
	a) False-	b) True-True-	c) True-False-	d) True-True-	True-True-
	True-False-False		False-False	True-False	False-False
81	The complex varia	able function $f(z)$	$= z ^2$ is different	tiable at	a)
	a) $z=0$	b) $z \neq 0$	c) $z = 1$	d) any point of z.	z = 0
82	If $f(s)$ is the Lapl	ace transform of H	F(t), then the Lap	lace transform of	b)
	$e^{at}F(t)$ will be				
	a) $f(s+a)$	b) $f(s-a)$	c) $\frac{f(s)}{c}$	d) $af(s)$	f(s-a)
			a		
83	If A is a Skew-syr	nmetric matrix of o	odd order, then th	e determinant of	c)
	A is	1.) 1	-) 0	1)1	0
	a) -1	b) 1	c) 0	d) a real	0
01	The continuous	dom voriable V 1:	only inside the	number	
84	The continuous rat		•		a)
	its density function a) 1	b)1.5	c) 0.5	d) 0	1
OF	/	,	/	1	
85	Assertion (A): A	-			c)
	be expressed as the Reason (R): The				
	zero to infinity on				
	a) Assertion is	b) Assertion is	c) Assertion is	d) Assertion is	Assertion is
	correct, reason is	correct, reason	correct, reason	incorrect,	correct,
	correct; reason is	is correct;	is incorrect.	reason is	reason is
	a correct	reason is not a	15 110011000.	correct.	incorrect.
	explanation for	correct			
	assertion.	explanation for			
		assertion.			
86	Identify the true /f		d choose the corre	ect alternatives.	b)
55		and an and an and an			- /

	1 E			· · · · · · · · · · · · · · · · · · ·			
		veen two charges i	s dependent on th	he product of the			
	charges.						
	2. Coulomb la						
		aw is applied for re	0 1				
	4. Coulomb la	— — — 1					
	a) True-	b) True-	c) False-	d) False-	True-False-		
	True – True-	False-True-	True-False-	False-True-	True- True		
	True	True	True	True			
87	Identify the true /f				c)		
	-	rature at which co	•	naterial becomes			
	infinite is called cr	ritical temperature.					
	2. In supercon	nductors, the Ferm	i energy level is	midway between			
	the ground state ar	nd first excited stat	e.				
	3. The superc	conducting state is	perfectly diamagi	netic in nature.			
	4. The shiftin	ng of electrons in	super conductors	is prevented by			
	classical effect.						
	a) True-	b) True-	c) True-	d) False-	True-True-		
	True-True-False	False-True-	True-True-	False-True-	True-False		
		False	False	True			
88	Identify the true /f	alse statements and	d choose the corre	ect alternatives.	d)		
	1. Magnetic	susceptibility χ	equals magneti	sation per unit			
	magnetic field inte	ensity.		_			
	2. Magnetic s	susceptibility has the	ne dimensions of	Amp/metre.			
		the sum of the r					
	constitutes the fiel		C				
	4. Bohr magn						
	spin.		-				
	a) True-	b) True-	c) True-	d) True-	True-False -		
	True-True-False	False-True-	True-True-	False -True-	True-True		
		False	False	True			
00	Accortion (A). Tw	lue to the fact that	t refractive index	2)			
89	Assertion (A): IW	Assertion (A): Twinkling of stars is due to the fact that refractive index of the earth's atmosphere fluctuates.					
