Personal Profile

Prof. Pradip Kumar Kalita Professor, Department of Physics Rajiv Gandhi University, Rono Hills, Doimukh Arunachal Pradesh-791112

Email: pradip.kalita@rgu.ac.in

pkkalitagc@gmail.com

Phone No.: +91 9706033691; +91 8787818311

Educational Profile

Ph.D. University of Gauhati, Guwahati, Assam; 2000

Supervisor: Prof. H L Das & Prof. B K Sarma

M.Sc./M.Tech/ University of Gauhati, Guwahati, Assam; 1990

M.Com./M.A./ Subject: Physics

M.Ed etc. Specialization: Solid State Physics

B.Sc./B.Tech/ University of Gauhati, Gauhati, Assam; 1988

B.Com./B.A. etc. Subject: Physics

Professional Experience

Professor , Department of Physics	September, 2015-till date
Rajiv Gandhi University, Arunachal Pradesh, India	
Associate Professor , Department of Physics, Guwahati	August 2007-
College, Guwahati, Assam India	September, 2015
Assistant Professor , Department of Physics, Guwahati	August 1995- August
College, Guwahati, Assam India	2007

Administrative Experience

_	
Dean, Faculty of Basic Sci., IT & Engg Rajiv Gandhi University, Arunachal Pradesh, India	August, 2018- July 2021
Head of Department, Department of Physics, Rajiv Gandhi University, Arunachal Pradesh, India	July 2021- July 2024
Head of Department, Department of Physics, Rajiv Gandhi University, Arunachal Pradesh, India	September 2024- Till date (Second term)

Awards & Honours

Membership of Professional Bodies

- 1. Member of Material Research Society of India (Life Member)
- 2. Member of Indian Physics Teacher Association (Life Member)
- 3. Member of Indian Physics Association (Life Member)
- 4. Member of Physics Association of North East (Life Member)

Research Interests

- Thin Films
- Photoconductivity
- Nano-Optoelectronics
- Design and simulation of nanoscale devices
- Theoretical modelling of nanostructures

Research Projects:

1. SERS-DST sponsored research project titled "Development and characterization of CsSnGel₃ based solar cell devices through theoretical and experimental approach." Principal Investigator, (**Ongoing**)

Research Publications (last ten years)

- 1. TCAD study of CIGS/CZTS double absorber solar cells for high-efficiency photovoltaic applications; Bhattarai Sagar; Shrivastav Nikhil; Saikia Lakshi; Kalita P K; Sudhakara Reddy M; Radhika S.; Madan Jaya; Pandey Rahul; J Optics; 2025; https://doi.org/10.1007/s12596-025-02769-6
- 2. Memristive behaviour of Al/rGO-CdS/FTO device at different temperatures: A MATLAB-integrated study; Kalita A J; Sharma M; Das Hirendra; Kalita P K; *Physica E-Low dimensional systems and Nanostructures;* **2025**, 165, 116107
- 3. Observation of voltage dependent negative differential resistance (NDR) in SnS2-GO nanocomposites; Tangjang, L.; Gogoi A P; Das Hirendra; Bhattarai Sagar; Kalita P K; *Physica E-Low dimensional systems and Nanostructures*; **2025**, 165, 116102
- 4. Influence of capping agents for controlling structural and optical properties of copper chalcogenide (CuS) nanoparticles; Khongiang L; Deb S; Kalita P K; *J Phys: Conf. Series*; **2024**, 2919, 012008
- 5. Fabrication of highly sensitive memristive device using NiO nanoparticles synthesized by single step wet chemical method; Pathak B; Kalita P K; Roychoudhury J P; Dutta A; *Physica Scripta*; **2024**, 99, 05904.
- 6. Defect controlled space charge limited conduction in CdS nanostructured sandwich structure; Nanung Yowa; Tangjang, L.; Das H. N.; S Deb; Kalita P. K.; *Mater Sci Engg B*; **2024**, B 304, 117353.

- 7. Optical properties of chemically synthesized SnS₂ nanostructure and study of current transport mechanism in Schottky and heterojunction diodes; Tangjang, L.; Singha, P.; Nanung Y.; Kalita, P. K.; *J Mater Sci: Mater Electron*; **2024**, 35, 219
- 8. Optoelectronics characteristics of chemically synthesized Cu(In_{1-x}Ga_x)Se₂ based Schottky and heterojunctions: Barman, B.; Handique, K.; Kalita, P. K: *Optical Mater.* **2023**, 145, 114420
- 9. Role of excess-carrier generation and recombination in memristivity: Roychoudhury, J. P.; Pathak, B.; Kalita, P. K; Dey, S.; Nath, N. M.; *Materials Today: Proceeding* **2023**, https://doi.org/10.1016/j.matpr.2023.05.579
- 10. Photo-induced single-electron tunnelling based Coulomb staircase effect observed at high applied bias in ZnSe/CdSe core-shell quantum dots: Handique, K.; Barman, B.; Kalita, P. K; Das, H. N; *Optical & Quantum Electron.*; **2024**, 56, 357
- 11. Effect of Zn²⁺ ion concentration on the optoelectronic properties of chemically synthesized ZnSe nanorods: Handique, K.; Barman, B.; Kalita, P. K.:*Physica B*; (2024) 674, p-415571
- 12. Observation of negative differential Resistance(NDR) in chemically synthesized CuGaSe₂ nanorods: Barman, B.; Handique, K.; Kalita, P. K: *Mater. Lett.*: **2024**, 357, 135638
- 13. Photo-response in chemically synthesized ZnSe nanorod for its application as photosensor: Handique, K.; Barman, B.; Kalita, P. K.: *Physica Scripta*; **2023**, 98, 11701
- 14. Performance improvement of CZTS-based hybrid solar cell with double hole transport layer using extensive simulation: Bhattarai, Sagar; Khaled Hussein, M.; Madanc, Jaya; Pandeyc R.; Samajdard, D.P.; Kalita, P.K.; Rashed Ahmed Nabih Zaki; Ansarih, Mohd Zahid; Amami, Mongi: *J Phys. Chem Solids*; **2023**, 183, 111641
- 15. Optoelectronic characterization of chemically synthesized Cu_XIn_{1-X}Se₂ nanostructure for suitable application as photoconductive device: Barman; Handique, K.; B.; Kalita, P. K.: *J Phys. Chem Solids*; **2023** https://doi.org/10.1016/j.jpcs.2023.111700
- 16. Modelling and Analysis of ZnO Piezoelectric-Based Circular Diaphragm Pressure Sensor: Singh, M. Shamjit; Kalita, P. K.; Singh, H. S.; Meetei, M. Sanju: *Inter. J. Engg. Trends and Tech*; **2023**; 71, p-84
- 17. Piezoelectric-Based Square Diaphragm Pressure Sensor Modelling and Analysis using PZT-5H and PZT-5A: Singh, M. Shamjit; Kalita, P. K.; Meetei, M. Sanju: *Inter. J. Electrical and Electronics Engg.*; **2023**, 10, p-1-8
- 18. Comparative study of distinct halide composites for highly efficient perovskite solar cells using a SCAPS-1D simulator: Bhattarai, Sagar; Pandey Rahul; Madan, Jaya; Tayeng, Soney; Kalita, P. K.; Ansari, Mohd Zahid; Lamia, Ben; Amami, Mongi; Hossain M. Khalid: *RSC Adv.*; **2023**; 13, p-26851
- 19. Designing an Efficient Lead-Free Perovskite Solar Cell Through Computational Method: Bhattarai, Sagar; Kalita P. K.; Hossain Ismail; Saad Alsubaie, Abdullah; Khaled Hussein; Ansari, Mohd Zahid; Janicek, Petr: *Crystal*; **2023**; 13, 1175.
- 20. Photo electronic properties of molar concentration varied nanostructured ZnO for their photo-detecting viability in visible range: Pathak, B.; Kalita, P. K.; *Physica B*; **2023**: 650, p-414562
- 21. Optoelectronic studies of Copper sulfide selenide (CuSSe) nanorods for its application as a potential absorber layer in photovoltaics: Barman, B.; Kalita, P. K.; *Optical Mater*; **2023**: 138, p-113642
- 22. Coulomb-blockade oscillation in CdS, ZnS and CdS/ZnS core-shell quantum dots: Kalita P. K.; Nanung Yowa; Das H. N.; *Physica Scripta*; **2023**: 98, p-025820