89		U U			c)		
83		osphere fluctuates.	idall effect.		()		
87	of the earth's atmo Reason (R): Dispe	osphere fluctuates.		d) Assertion is	Assertion is		
89	of the earth's atmo Reason (R): Dispe a) Assertion is	osphere fluctuates. ersion is due to Tyr b) Assertion is	c) Assertion is	d) Assertion is incorrect,			
07	of the earth's atmo Reason (R): Dispe a) Assertion is correct, reason is	osphere fluctuates. ersion is due to Tyr b) Assertion is correct, reason	c) Assertion is correct, reason	incorrect,	Assertion is correct,		
69	of the earth's atmo Reason (R): Dispe a) Assertion is correct, reason is correct; reason is	 b) b) Assertion is correct, reason is correct; 	c) Assertion is	incorrect, reason is	Assertion is correct, reason is		
69	of the earth's atmo Reason (R): Dispe a) Assertion is correct, reason is correct; reason is a correct	by by the service of	c) Assertion is correct, reason	incorrect,	Assertion is correct,		
69	of the earth's atmo Reason (R): Dispe a) Assertion is correct, reason is correct; reason is a correct explanation for	b) Assertion is correct, reason is correct; reason is not a correct	c) Assertion is correct, reason	incorrect, reason is	Assertion is correct, reason is		
69	of the earth's atmo Reason (R): Dispe a) Assertion is correct, reason is correct; reason is a correct	by by the service of	c) Assertion is correct, reason	incorrect, reason is	Assertion is correct, reason is		
	of the earth's atmo Reason (R): Dispe a) Assertion is correct, reason is correct; reason is a correct explanation for assertion.	 b) Assertion is correct, reason is not a correct correct explanation for assertion. 	c) Assertion is correct, reason is incorrect.	incorrect, reason is correct.	Assertion is correct, reason is incorrect		
90	of the earth's atmo Reason (R): Dispe a) Assertion is correct, reason is correct; reason is a correct explanation for assertion.	 b) Assertion is due to Type b) Assertion is correct, reason is correct; reason is not a correct explanation for assertion. 	c) Assertion is correct, reason is incorrect.	incorrect, reason is correct.	Assertion is correct, reason is		
	of the earth's atmo Reason (R): Disper- a) Assertion is correct, reason is correct; reason is a correct explanation for assertion. In a Lorentz fram $\vec{E} = \hat{i} + \hat{k}$ whereas	 b) Assertion is correct, reason is not a correct explanation for assertion. 	 c) Assertion is correct, reason is incorrect. e electric field vertice d vector is given 	incorrect, reason is correct. ector is given by by $\vec{B} = 2\hat{i} + \hat{j}$. If	Assertion is correct, reason is incorrect		
	of the earth's atmo Reason (R): Disper- a) Assertion is correct, reason is correct; reason is a correct explanation for assertion. In a Lorentz fram $\vec{E} = \hat{i} + \hat{k}$ whereas in another Lorentz	 b) Assertion is due to Type b) Assertion is correct, reason is correct; reason is not a correct explanation for assertion. b) Assertion for assertion. c) freference, the set of reference freference freferen	 c) Assertion is correct, reason is incorrect. e electric field ve d vector is given ace, the transform 	incorrect, reason is correct. ector is given by by $\vec{B} = 2\hat{i} + \hat{j}$. If ned electric field	Assertion is correct, reason is incorrect		