- 23. Structural, Optical and Ionic Properties of PVA Capped CuS Quantum Dots: Nath, S. K.; Kalita, P K.; : J Nano Res; **2023**: 7, p-119-133
- 24. Effect of growth condition on the structural, optical and ionic characteristics of chemically synthesized CuS Nanostructures in starch matrix: Nath, S. K.; Kalita, P. K.; : *Bulgarian J Phys;* **2023**, 50, p-280-300
- 25. Plant based Silver Quantum Dots for Evaluation of Mem-capacitive Behaviour: Pathak, B.; Das, H. N.; Kalita, P. K.; : *J Electronic Mater*; **2023** Vol-52, pp-6840-6850
- 26. Shell induced optoelectronic characteristics of chemically synthesized PbO/ ZnO core/shell nanocomposites for memcapacitive application: Pathak, B.; Amoua, J; Kalita, P. K.; : *Physica E- Low-dimensional Systems and Nanostructures* **2022**; 139, p-115157
- 27. Nanomaterials for Next Generation Energy Storage Applications: Pathak, B.; Das, H. N.; Kalita, P. K.; : *MRS Communication*; **2022** 12, p285-294
- 28. Modulation of optoelectronic properties of ZnO/PbO nanocomposite for memcapacitive application: Pathak, B.; Amoua, J; Kalita, P. K.; : *Mater Sci in Semicon. Processing.*; **2022**, vol. 149, p-106892
- 29. Optoelectronic characterization of ZnO/starch composite for its application as Schottky diode and photoconductor: : Deb, S.; Kalita, P. K.; : *J Mater Sci : Mater Electron* **2022 http://** doi.org/10.1007/s10854-022-08710-y
- 30. Green synthesis of copper sulfide (CuS) nanostructures for heterojunction diode applications: Deb, S.; Kalita, P. K.; : *J Mater Sci : Mater Electron* **2021** https://doi.org/10.1007/s10854-021-06879-2
- 31. Influence of back surface field layer on enhancing the efficiency of CIGS solar cell: Barman, B.; Kalita, P. K.; *Solar Energy* **2021**, *216*, 329-337
- 32. Temperature dependent structural, optical and electrical properties of CuS nanorods in aloe vera matrix: Nath, S. K.; Kalita, P. K.; *Nanostructures & Nano-Objects* **2021**, *25*, 100351-(9pp)
- 33. Optical properties of PbO/ZnO core/shell dispersed in PVP matrix: Pathak, B., Roychoudhury, J. P.; Kalita, P. K.; Aomoa, N.; *Materials Today: Proceeding*, **2021**, *46*, 6196-6200
- 34. Synthesis and characterization of chemically synthesized CuSe nanoparticles for photovoltaic application: Barman, B.; Handique, K.; Nanung, Y.; Kalita, P. K.; *Materials Today: Proceeding*, **2021**, 46, 6213-17
- 35. Effect of temperature on the optical properties of chemically synthesized CdSe nanostructures: Handique, K.; Siboh, D.; Nanung, Y., Barman, B.; Kalita, P. K.; *Materials Today: Proceeding*, **2021**, *46*, 6312-17.
- 36. Opto-electronic characterization of starch capped zinc chalcogenides (core-shell) nanocomposites and their application as Schottky device: Deb, S.; Kalita, P. K.; Datta, P.; *Physica Scripta* **2020**, *95*, 095810-(12pp)
- 37. Effects of cadmium ion concentration on the optical and photo-respon se properties of CdSe/PVP nanocomposites for white light sensing application: Handique, K.; Kalita, P. K.; *Applied Phys A: Mater. Sci & Process* **2020**, *126*, 755-(12pp)
- 38. Effect of Weak Confinement on the Optical Properties of Chemically Synthesized ZnS Nanoparticles: Handique, K.; Kalita, P. K.; *J Nano & Electronic Phys* **2020**, *12*, 04015-(5pp)
- 39. Theoretical Investigation on Performance Enhancement of CIGS Based Solar Cells: Barman, B.; Kalita, P. K.; *J Nano & Electronic Phys* **2020**, *12*, 06036-(4pp)
- 40. Optical Properties of poly-vinyl pyrrolidone encapsulated PbS/CdS core-shell quantum dots: Handique, K.; Barman, B.; Nanung, Y.; Kalita, P. K.; *Carbon-Sci & Tech.* **2019**, *11*, 29-35