	of the earth's atmo Reason (R): Disper a) Assertion is correct, reason is correct; reason is a correct explanation for assertion. In a Lorentz fram $\vec{E} = \hat{i} + \hat{k}$ whereas in another Lorentz vector is parallel to	 b) Assertion is correct, reason is not a correct explanation for assertion. 	 c) Assertion is correct, reason is incorrect. e electric field ve d vector is given ace, the transform 	incorrect, reason is correct. ector is given by by $\vec{B} = 2\hat{i} + \hat{j}$. If ned electric field	Assertion is correct, reason is incorrect		
	of the earth's atmo Reason (R): Disper a) Assertion is correct, reason is correct; reason is a correct explanation for assertion. In a Lorentz fram $\vec{E} = \hat{i} + \hat{k}$ whereas in another Lorentz vector is parallel to be	 b) Assertion is correct, reason is not a correct explanation for assertion. e of reference, the sthe magnetic field 	 c) Assertion is correct, reason is incorrect. e electric field vet vector is given ace, the transform l vector, then their 	incorrect, reason is correct. ector is given by by $\vec{B} = 2\hat{i} + \hat{j}$. If ned electric field magnitudes will	Assertion is correct, reason is incorrect c)		
	of the earth's atmo Reason (R): Disper a) Assertion is correct, reason is correct; reason is a correct explanation for assertion. In a Lorentz fram $\vec{E} = \hat{i} + \hat{k}$ whereas in another Lorentz vector is parallel to be	 b) Assertion is correct, reason is not a correct explanation for assertion. e of reference, the sthe magnetic field 	 c) Assertion is correct, reason is incorrect. e electric field vet of vector is given ace, the transform l vector, then their 	incorrect, reason is correct. ector is given by by $\vec{B} = 2\hat{i} + \hat{j}$. If ned electric field magnitudes will	Assertion is correct, reason is incorrect c)		
	of the earth's atmo Reason (R): Disper a) Assertion is correct, reason is correct; reason is a correct explanation for assertion. In a Lorentz fram $\vec{E} = \hat{i} + \hat{k}$ whereas in another Lorentz vector is parallel to	posphere fluctuates. prision is due to Tyre b) Assertion is correct, reason is correct; reason is not a correct explanation for assertion. b) $ \vec{E} = \sqrt{5}$ and $ \vec{B} = \sqrt{2}$	c) Assertion is correct, reason is incorrect. e electric field ve d vector is given ice, the transform vector, then their c) $ \vec{E} = 1$ and $ \vec{B} = 2$	incorrect, reason is correct. ector is given by by $\vec{B} = 2\hat{i} + \hat{j}$. If ned electric field magnitudes will d) $ \vec{E} = \sqrt{2}$ and $ \vec{B} = \sqrt{5}$	Assertion is correct, reason is incorrect c)		

	1	Т		Г	1						
	a) $S_{\nu} \alpha \frac{1}{R^4}$ and $S_a \alpha \frac{1}{R^2}$	b) $S_{\nu} \alpha \frac{1}{R^2}$	c) $S_{\nu} \alpha \frac{1}{R}$ and	d) $S_{\nu} \alpha \frac{1}{R^4}$ and	$S_{\nu} \alpha \frac{1}{R^4}$ and						
	and $S_a \alpha \frac{1}{R^2}$	and $S_{\nu} \alpha \frac{1}{R^4}$	$S_a \alpha \frac{1}{R^2}$	$S_a \alpha \frac{1}{R}$	$S_a \alpha \frac{1}{R^2}$						
92	The orientational proportional to ter		molecule in a p	olyatomic gas is	c)						
	a) T	b) T ²	c) $\frac{1}{T}$	d) $\frac{1}{T}$	$\frac{1}{T}$						
93	The electric field of	of a plane wave is			c)						
	magnetic field is g	given by									
	a)	b)	c)	d)	$\vec{B} = \hat{k}B_0 \sin(kz)$	$+\omega t$					
	$\vec{B} = \hat{i}B_0\sin(kz +$	$a\vec{B} = -\hat{i}B_0\sin(k)$	$z + \vec{B}ot$) $\hat{k}B_0 \sin(kz)$	$+\vec{B}_{cot}$) $-\hat{k}B_0 \sin(kz)$	$+\omega t$)						
94	If the electric t	field of an elec	ctromagnetic way	ve is given by	a)						
	$\vec{E} = (\hat{i}E_1 + \hat{j}E_2)e^{i(\vec{k})}$	$\vec{r} - \omega t$, where \hat{i} and	d \hat{j} are mutually	unit vectors both							
	being perpendicul	ar to \hat{k} and E_1 and	d E_2 are two real r	numbers, then the							
	electromagnetic w		-								
	a) Plane	b) Circular	/ I	· 1	Plane						
0.5		ly polarised	ally polarised	ised	polarised						
95	X-rays are electro				a)						
	a) Electric and magnetic	b) Electric fields only	, 0	d) Neither electric nor	Electric and magnetic						
	fields together	fields only	the fileful officy	magnetic fields	fields						
	neids together			mugnetie neids	together						
96	The statement that	t the time rate of	change of electro	magnetic energy	a)						
	within a certain vo										
	the boundary sur		the power tran	sferred into the							
	electromagnetic fi			d) Lamman	Descritica						
	a) Poynting theorem			d) Larmor 's radiation	Poynting theorem						
		s circuitar law	momentum in	STadiation	ulcolem						
			electrodynami								
			cs								
97	The surface integr	al of an electric fi	eld over a closed s	surface enclosing	b)						
	a charge in free sp		nes the total charge	e enclosed by the							
	surface. This is the	\mathcal{E}_0 e statement of									
	a) Coulomb	b) Gauss's	c) Amper	d) Faraday	Gauss's law						
	/	,	e's law	's law							
	's law	law		Match the column-I and column-II and choose the correct one from the							
98	Match the column			rect one from the							
98				rect one from the							
98	Match the column alternatives:		and choose the cor	rect one from the	a)						
98	Match the column alternatives:	-I and column-II a	column-II		a)						
98	Match the column alternatives: column-I A. Linear ch	-I and column-II a arge density	column-II 1. Charge ve	olume	a)						
98	Match the column alternatives: column-I A. Linear ch B. Surface c	-I and column-II a arge density harge density	column-II	olume ngth	a)						
98	Match the column alternatives: column-I A. Linear ch B. Surface c	-I and column-II a barge density harge density charge density	1.2.Charge volume3.Charge ar4.System	blume ngth ea consisting of	a)						
98	Match the column alternatives: column-I A. Linear ch B. Surface c C. Volume c	-I and column-II a barge density harge density charge density	1.Charge volumner2.Charge le3.Charge ar	blume ngth ea consisting of	a)						

	a) A-2, B-3,	b) A-1, B-	c) A-3,	d) A-3, B-	A-2, B-3, C-			
	C-1, D-4		B-1, C-2, D-4	, , , , , , , , , , , , , , , , , , , ,	1, D-4			
99	Match the two cold formulae and choo							
	column-I		column-II		d)			
	A. Magnetic		1. $\begin{bmatrix} M^1 L^2 T^- \\ 1 \end{bmatrix}$	$-^{3}A^{-1}$				
		flux density	$\begin{array}{c} 1 \\ 2 \\ 2 \\ \end{array} \begin{bmatrix} M^1 L^2 T^- \\ \end{array}$					
		permeability	$3. \qquad \left[M^{1}L^{-1}T\right]$	_	-			
	D. Magnetic	•	4. $\begin{bmatrix} M^1 L T^- \end{bmatrix}$					
	a) A-2, B-3, C-1, D-4	3, C-1, D-4	B-3, C-2, D-1		A-2, B-4, C- 1, D-3			
10 0	Consider the trans temperature of 100 the following qu transition?) °C under a press	sure of 1 atmosphe	ere. Which one of	b			
	a) The internal energy	b) The Gibbs free energy	c) The entropy	d) The specific volume	The Gibbs free energy			
10 1	Consider an ideal momentum relatio system may under temperature is	Bose gas in the bose p^s with s	> 0. The range of	f s for which this	c			
	a) $0 < s < 1$	b) 0 < <i>s</i> < 3	c) 1 < <i>s</i> < 3	d) $0 < s < 3$	1 < <i>s</i> < 3			
10 2	What is the contropy of a metal				a			
	a) γT	b) γT^2	c) γT^3	d) γT^4	γT			
10 3	Which is correctly	matched:						
	A. Phase Space		tical function represented properties of a system	-				