- 41. A study on growth of ZnSe quantum dot through chemical route: Siboh, D.; Handique, K.; Kalita, P. K.; *Carbon-Sci & Tech.* **2019**, *11*, 36-42
- 42. Memristive, memcapacitive and meminductive behaviour of single and co-doped cadmium selenide nanocomposites under different doping environment: Das, B.; Devi, J.; Kalita, P. K.; Datta, P.; *J Mater Sci: Mater Electron* **2018**, *29*, 546-557
- 43. Structural and optoelectronic properties of glucose capped Cu doped ZnO/Zn(OH)2 nanosheets: Patwari, G.; Singha, R.; Kalita, P. K.; *Materials Today: Proceeding*, **2018**, *5*, 2197-2206
- 44. Quantum confinement induced shift in energy band edges and band gap of a spherical quantum dot: Bora, P.; Siboh, D., Nath, N. M.; Kalita, P. K.; Sarma, J. K.; *Physica B: Phys of Condensed Mater.* **2017**, *530*, 208-214
- 45. Microstructural and Optoelectronic properties of green synthesized ZnS nanostructures: Deb, S.; Kalita, P. K.; Datta, P.; *Inter J Nanosci.* **2017**, *16*, 1760032-1-9
- 46. Determination of shift in energy of band edges and band gap of ZnSe spherical quantum dot.: Siboh, D., Nath, N. M.; Kalita, P. K.; *AIP conference Proceedings* **2017**, *1942*, 50111-4
- 47. Effect of capping agents on the optical properties of synthesized CuS nanostructures: Nath, S. K.; Kalita, P. K.; *Materials Today: Proceeding*, **2017**, *4*, 3972-3978
- 48. Effect of self-assembled ZnO2 intermediate layer on the growth of starch capped ZnO/ZnS core/shell nano composites through chemical bath deposition method: Deb, S.; Kalita, P. K.; Datta, P.; *Materials Today: Proceeding*, **2017**, *4*, 3994-4000
- 49. Structural and optoelectronic properties of glucose capped Al and Cu doped ZnO nanostructures: Patawari, G.; Singha, R.; Kalita, P. K.; *Mater. Sci.-Poland* **2016**, *34*, 69-78
- 50. Optical properties of DNA induced starch capped PbS, CdS and PbS/CdS nanocomposites: Das, D.; Konwar, R.; Kalita, P. K.; *Indian J Phys.* **2015**, *89*, 845-855
- 51. Synthesis and characterization of Al-doped ZnO nanostructures in gluose matrix: Patwari, G.; Singha, R.; Kalita, P. K.; *J Basic & Appl. Engg. Res*, **2015**, *19*, 1728-31
- 52. Excess sulphar induced structural and optical properties of Green synthesised CuS nanostructures: Nath, S. K.; Kalita, P. K.; *J Basic & Appl. Engg. Res*, **2015**, *19*, 1684-87
- 53. Synthesis of ZnO/ZnS core/shell nanostructures for its possible fabrication as photoconductors: Deb, S.; Kalita, P. K.; Datta, P.; *J Basic & Appl. Engg. Res*, **2015**, *19*, 1785-89.

https://scholar.google.com/citations?view_op=search_authors&mauthors=Pradip+Kumar+Kalita&hl=en&oi=ao

Patent: -

Book/Book Chapter published

1. Handique, K.; Barman, B.; Kalita, P. K.; Design and stimulation studies of CdTe and CIGS based solar cells using SCAPS-1D.: *Frontiers in Basic Physics and*

- *Applications*, Eds. Nath, K. J.; Banik, D. K.; Nath, N. M. and Banik, S. K.; Barnagar College, Barpeta **2020** pp 58-69
- 2. Nath, S. K.; Kalita, P. K.; Synthesis and characterization of starch capped CuS nanostructures on low molar concentration.: *Spectrum: Recent trends in Multiplinary Research* Eds. Saikia, R.; Eduoxia Research Centre, Guwahati, **2020** pp11-21
- 3. Handique, K.; Barman, B.; Siboh, D.; Nanung, Y.; Kalita, P. K.; Synthesis and characterization of CdS/PbS core/shell nanocomposites for photovoltaic application.: *Advances in Nuclear Physics and Condensed Matter*, Eds. Singh, L. K.; **2019** pp.182-190
- 4. Handique, K.; Roy, M.; Kalita, P. K.; On an artificial intelligence based material search engine: *Rengani* Eds. <u>Gogoi, Rijumoni & Gogoi, Ritamoni,</u> Madhavdev Mahavidyala Prakashan, Lakhimpur, **2017** pp.182-189
- 5. Nath, S. K.; Kalita, P. K.; Chemical synthesis of Cu2S/PVA quantum dots.: *Treasure Trove*, Eds. Singh, S. S.; B H College Publication, Howly **2016** pp.13-17
- 6. Roychoudhury, J. P.; Kalita, P. K.; Effect of atmospheric oxidation on chemical synthesis of ZnS nanostructures.: *Treasure Trove*, Eds. Singh, S. S.; B H College Publication, Howly **2016** pp.169-175
- 7. Kalita, P. K.; Nanotechnology: A technological breakthrough towards a new world of fantasy.: *Science Spectrum*, Eds. Sarma, Kavita.; Bhabani Press, Guwahati **2015** pp.160-183