	B. Micro-states	i.Mathema	tical space representates of a system.		b			
	C. Macro-states	i.Describes in terms momenta	s the distribution s of their pos					
	D. Partition Func	system ca						
	a) A-iii, B-ii, C- iv, D-i	b) A-iv, B-i, C- iii, D-ii	c) A-i, B-iv, C- ii, D-iii	d) A-ii, B-iii, C-i, D-iv	A-iv, B-i, C- iii, D-ii			
10	Match the following	,	,	,				
4	E. Ideal Bos	11	to particles with i		a			
	F. Ideal Bose	e Gas i.Describ	photons or helium es the distribution y Bose-Einstein st	of particles				

10 5	of a particle under	b) A-iv, B-i, C- iii, D-ii wing statement(s) alk is a mathematic going a series of in	e processes. s the distribution Fermi-Dirac stat c) A-i, B-iv, C- ii, D-iii is (are) correct? cal model describ idependent steps.	ms with of particles istics. d) A-iii, B-ii, C-iv, D-i ing the trajectory	A-ii, B-iii, C-i, D-iv
	 B. In a random step is correlated with a solvent, leaded D. Brownian Mewton's laws of random a) A and B only 	b A and C only			
10 6	Which one of the f A. In diamagn atoms or ions align B. Paramagne in the absence of a C. Ferromagn susceptibility. D. Diamagnet stronger magnetic	c			
	a) A, B and C		c) A, C and D	d) B, C and D	A, C and D
10 7	 Given below are to the other is labelled A. The princing equilibrium has equ	b			
	a) A is true, but the R is false.	b) Both A and R are true, and the R is the correct explanation for the A.	R are true, but	d) Both A and R are false.	Both A and R are true, and the R is the correct
10 8	Given below are to the other is labelled A. Classical st at low temperature R. At such con classical statistics behavior.	a			

	In the light of the a		choose the correct	answer from the	
	options given belo	W:			
	a) A is true, but the R is false.	b) Both A and R are true, and the R is the correct explanation for the A.	c) Both A and R are true, but the R is not the correct explanation for the A	d) Both A and R are false.	A is true, but the R is false.
10 9	Consider an ideal I chemical potential particle energy lev	. The variance of th	d canonical enser ne occupation nur	nber of the single	b
	a) $\sqrt{\overline{n}}$	b) $\bar{n} (1 - \bar{n})$	c) <u>n</u>	d) $\frac{1}{\sqrt{\overline{n}}}$	b) $\bar{n} (1 - \bar{n})$
11 0	The vibrational mo that of a simple ha of these molecules randomly picked n	rmonic oscillator v s is at temperature	with angular frequence T , what is the provided the rest of the provided the prov	uency ω . If a gas probability that a	a
	a) $1 - e^{-\frac{\hbar\omega}{k_BT}}$	b) $e^{-\frac{\hbar\omega}{2k_BT}}$	c) $\tanh \frac{\hbar \omega}{k_B T}$	d) cosech $\frac{\hbar\omega}{2k_BT}$	a) $1 - e^{-\frac{\hbar\omega}{k_BT}}$
11 1	A cavity contains The specific heat p the form $C_V = \gamma T^3$, its original volum temperature <i>T</i> . The	per unit volume of where γ is a constant of the and the allo	the photon gas i nt. The cavity is e wed to equilibra	n the cavity is of xpanded to twice ate at the same	d
	a) $4\gamma T^4$	b) $2\gamma T^4$	c) γT^4	d) $\frac{\gamma T^4}{4}$	d) $\frac{\gamma T^4}{4}$
11 2	The relation betwee pressure <i>P</i> , volume of a thermodyname exact differential is	e <i>V</i> , chemical pote ic system is <i>dU</i> = mplies that	ential μ and number $TdS - PdV + \mu d$	per of particles N	a
		b) $P \frac{\partial U}{\partial T}\Big _{V,N} =$ $-S \frac{\partial U}{\partial V}\Big _{S,\mu}$	c) $P \frac{\partial U}{\partial T}\Big _{V,N} = -\frac{1}{T} \frac{\partial U}{\partial V}\Big _{S,\mu}$	d) $\frac{\partial P}{\partial S}\Big _{V,N} = \frac{\partial T}{\partial V}\Big _{S,N}$	a) $-\frac{\partial P}{\partial S}\Big _{V,N} = \frac{\partial T}{\partial V}\Big _{S,N}$