Research guidance

Ph.D scholars:

1. (For ongoing scholars)

(i) Full name of the Scholar: Yowa Nanung

Topic of research: *Studies of opto-electronic properties of transition metal doped CdS/ZnS core/shell nanocomposites.*

Year of PhD degree: Thesis to be submitted

(ii) Full name of the Scholar: Lohnye Tangjang

Topic of research: *Development of 2D Nanocomposites for Photoelectronic Device Application*

Year of PhD degree: Ongoing

(iv) Full name of the Scholar: Prerona Singha

Topic of research: Electron transport in 2D TMD quantum nanostructures and its

application in nanoelectronics

Year of PhD degree: Ongoing

(v) Full name of the Scholar: M Shamjit Singh

Prof. Pradip Kumar Kalita

Topic of research: Piezoelectric Pressure Sensors: Design, Simulation and Optimization for Different Modes of Operation.

Year of PhD degree: Ongoing

2. (For degree awarded scholars)

(i) Full name of the Scholar: Barnali Barman

Topic of research: Studies on photoresponse characteristics of chemically

synthesised CIGS nanoparticles for Photoconductive devices

Year of PhD degree: 2025

(ii) Full name of the Scholar: Kshirod Handique

Topic of research: An investigation on quasi type II nature of CdSe/ZnSe

core/shell nanostructures for possible optoelectronic application.

Year of PhD degree: 2024

(iii) Full name of the Scholar: Barnali Pathak

Title of the thesis: Studies of optoelectronic and memristive characterization of

some oxide nanoparticles

Year of PhD degree: 2024

Present occupation: Assistant Prof (Guest), B H College, Howly, Assam

(iv) Full name of the Scholar: Sanatan Kumar Nath

Title of the thesis: *Studies of structural, optical and ionic conductivity in copper*

sulphide nanostructures

Year of PhD degree: 2024

Present occupation: Associate Prof, B H College, Howly, Assam

(v)) Full name of the Scholar: Bandana Das

Title of the thesis: Synthesis and characterization of rare earth metal doped CdSe

nanostructures for their possible device application

Year of PhD degree: 2018

Present occupation: Assistant Prof, Pandu College, Guwahati

(vi) Full name of the Scholar: Sujata Deb

Title of the thesis: A study on growth and optical properties of ZnO/ZnS core/shell

nanocomposites and their application in optoelectronic devices

Year of PhD degree: 2017

Present occupation: Assistant Prof, Royal Global University, Guwahati

(vii) Full name of the Scholar: Rhituraj Saikia

Title of the thesis: Growth and characterization of CdSe/CdS core/shell

nanostructures for application in solar cell

Year of PhD degree: 2015

Present occupation: Director, Eudoxia Research Centre, Guwahati

Course/Conference/Workshop organized (Selected)

1. International Conference on Advances in Nano-optoelectronics and its Application (ICANOPA-2020) by Department of Physics, Rajiv Gandhi University, Arunachal Pradesh, India

Duration: 12 October-14 October 2020

Role: Convenor

Course/Conference/Workshop etc. attended (Selected)

1. Delivered an invited talk in Workshop, *Frontiers in Basic Physics and Applications* an National Workshop held at Department of Physics, Baranagar College, Barpeta, Assam, India during 21August-22August, 2020.

Title of the presentation/talk: *Physics of Quantum dots and Core/Shell Nanomaterials*

2. Delivered an invited talk in Workshop on Research Methodology (*WORAM-2020*) an International Workshop held at Eudoxia Research Centre, Guwahati, Assam, India during 05April-11April, 2020.

Title of the presentation/talk: Research Methodology

3. Delivered an invited talk in International Conference on New Frontiers in Engineering and Science conference (*INFES-2019*) an International Conference held at Eudoxia Research Centre, Guwahati, Assam,. India during 23 February 2019.

Title of the presentation/talk: *Beauty of Quantum dots*

4. Delivered an invited talk in Himalayan University, a one day Workshop held at Department of Physics, Himalayan University, Itanagar, Arunachal Pradesh, India during 06 February 2019.

Title of the presentation/talk: *Advances in nanoscience & nanotechnology*

5. Delivered two invited lectures in Workshop *Nano-Electronics and Related discplines* an National Workshop held at Department of Electronics and Communication Technology, Gauhati University, Assam,. India during 01August-06August, 2017.

Title of the presentation/talk: (1) Thin films optoelectronics & (2) Core/shell nanostructures