11 3	The Hamiltonian f is $H = JS_0 (S_1 + S_2)$ the average energy	2). If the system is	in equilibrium a	t temperature T ,	d
	a) $-\frac{1+\cosh(2\beta J)}{2\beta\sinh(2\beta J)}$	b) $-2J[1 + \cosh(2\beta J)]$	c) -2/β	d) $-2J \frac{\sinh(2\beta J)}{1+\cosh(2\beta J)}$	d) $-2J \frac{\sinh(2\beta J)}{1+\cosh(2\beta)}$
11	The type of crystal			1)	d
4	a) Ionic crystal	b) Covalent crystal	c) Metals	d) Molecular crystal	Molecular crystal
11 5	A two dimensiona value of n is	l square lattice has	s n-fold rotationa	l symmetry. The	d
	a) 1	b) 2	c) 3	d) 4	4
11	In Debye's theory,	the energy distrib	ution of atomic o	scillators follow	a
6	a) Maxwell- Boltzmann distribution	b) Bose- Einstein distribution	c) Fermi-Dirac distribution	d) Kelvin- Stokes distribution	Maxwell- Boltzmann distribution
	Which is correctly	matched?			b

11	A Schottky defec					
7	A Schottky defecti hole trapped in positive ion vacancyB Frankel defectii electron trapped in negative ion					
			vacancy			
	C F-centre iii vacancy and interstitial					
	D V-centre					
			charge		I I I I I I I I I I I I I I I I I I I	
	a) A-iii, B-iv, C-	b) A-iv	Ŭ	c) A-ii, B-iv,	d) A-iv, B-i, C-	A-iv, B-iii,
	ii, D-i	C-ii, D-i		C-i, D-iii	ii, D-iii	C-ii, D-i
11	In band theory of s	solids, the	extent of	f freedom of depe	ends on	
8	(i) the effective ma					
	(ii) the gravitation					а
	(iii) curvature of th					u
	(iv) the band gap of		erial			
	The true option/s i			\ <i>(</i> '') 1		
	a) (i) and (iii)	b) (i) onl		c) (ii) only	d) (ii) and (iv)	(i) and (iii)
11	5-fold rotational sy					
9	(i) not possible in a (ii) possible in C ₆₀	• •	i system			
	(iii) possible in C ₆₀		crystal s	vstem		b
	(iv) possible in Si	сладона	ci ystai s	ystem		
	The true option/s i	s/are				
	a) (i) only	b) (ii) on	lv	c) (ii) and (iv)	d) (iii) only	(ii) only
12	Hall effect can be					
0	(i) carrier concentr	ation				
	(ii) carrier type					d
	(iii) mobility					d
	(iv) magnetic flux	•				
	The true option/s i				Γ	
	a) (i) and (ii)	b) (i), (i	ii) and		d) (i), (ii), (iii)	(i), (ii), (iii)
		(iv)	1	(iv)	and (iv)	and (iv)
12	Assertion (A): On continuous string f				toms behaves as	
1	Reason (R): Angu				wavevector only	d
	when wavelength					u
	In the light of the a				-	
	a) Both A and R				d) Both A and	Both A and
	are true	R is true		R is false	R are false	R are false
12	Assertion (A):	Electron	mobility	y decreases wi	th increase in	
2	temperature.		-			с
	Reason (R): Relax				· ·	
	a) Both A and R	,	alse but	· ·	d) Both A and	A is true but
	are true	R is true		R is false	R are false	R is false
12	If energy require					с
3	temperature 1000		e ratio of			
	a) 0.1	b) 0.01		c) 0.001	d) 0.0001	0.001
12	An n-type Ge strip					
4	of 10^{-2} m ³ /coulom					b
1	inside the strip is 1		strength			0.1 T
	a) 1 T	b) 0.1 T	al a - 1 4	c) 0.001T	d) 0.0001 T	0.1 T
12	The velocities of l					
5	6374 and 3111 aluminium is	ins -, re	spective	iy. The Debye	temperature for	а

	a) 407.6 K	b) 706.4 K	c) 606.4 K	d) 340 K	407.6 K		
12	For lead, the criti	/	,	,			
6							
	a) 2 x 10 ⁻² A/m	/	c) 4×10^4 A/m	,	$4 \times 10^4 \text{ A/m}$		
12 7	Cs metal (atomic density of Cs is 2 g				b		
	a) 1	b) 2	c) 4	d) 6	2		
12 8	Choose the correc endoergic nuclear projectile.	reaction between	stationary nucleu		a		
	a) It is greater than Q of nuclear reaction.			,	It is greater than Q of nuclear reaction.		
12	The quarks are sup	posed to exist in f	ollowing number	of flavours:	с		
9	a) Two	b) Four	c) Six	d) Sixteen	Six		
13	According to shell	model of the nucl	eus which is inco	rrect?	b		
0	a) Magic	b) Nucleons	c) Nucleons in	d) Large	Nucleons		
	numbers exist	interact with	a nucleus	electronic	interact with		
		their nearest		1 1	their nearest		
		neighbours only	general force field	moment exists for certain nuclei	neighbours only		
13 1	In the semi-empiri nuclei in nature is			odd Z and odd N	С		
	a) Surface energy term	b) Coulombs energy term	c)δ - term	d) Asymmetry term	δ - term		
13 2	Consider Fermi t electrons correspo				с		
	a) Independent of p	b) Proportional to pdp	c) Proportional to p ² dp	d) Proportional to p ³ dp	Proportional to p ² dp		
13 3	If a U-238 nucleu produced will be	is splits into two	identical parts, tl	ne two nuclei so	b		
	a) radioactive	b) stable	c) isotope	d) isobar	Answer stable		
13	Which is correct fr				d)		
4		teracts through ele	-				
		bes not interact three interacts through	ough weak intera	electromagnetic			
	C. Neutrino interaction.						
		racts through stron	g interaction but	not through weak			
	a) A and C	b) B and C	c) A and D	d) only A	only A		
		<i>c, 2</i> und <i>C</i>	-,	<i></i>	<i></i>		

13 5	With reference to nuclear forces which of the following statements is not true? The nuclear forces are A. Short range B. Charge independent C. Velocity dependent D. Spin independent a) A and D b) B and D c) Only D d) Only C						C Only D
13 6	 In case of a Geiger – Muller (GM) counter, which is correct from the following statements: A. Multiplication factor of the detector is of the order of 10¹⁰ B. Type of the particles detected can be identified C. Energy of the particles detected can be distinguished D. Operating voltage of the detector is few tens of Volts 						a
	a) Only A b) A and		c) Only D		d) B and D	-	Only A
13 7						c Assertion is	
	a) Both b) Both Assertion and Assertio Reason are Reason correct and correct Reason is the Assertio correct correct explanation for Assertion. Reason.	are and n is the	Reason incorrect.	ut is	-	and are	correct but Reason is incorrect.
13 8	A one-dimensional rigid rod that its two ends are always constraints on the Cartesian	in conta	act with the surf	face	e. The number	of	a)
	a)3 b)5		c)2		d)4		a)3
13 9	Match List-I with List-II:	i	Motion in a ce	ntr	al potential]	
	B Quantum harmonic osci		i Fourier Trans		-	-	
	C Hydrogen atom iii Commutator						a)
	D Wave function in pos and momentum representa	sition i	v Uniform ener		level spacing		
	a) $A - iii$, $B - iv$, C - i, $D - iiC - i$, $D - ii$, B – iv,	c) A – iii , B i, C – iv, D		d) a) A – iv – iii, C – ii, I - i		

1						
	Esta a manti alla maran	:				
14	For a particle mov	ing in a central	pot	tential		
0	A. Acceleration is					
	B. Total energy is	d)				
	C. Velocity is cons					
	D. Angular Mome		t			
	a) A & B are			c) B, D and C	d) B & D ar	e d) B & D are
	True	true		are true	true	true
14	A: $\psi(x,t) = \frac{a}{x^2}e^{it}$		ve-f			
1	x^2	15 a vana vav	• 1	unetion.		c
	B: $\psi(x, t)$ is well-o	lefined at $r = 0$				
	a) Both A and R			c) Both A and	d)A is false B i	c .
	are true and R is	'		R are false	true	c) Both A
		NOT the corre		it are faise	uue	and R are
	explanation of A	explanation				false
		A				
14	Two particles each		n c	ollide head-on ar	nd stick together	·.
2	Before collision, th				-	
	in free space. The				. 0	
	a) 5m / 4	b) 2m		c) 5m / 2	d) 25m / 8	c) 5m / 2
14	The energy levels	available to ea	ach	electron in a sy	stem of N non	-
3	interacting electro					
	which does not aff		-	_		
	electron spins, is a	e				
	energy of the syste	$\frac{1}{2}$		2 -	2 5	2 -
	a) $\frac{n^2 E_0}{2}$	b) $n^2 E_0$		c) $\frac{n^2 E_0}{8}$	d) $\frac{n^2 E_0}{4}$	d) $\frac{n^2 E_0}{4}$
	2			0	4	4
14	Match List-I with	List-II:				
4						
	A Wave nature o	f electrons	i	Michelson-Morle	y experiment	
	B Speed of light	is constant	ii	Compton effect		d
				1	•	u
	C Particle nature	of light	111	i Stern-Gerlach E	xperiment	
	D Quantization	of Angular	iv		sson-Germer	
	momentum			xperiment		
	a) A -ii, B- i, C –	b) A -i, B- iv,	С			
	iv, D - iii	– ii, D - iii		C – ii, D - iv	– ii, D - iii	C – ii, D - iii
14	Two angular mom					
5	added. The possible	ie values of j, th	e r	esuitant angular i	nomentum state	8
	are					
	A 1 3 2 1					C
	A 4, 3, 2, 1 B 4, 1					c
	C 4, 3, 2, 1, 0					
	D + 4, -4, +1, -1					
	···, ¬, ·1, ⁻ 1					
<u> </u>	a) B is True	b) D is True		c) A is True	d) C is True	c) A is True
1		-) = 10 1100		-,	-,	•,

14	Match List-I with List-II						
6	A Continuous symmetry i least Action						
	-				b		
	B Hamilton's prin	-		conserved quantit			-
	C Hamiltonian m			configuration spa	ice		
	D Lagrangian me			phase space			
	a) A – i, B – ii, C						
	– iii, D iv	C – iv, D ii	i	i, C – iv, D ii	C – iii, D	· iv	i, C – iv, D -
							- iii
14	A particle, thrown	with a sneed v	fro	he earth's surf	ace attains a	1	
7	maximum height h	-					b
,	the escape velocity				,		
	a)2/3	b)1/3		c)1/4	d)1/2		b)1/3
14	Consider a Hamilt	tonian $H = AI$	+ E	$B\sigma_x + C\sigma_y$, where	e A, B and C	c are	
8	positive constants	, I is the 2 \times 1	2 id	lentity matrix and	σ_x, σ_y are I	Pauli	Answer
	matrices. If the not						option (a,b,c or d)
	corresponding to it	ts largest energ	y ei	igenvalue is $\frac{1}{\sqrt{2}}(1)$	y)then y is		
	corresponding to it a) $\frac{B+iC}{\sqrt{B^2+C^2}}$	b) $\frac{A-iB}{\sqrt{A^2+B^2}}$		$c)\frac{A-iC}{\sqrt{A^2+C^2}}$	d) $\frac{B-iC}{\sqrt{B^2+C^2}}$		a) $\frac{B+iC}{\sqrt{B^2+C^2}}$
14	If the expectation v					sion	Answer
9	is zero, then its (be	ox-normalizabl	e) v	vave function may	y be of the fo	orm	option
		.,				.,	(a,b,c or d)
	a) sin kx	b) $e^{\iota kx}$ sin kx		c)e ^{ikx} cos kx	d) sin kx + cos kx	e ^{ikx}	a) sin kx
15	If the Lagrangian	of a particle n	novi	ng in one dimens		n by	
0	$L = \frac{\dot{x^2}}{2x} - V(x)$ the	a)					
	a) $\frac{1}{2}xp^2 + V(x)$	b) $\frac{\dot{x^2}}{2x} + V(x)$		c) $\frac{1}{2}x^{2} + V(x)$	d) $\frac{p^2}{2x} + V(x)$	c)	a) $\frac{1}{2}xp^2 + V(x)$